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In this work we show how to engineer bilinear and quadratic Hamiltonians in cavity quantum electrody-
namics through the interaction of a single driven two-level atom with cavity modes. The validity of the
engineered Hamiltonians is numerically analyzed even when considering the effects of both dissipative mecha-
nisms, the cavity field and the atom. The present scheme can be used, in both optical and microwave regimes,
for quantum state preparation, the implementation of quantum logical operations, and fundamental tests of
quantum theory.
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I. INTRODUCTION

Frequency-conversion mechanisms, such as optical para-
metric and four-wave mixing processes, have acted as a basic
resource in the investigation of fundamental quantum phe-
nomena over the last few decades. Largely employed to pro-
duce squeezed and polarization-entangled photon states to
test sub-Poissonian statistics �1� and Bell’s inequalities �2�,
such processes have deepened our understanding of radiation
�1� and its interaction with matter �3�. Apart from applica-
tions in fundamental physics, it has been conjectured that
frequency conversions can improve the signal-to-noise ratio
in optical communication �4� and be used to measure gravi-
tational waves through squeezed fields �5�. Recently, they
have also been required within quantum information theory
for the implementation of a nondeterministic controlled-NOT

operation �6�.
Against this backdrop of the general usefulness of fre-

quency conversions in the running-wave domain, several re-
cent studies have been devoted to mapping these mecha-
nisms into two-mode cavity quantum electrodynamics
�QED� �7–10�. Parametric up and down conversions �PUC
and PDC� were accomplished through the dispersive interac-
tions of a single three-level atom simultaneously with a clas-
sical driving field and a two-mode cavity. The PDC �PUC�
process follows from the ladder �lambda� configuration of
atomic levels, in which the ground �g� and excited �e� states
are coupled through an auxiliary intermediate �more-excited�
level �i�. The cavity modes �a and �b are tuned to the vicin-
ity of the dipole-allowed transitions �g�↔ �i� and �e�↔ �i�.
The desired interaction between the modes �a and �b,
���ab+�*a†b†� for PDC or ���ab†+�*a†b� for PUC, is ac-
complished by driving the dipole-forbidden atomic transition
�g�↔ �e� out of resonance with a classical field. For the de-
generate PDC process, where �a=�b, the well-known inter-
action ����a�2+�*�a†�2� was first achieved in �7�, and this
may be used to squeeze an arbitrary state previously pre-
pared in the cavity; i.e., to perform the squeezing operation
S ��� in cavity QED �S being the squeeze operator�. These
achievements enhance prospects of quantum information
manipulation and of fundamental tests of quantum theory in
cavity QED. In fact, the engineered bilinear Hamiltonians
can be used to generate one-mode mesoscopic squeezed su-

perpositions, two-mode entanglements, and two-mode
squeezed vacuum states �such as the original Einstein-
Podolsky-Rosen �EPR� state�.

Motivated by these accomplishments �7–10�, and simulta-
neously attempting to generalize and simplify these proto-
cols, in the present paper we consider only a two-level Ryd-
berg atom in order to generate, in two-mode cavity QED,
bilinear and quadratic Hamiltonians similar to those describ-
ing PUC and PDC. We also demonstrate how to generate, in
one-mode cavity QED, the anti-Jaynes-Cummings �AJC�
Hamiltonian �11� and a mixture of the Jaynes-Cummings
�JC� and the AJC Hamiltonians. We stress that all the previ-
ous schemes presented in the literature to generate nonlinear
Hamiltonians consider the interaction between a cavity mode
and an atom with at least three atomic levels. The present
protocol overcomes the difficulty of driving the dipole-
forbidden atomic transition �g�↔ �e�, which sometimes re-
quires a significant strength, as in the strong amplification
regime defined in Ref. �9�. More importantly, with a two-
level atom, long-lived circular Rydberg states might be em-
ployable reducing the noise coming from the finite lifetimes
of the atomic levels. �We stress that, to achieve PUC and
PDC with a three-level atomic configuration, at least one
level cannot be a long-lived circular Rydberg state.� Our re-
sults are derived from variations of the Hamiltonian H=H0
+V�t� �with �=1�, with

H0 = �aa†a + �bb†b + �0��ee − �gg�/2, �1a�

V�t� = ��aa�eg + �bb�eg + ��1e−i�1t + �2e−i�2t��eg + H.c.� ,

�1b�

where the atomic ground �g� and excited �e� states, with
transition frequency �0, are coupled through the cavity
modes of frequencies �a and �b, with coupling constants �a
and �b, and detunings 	a=�0−�a and 	b =�0−�b. The
dipole-allowed transition �g�↔ �e� is also excited by two
driving classical fields of frequencies �1 and �2, with cou-
pling constants �1= ��1 �ei
1 and �2= ��2 �ei
2, and detun-
ings 	1=�0−�1 and 	2=�0−�2. In the interaction picture,
the transformed Hamiltonian is given by
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VI�t� = �aei	ata�eg + �bei	btb�eg + ��1ei	1t + �2ei	2t��eg + H.c.

�2�

II. BILINEAR AND QUADRATIC HAMILTONIANS

A single classical amplification field ��1� is required to
accomplish these interactions. After writing the Hamiltonian
VI�t� in this laser framework and defining a new basis for the
atomic states ��± ���ei
1 �e�± �g�� /	2
 �11�, under the as-
sumption that 	1� ��1�, �	a�, �	b�, we proceed to the transfor-
mation U=exp�−i ��1 � ��++−�−−�t�, which prepares the
Hamiltonian

V�t� = ��̃aei�	a−	1�ta + �̃bei�	b−	1�tb���++ − �−− − e2i�1t�+−

+ e−2i�1t�−+�/2 + H.c., �3�

with �̃�=��e−i
1 ��=a ,b�, for a subsequent perturbation ap-
proximation. In what follows we discuss three regimes of the
classical amplification field: the weak ��	a � ��	b �  ��1 �
� ��̃a � ���̃b � �, the intermediate ���1 � ��	a � ��	b �  ��̃a �
���̃b � � and the strong ���1 �  �	a � ��	b �  ��̃a � ���̃b � � am-
plification regimes. In all cases, the Hamiltonian �3� consists
of highly oscillating terms and to a good approximation we
finally obtain the effective Hamiltonian �12�

H = − iV�t� � V�t��dt�. �4�

It is important to note from Eq. �3� that once the relation

�2�1± �	�−	1� �  ��̃�� is satisfied for all the amplification re-
gimes, there will be no transition between the atomic dressed
states �+ � and �−� �even that there will be transitions between
the bare states �g� and �e��.

A. The Hamiltonian „ab+H.c.…

From the above analysis, this interaction is achieved con-
sidering the energy �E� diagram pictorially sketched in Fig.
1�a�, where 	a=−	b=	�0. From Eq. �4�, we obtain, within
the rotating-wave approximation, the effective Hamiltonian
H�t�=H0+Hint�t�, with

H0 =
��1�

4��1�2 − 	2 ���̃a�2a†a + ��̃b�2b†b���++ − �−−�

+
2

	


�=+,−
���̃a�

2 	 + � ��1�
	 + 2 � ��1�

− ��̃b�
2 	 − � ��1�
	 − 2 � ��1�����,

�5a�

Hint�t� = � �̃a�̃b��1�
	2 − 4��1�2

e−2i	1tab + H.c.���++ − �−−� .

�5b�

Preparing the atomic state �± �, we obtain through the unitary
transformation H±=U†H�t�U−H0, with U=e−iH0t, the engi-
neered interaction

H± = ��±ab + H.c.� , �6�

where the coupling parameters in the weak �W�, intermediate
�I�, and strong �S� amplification regimes become �±W

= ± �̃a�̃b ��1 � /	2, �±I= ± �̃a�̃b ��1 � / �	2−4 ��1�2�, and �±S

= ��̃a�̃b /4 ��1�, after adjusting the detuning 	1 such that

	1W= ± ���̃a�2+ ��̃b�2� ��1 � /	2, 	1I= ± ���̃a�2+ ��̃b�2� ��1 � /

�4 ��1�2−	2�, and 	1S= ± ���̃a�2+ ��̃b�2� /4 ��1�, respectively.
�For the intermediate amplification regime care must be
taken to avoid the equality ��1 � = �	�.� We note that the
strength of the coupling parameters obeys the relation �I
��W��S.

B. The Hamiltonian „ab†+H.c.…

The energy diagram leading to this interaction is sketched
in Fig. 1�b�, where 	a� 	b. The effective Hamiltonian be-
comes

H0 = � ��1���̃a�2

4��1�2 − 	a
2a†a +

��1���̃b�2

4��1�2 − 	b
2b†b���++ − �−−�

+
1

2 
�=+,−

���̃a�2
	a + � ��1�

	a�	a + 2 � ��1��

+ ��̃b�2
	b + � ��1�

	b�	b + 2 � ��1������, �7a�

Hint�t� =
1

2
�̃a�̃b

*ei�	a−	b�tab† 
�=+,−

� 	b + � ��1�
	b�	b + 2 � ��1��

−
	a − � ��1�

	a�	a − 2 � ��1������ + H.c. �7b�

Again, preparing the atomic state �± � we obtain,through the
same steps leading to the interaction �ab+H.c.�, the effective
Hamiltonian

H± = ��±ab†ei�±t + H.c.� , �8�

where the phase

FIG. 1. Energy diagrams underlying the bilinear Hamiltonians
�a� ab+H.c. and �b� ab†+H.c..
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�± = ± ��1�� ��̃b�2

4��1�2 − 	b
2 −

��̃a�2

4��1�2 − 	a
2� + 	a − 	b

can be made null only in the intermediate regime where the
term in brackets, multiplied by ��1�, can be made of the
order of the detuning 	a−	b. The coupling parameters �±W

= �̃a�̃b
*�	a−	b� /2	a	b, �±I= ± �̃a�̃b

* ��1 � / �4 ��1�2−	a	b�, and

�±S= ± �̃a�̃b
* /4 ��1�, follows without any need to adjust the

detuning 	1, since the condition 	1� ��1 � , �	a � , �	b� is satis-
fied. Again, the strength of the coupling parameters obey the
relation �I��W��S. The time-dependent Hamiltonian �8�
can be treated through the invariants introduced by Lewis
and Riesenfeld �13�, as discussed in Refs. �7,14�. Otherwise,
we may consider identical modes �a=�b �so that 	a=	b� of
two identical cavities disposed along perpendicular transver-
sal axes and sharing the same two-level atom.

C. Applications

As mentioned above, the engineered bilinear Hamilto-
nians can be used for quantum state preparation in cavity
QED. In Refs. �7,8� the interaction �6� was employed in a
protocol for the preparation of the original EPR entangle-
ment expanded in the Fock representation. This interaction
was also required to engineer the even and odd EPR states
defined in Ref. �9�. The advantage of the protocol in �9� over
that in �8� is the use of a intense classical amplification field,
where the strength of the bilinear interactions between the
cavity modes are considerably increased, at least by one or-
der of magnitude, compared to the strength in �8�. Conse-
quently, the atom-field interaction time required to obtain
high-fidelity states can be considerably shorter, making the
dissipative effects negligible.

The present scheme, in turn, has the advantage over those
in Refs. �8,9�, in that a two-level atom is able to generate
both interactions, �6� and �8�, with coupling strengths com-
parable to those obtained in �9�. Therefore, apart from the
benefit of a shorter interaction time, due to the strength of the
coupling parameters � and �, here we get an additional ad-
vantage employing circular long-lived Rydberg states. The
same facilities apply to the squeezing Hamiltonian engi-
neered below. We finally mention that, following the reason-
ing in Ref. �6�, our engineered bilinear interactions can be
considered to manipulate quantum information in cavity
QED.

III. THE SQUEEZING HAMILTONIAN

To obtain the parametric amplification Hamiltonian, we
consider, as indicated in Fig. 2, the atomic transition coupled
to a single cavity mode ��a�, as well as two classical
amplification fields, with 	1=0 and 	2�0, under the condi-

tion ��1 � =−	2 /2 ��̃a�, ��2�, �	a�. Starting from the interac-
tion picture we obtain, after the unitary transformation U1
=exp�−i��1�eg+�1

*�ge�t� and within the rotating-wave ap-
proximation, the interaction

Ṽ1�t� = �̃aaei	at��++ − �−−� − �̃2�++ + H.c., �9�

where �̃2=�2e−i
1 /2. Through the new basis �� ↑
↓�

= �ei�
2−
1� � + �± �−�� /	2
 it is straightforward to verify that,

after another transformation U2=exp�i��̃2�+−+H.c.�t�, the
interaction �9� becomes

Ṽ2�t� = ��̃aaei	at + �̃a
*a†e−i	at���↑↓e

−i��2�t + �↓↑e
i��2�t� ,

�10�

which is suitable for the derivation, under the assumption
that �	a � � ��2�, of the effective Hamiltonian H
=−iṼ2�t�� Ṽ2�t��dt�. Finally, for the initial atomic state � ↑↓ �
and adjusting 	a�↑

↓ �= �2 � �̃a�2 / ��2�, we obtain the engineered

parametric amplification Hamiltonian

H�↑
↓� = � ��e−2i
1a2 + H.c.� , �11�

where �= ��̃�
2 /�2�, which allows the squeezing of any de-

sired prepared cavity-field state. We note that the squeezing
direction in the phase space is controlled through the phase
factor e−i
1 derived from a classical amplification field. With

1=
2=0 we recover the atomic bases ��g� , �e�
 in that �↑ �
= �e� and �↓ �= �g�. Differently from the protocols with three-
level atoms �7–10�, where the squeezing interaction is engi-
neered through degenerate atomic transitions, here a second
amplification field on a single atomic transition is required to
achieve the two-photon process.

A. Applications

In the running-wave domain, the squeezed states revealed
the intrinsic quantum nature of light, together with the direct
evidence for an atom undergoing a quantum jump �3�. The
engineered interaction �11� exposes a myriad of possible ap-
plications in cavity QED, ranging from the preparation of a
set of squeezed states �15� to the possibility of revealing the
statistical properties of the electromagnetic field through its
controlled interaction with atoms. Beyond these applications,
a particular squeezed superposition state �SSS� can be pre-
pared when adjusting 	a=
1=
2=0, such that the Hamil-
tonian governing the evolution of the atom-field state reads

FIG. 2. Energy diagram of the scheme used to obtain the
squeezing interaction.
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H = − ��2a†a + a2 + �a†�2���ee − �gg� . �12�

Starting from the initial state ��e�+ �g�� ��� /	2, ��� being a
coherent state injected into the cavity, the generated SSS is
��e�Ue+ �g�Ug� ��� /	2, where U� stands for the evolution op-
erator associated with Hamiltonian H�= ���H � � �, with �
=e ,g. It has been shown in Ref. �14� that the decoherence
time of this particular SSS—where both states composing
the superposition exhibt the same squeezing direction—
could be delayed to around the relaxation time of the cavity
field. This remarkable result requires the engineering of ab-
solute zero reservoirs composed by oscillators squeezed in a
direction perpendicular to that of the superposition state. The
reason behind this phenomenon is quite palpable: the injec-
tion of noise from the reservoir into the superposition state
decreases as the degree of squeezing, of both the reservoir
and the superposition states, increases. Therefore, the present
scheme is a crucial step towards the accomplishment of this
specific program for protecting a quantum state. �We stress
that the engineering of an ideally squeezed reservoir for a
cavity mode has been partially achieved in Ref. �16�, through
a feedback scheme, and by our group �17�, by means of
engineered interactions between atoms and cavity modes.�

IV. THE AJC HAMILTONIAN

To engineer the AJC model in cavity QED we start from

the interaction Ṽ2�t� that leads to the squeezing operator.
Considering 
1=
2=0 and 	a=−��2�, we obtain, within the
rotating-wave approximation following from the condition

��2 �  ��̃a�2, the desired interaction

HAJC = �̃aa�ge + H.c., �13�

which has already been engineered in the cavity QED with
two-level �11� or three-level atoms �18�. While in Ref. �11�
the AJC interaction is achieved, with a single classical field,
by adjusting the detuning between the cavity mode and the
atomic transition, in the present scheme we adjust the detun-
ing between the classical field �2 and the atomic transition. It
is also possible to obtain an alternation between the JC and
the AJC model assuming the same parameters that lead to the

AJC model �
1=
2=0, �	a � =−��2�, and ��2 �  ��̃a��. To this
end, two synchronized pulsed fields must be introduced,
leading to �2�t�=�0−	2�t�, with 	2�t�= �	2 � ��1�t�−�2�t��,
���t� being the Heaviside function ��=1,2�. Given ���t�
=n��t− �2n+	�2������2n+1+	�2��− t�, � being the dura-
tion of each pulse and n an integer, the engineered Hamil-
tonian reads

H = �1�t���̃aa�ge + H.c.� + �2�t���̃aa�eg + H.c.� . �14�

V. DISCUSSION AND CONCLUSION

Next, addressing some sensitive points in the present en-
gineering scheme, we turn our attention to the effective
squeezing interaction in Eq. �11�, to demonstrate that it fol-
lows with good agreement from the full Hamiltonian in Eq.

�1�. In Fig. 3, starting with the cavity field in the vacuum
state and the atom in the ground state, we plot the variance of
the cavity-field squeezed quadrature, ��X�2, against the
squeezing factor r=2�t. Although the present scheme can be
applied to both optical and microwave regimes, in Fig. 3 we
have used typical parameters from cavity QED experiments
in the microwave regime, which, in units of �a=3�105 s−1,
are approximately given by �0=105, �1=4�102, �2=20,
and 	2=8�102. The solid line corresponds to the variance
computed either analytically or numerically from the effec-
tive squeezing interaction �11� �the exceedingly small differ-
ence between the two curves being around 0.3% for r=1�.
The dashed line corresponds to the variance computed nu-
merically from the full Hamiltonian in Eq. �1�. Figure 3 re-
veals a good agreement between the solid and dashed lines,
forr ranging from zero to unity, with the degree of squeezing
being 86.4% and 85.6%, respectively. Evidently, these de-
grees of squeezing can even be enhanced considering a
sample of N noninteracting atoms instead of a single one, as
considered in �10�.

We also computed the effects of both dissipative mecha-
nisms, the cavity field and the atom, on the degree of squeez-
ing achieved. The dotted line traces the numerical computa-
tion of the variance of the squeezed quadrature based on the
master equation

�̇ = − i�H,�� + L field� + Latom� , �15�

with H given by Eq. �1�. As usual, for a reservoir at absolute
zero, the Liouville operators read L field�= �� f /2��2a�a†

−a†a�−�a†a� and Latom�= ��a /2��2�−��+−�+�−�−��+�−�.
We again assumed, in units of �a, typical values for high-
finesse cavities and circular-Rydberg states, around � f =3
�10−3 and �a=10−4 �19�. From Fig. 3 we observe that the
degree of squeezing under the dissipative effects falls to
80.5%, which is still a remarkable result.

FIG. 3. Variance of the cavity-field squeezed quadrature ��X�2

plotted against the squeezing factor r for the effective squeezing
interaction in Eq. �11� �solid line�, the full Hamiltonian in Eq. �1�
�dashed line�, and the full Hamiltonian under cavity-field and
atomic decay �dotted line�.
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We also observe that the coupling parameters between the
atom and the quantum and classical fields are inhomoge-
neous in space. As computed in Ref. �7�, this inhomogeneity
leads, basically, to a constant effective coupling parameter
smaller than that derived for a homogeneous field with a
small adverse effect on the degree of squeezing.

In this work we have presented protocols to build bilinear
and quadratic Hamiltonians in cavity QED, employing a
single two-level atom plus classical amplification fields. The
simplicity and generality of these schemes make them suit-
able for the implementation of quantum logical operations
�6�, quantum state preparation �9�, and fundamental tests of
quantum theory �20�. The validity of the approximations
leading to our effective Hamiltonians has been confirmed

with numerical calculations, even under the effect of dissipa-
tive mechanisms. As well as deepening our understanding of
atom-field interactions in the cavity QED, our protocols may
also open the way to advances in correlated areas such as
trapped-ion and nanomechanical oscillators.
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