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Čerenkov radiation from cavities has been analyzed by quantum electrodynamic theory. Analytical expres-
sions of basic radiation properties such as the Einstein’s A and B coefficients are derived and shown to be
directly modified by the cavities. The analysis leads to the conclusion that the coherent radiation from the
Čerenkov radiation devices is due to super radiance of spontaneous emission instead of stimulated emission.
Coherent and incoherent radiations are analyzed in the THz radiation range.
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I. INTRODUCTION

A free traveling electron emits photons spontaneously
when its speed u is greater than the phase velocity vp of the
photon it emits. Such process can occur in a dielectric me-
dium �1,2� and is known as Čerenkov radiation �CR�. Since
its discovery, Čerenkov radiation has played an important
role in high energy physics for detecting particles �3�. The
broad spectrum of CR has also stimulated thoughts �4� of
using it as a radiation source, particularly in a frequency
range difficult of access by other means. High frequency
microwave radiations in the hundreds of GHz range have
been generated in dielectrically loaded CR devices �5,6�
where a vacuum tunnel is typically used inside the dielectric
for the electrons to travel and a metal cavity is also used
to confine the radiation field. Here the topic is revisited
because there have been much interests recently in generat-
ing practical THz radiation, which ranges between
300 GHz to 30 THz in frequency. What makes THz radia-
tion particularly interesting is the natural match of the fre-
quency band to the molecular vibrational and rotational en-
ergy bands, leading to potential applications in chemistry,
biology, and astronomy, etc. The simplicity of the radiation
scheme, mature technology of fabricating dielectric struc-
tures, and the possibility of integrating field emission elec-
tron sources �7� present CR device as yet another alternative
to the pursuit of submillimeter or THz radiation, in parallel
to synchrotrons �8�, free electron lasers �9�, optically-
pumped molecular lasers �10�, quantum-cascade lasers �11�,
and femtosecond laser-pumped photoconductive antennas
�12�.

Analysis of the CR devices �13–19� are mostly treated by
classical electrodynamics, where the electron motion is gov-
erned by the Newton-Lorentz equation and the radiation as a
result of the moving electron is ruled by the Maxwell equa-
tions. The treatment is justified for the lower frequency
range. In the higher frequency range, from infrared �IR� to
ultraviolet �UV�, quantum theory gives a more accurate de-
scription of quantum electronics devices such as lasers. Since
THz radiation is an extension of IR, quantum mechanical
treatment for the radiation is adequate and even required. In

this paper, we will analyze the basic radiation properties of
the CR devices. For example, we will calculate the Einstein’s
A and B coefficients and show how the cavity affects their
value. We will also analyze the incoherent and coherent ra-
diations from the device.

II. EINSTEIN’S A COEFFICIENT FOR CR IN
A UNIFORM DIELECTRIC MEDIUM

We begin with deriving the Einstein’s A coefficient in a
uniform dielectric medium. In the quantum view, the process
is described as a photon generated by the electron with en-
ergy and momentum conservation,

�EP�,P�� + ���,�k� = �EP,P� , �1�

where �EP ,P� and �EP� ,P�� are the four momenta of the
electron before and after the process, respectively, with EP

=�P2+m2 and EP�=�P�2+m2. � and k are the photon fre-
quency and wave vector, respectively. The process can be
illustrated by a diagram as shown in Fig. 1. Notice a photon
cannot be generated in the vacuum according to Eq. �1�.

The ability to radiate is measured by the Einstein’s A co-
efficient, a concept introduced even before the full repertoire
of quantum mechanics was developed. A is equivalent to the
transition probability rate
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FIG. 1. A Čerenkov photon of frequency � and wave vector k is
generated by the transition of free electron from �P� state to �P��
state, where P and P� represent the electron momenta before and
after the radiation.
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A = 2��Hint�2��EP�/� + �,EP/��

= 2�� 1

�
	2

�
1�
P��c� · A�k · r��P��0��2��EP�/� + �,EP/�� ,

�2�

where Hint is the transition matrix and � function enforces
the resonant condition. �P�= 1

�V
eP/�·ru�P� and �P��

= 1
�V

eP�/�·ru�P�� are the electron wave functions before and
after the radiation. V is the normalization volume and u�P�
and u��P� are the Dirac spinors. A photon is generated, �0�
→ �1�, by the interaction c� ·A�k ·r� in which dipole approxi-
mation is not used. � is a Dirac matrix and A�k ·r� is the
quantized radiation field given by

A�k · r� = g��âeik·r + �*â†e−ik·r� , �3�

where â and â† are the creation and annihilation photon op-
erators, respectively. eik·r represents the plane wave photon
field with, however, the dispersion relationship is k=n �

c
where n is the index of refraction of the medium.
g=� �

2�V	� is the field normalization constant where V	 is the
normalization volume of the field.

The analytical expression of the Einstein’s A coefficient
for the CR in the uniform medium is readily carried out by
integrating Eq. �2� over all ks and P�s, where the radiation
angle is derived to be frequency dependent due to electron
recoil, cos 
= 1

�n + �k
2P

�1− 1
n2 �, and uniform dispersion of the

medium is assumed

A = ��
EP

�
F��,n� , �4�

where �= e2

4��0�c is the fine structure constant and �=u /c,
where u is the electron speed. F�� ,n� is an explicit function
of � and n

F��,n� = � 7

4�2 +
1

4�2n2 − 2	 + � 3

8�2 +
1

8�2n2 −
1

2
	�m

+ � 7

4�2 +
5

4�2n2 − 3	ln�1 − �m�/�m, �5�

where �m�
��m

EP
and �m is the maximal radiation frequency

��m = 2
�n − 1

n2 − 1
EP 

2

n + 1
EP  EP. �6�

Equation �6� shows that the electron cannot convert its
entire energy to a radiating photon, in contrast to the classi-
cal theory that claims infinite maximum frequency. If we
allow �m to be infinite and neglect the electron recoil, we
recover the classical expression of the Čerenkov radiation
power with Ne electrons

P = A��Ne =
e2Ne

4��0c
��

0

�

�d��1 − cos2 
� . �7�

To appreciate the value of the A coefficient, let the mate-
rial be quartz so n=�3.78=1.944 and �=0.634�1/n. The
maximal photon frequency is �m=1.7�1020 rad s−1 accord-

ing to Eq. �6�. In reality, the medium becomes absorptive at
such high frequency, thus cutoff frequency of CR is much
smaller. Figure 2 shows A value as a function of the cutoff
frequency. Suppose the cutoff wavelength is 100 nm, we
show A3�1013 s−1. Notice here the large A value repre-
sents a wideband of radiation while a typical atomic A is
only for a narrow line of radiation.

III. EINSTEIN’S A AND B COEFFICIENTS
FOR CAVITY ČERENKOV RADIATION

It is desirable for many applications to have the radiation
energy concentrated in a narrow and discrete band, which
requires discrete energy levels of the radiation system. The
free electron does not possess discrete energy levels for dis-
crete radiations, but the alternative is to force discrete fields
by a cavity so that the electron can only loose its energy to
those fields. A cavity CR device has thus been formed by
enclosing the dielectric with a conducting material �6,20� as
shown in Fig. 3, where a vacuum tunnel is built for the
electrons to travel. We will study the structure illustrated by
Fig. 3 as a basic cavity CR device.

The fields that can survive inside the cavity is called
eigenmode fields that have a special dispersion relationship
derived to be

I1�Xa�
I0�Xa�X

= −
��Y1�Ya�J0�Yb� − J1�Ya�Y0�Yb��

�0Y�J0�Ya�Y0�Yb� − Y0�Ya�J0�Yb��
, �8�

where Jn is the nth order Bessel function and In and Yn are
the nth order modified Bessel function of the first and second

FIG. 2. Einstein’s A coefficient values as a function of the cutoff
wavelength for n=1.944 and �=0.634.

FIG. 3. A typical dielectric lined cavity CR device illustrates a
conducting tube with radius b and a vacuum tunnel with radius a.
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kind. X=k2− � �
c

�2 and Y = �
�0

� �
c

�2−k2 are separation constants.
Equation �8� is obtained by solving the Maxwell equations
using the boundary conditions that �a� the tangential compo-
nent of the electric field is continuous and �b� the tangential
component of the magnetic field is continuous.

Figure 4 plots the dispersion relationships expressed by
Eq. �8� for two different cavity structures. The first cavity is
used in the experiments �6,20�, and the second cavity is
smaller designed for higher frequencies. Only transverse
magnetic �TM� modes are considered because they dominate
the interaction P ·A.

The mode characteristic alone does not fixate discrete fre-
quencies. Additional relation comes from energy-momentum
conservation conditions between the photon and the electron
described by Eq. �1�. Since here k �P and P� �P, we have

vp �
�

k
=

�c

1 +
�

2
�� kc

�
	2

− 1� � u − u
�

2
�� 1

�
	2

− 1� ,

�9�

where �=�� /EP. Equation �9� is combined with Eq. �8� to
give the actual, discrete radiation frequencies. Notice that the
electron velocity and the field velocity do not match exactly

due to electron recoil, which may explain that the radiation
frequency is slightly higher than the synchronism frequen-
cies as observed in experiments �20�. Figure 4 illustrates the
synchronization points as the interception between the dis-
persion curve and the � /k=�c line, where it is shown that
some frequencies are already in the THz range for the
smaller cavity.

The cavity not only selects certain field modes but causes
the field distribution to deviate from the plane wave. Because
the transition rate depends on the overlap between the field
function and the electron wave function �Eq. �2��, the modi-
fied field distribution can dramatically change the radiation
properties. This effect has been studied extensively as a sub-
ject of cavity QED. For example, it has been observed that
the spontaneous emission rate is modified from that in
vacuum �21�. The uniqueness here is that the radiators are
the free electrons instead of atoms, molecules, and even nu-
clei. The dielectric medium is necessary for the free electrons
to radiate in the cavity.

The quantized radiation field inside the cavity is derived
following the standard quantization procedure of radiation
fields �22�. The derived quantized field is different from that
in Eq. �3�, where the plane wave function as the solution to
the Helmholtz equation �2A−�2A /�t2=0 in vacuum is re-
placed by the solution in the cavity.

A�r� = zg��âeikz + â†e−ikz� � �I0�X�� , � � a

�0

�

Y

X
� I1�Xa�J0�Yb�Y0�Y�� − I1�Xa�Y0�Yb�J0�Y��

Y1�Ya�J0�Yb� − J1�Ya�Y0�Yb� � , a  � � b . � �10�

The normalization coefficient g� in Eq. �10� is derived to give the total Hamiltonian Ĥ= 1
2���ââ†+ â†â�

g� =� �

2�L�b2�
f ,

f �� 2�0�b2

�0�
0

a

HI
22��d� + �0�

0

a

EI
22��d� + ��

a

b

HII
2 2��d� + ��

a

b

EII
2 2��d�

, �11�

FIG. 4. �Color online� Dispersion curves for the different modes in two different cavity CR devices: �left� a=3 mm, b=6 mm; �right�
a=1.0 mm, b=1.2 mm. Both have �=3.78�0 and �=0.634. The dotted line represents the linear dispersion that gives phase velocity of �c.
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where L is the cavity length and HI ,EI and HII ,EII are the
magnetic and electric fields in the tunnel ���a� and dielec-
tric �a��b� regions, respectively, given explicitly by

EI = iI0�X�� ,

HI =
��0

X
I1�X�� ,

EII = i
�0

�

Y

X

I1�Xa�J0�Yb�Y0�Y�� − I1�Xa�Y0�Yb�J0�Y��
Y1�Ya�J0�Yb� − J1�Ya�Y0�Yb�

,

HII =
��0

X

I1�Xa�J0�Yb�Y1�Y�� − I1�Xa�Y0�Yb�J1�Y��
Y1�Ya�J0�Yb� − J1�Ya�Y0�Yb�

.

�12�

The normalized field functions are plotted in Fig. 5 to-
gether with the electron wave functions that is also confined
by the cavity as well. The difference is that the dielectric
wall is the only boundary for the electrons assuming there is
no tunneling into the dielectric medium. The lowest order
electron wave function is then

�P� = � eiPz/�u�P�
�L

J0�2.405�/a�
a���J1�2.405��

��  a�

0 �� � a� .

�13�

The corresponding electron probability distribution is
plotted in Fig. 5. A narrower electron distribution can be
described by the superposition of a few higher order electron
wave functions. The electron energy and momentum are
practically unchanged by the cavity because the dimension
of the radial confinement is too large so that �P��� /��
� P.

The A coefficient is then calculated by using the new
wave function �Eq. �13�� and field �Eq. �10��, and the ana-
lytical expression is found again

Acav = ��2�1 + ��f2F2 c2

�2��2b2�0

2c

vg
, �14�

where �0 is the synchronism frequency and F is the filling
factor that measures the overlap between the field and the
electron wave function

F = �
0

a 1

a2�J1
2�2.405�

J0
2�2.405�/a�I0�X��2��d� , �15�

and vg= � d�
dk ��0

is the group velocity at the synchronism fre-
quency.

The Acav is shown to be determined by the cavity geom-
etry and the dielectric material. That means in practice its
value can be engineered through the cavity design. Again the
concept here draws analogy to that in cavity QED where the
radiation phenomena are modified by the cavities.

The Einstein’s B coefficient can also be derived from
QED by calculating the transition rate from N	 existing pho-
tons to N	+1 photons

2�� 1

�
	2

�
N	 + 1�
P��c� · A�k · r��P��N	��2

���EP�/� + �,EP/�� = Bcav,emi�	, �16�

where N	 is the photon number in the mode and �	 is the
corresponding photon density. Equation �16� gives the Ein-
stein’s B coefficient for emission. The B coefficient for ab-
sorption can also be found by assuming photons go from N	

to N	−1. Thus we have

Bcav,emi = N	��2�1 + ��f2F2c3/�b2�0�/I ,

Bcav,abs = N	��2�1 − ��f2F2c3/�b2�0�/I . �17�

Notice that the two Bs are not exactly the same and the
emission coefficient is only slightly bigger than the absorp-
tion one, which suggests that the device can be used as an
amplifier where the stimulated emission should exceed the
simulated absorption.

FIG. 5. �Color online� The A field functions �solid lines� are plotted along with the electron probability distributions �dashed line� inside
the two cavities: �left� a=3.175 mm, b=6.35 mm; �right� a=1.0 mm, b=1.2 mm.
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IV. NUMERICAL EXAMPLES AND DISCUSSION

Numerical values of the cavity coefficient Acav can be
calculated according to Eq. �14�. Tables I and II list the Acav
values calculated for the two cavity designs. The electron
energy is chosen to be 100 KeV, a value used in the experi-
ments. The result shows that the higher order modes own the
smaller A values, but these A values are generally higher
than the typical A values for atoms or molecules at the same
frequency range. There are two main reasons for that fact:
first the cavity helps to confine the radiation field so that the
overlap between the field and the electron wavefunction is
enhanced; second the electron momentum is much larger
than the electron momentum inside an atom. The latter con-
tributes to the A coefficient due to the fact that the interaction
is proportional to P ·A, where P is the electron momentum
�which is expressed by the operator c� in Eq. �2��.

As shown by Eq. �14�, Acav is proportional to �−1, which
indicates that scaling up the frequency of the cavity micro-
wave devices results in weaker radiation. In the same time,
notice that the atomic A coefficient in the open space is pro-
portional to �3, which also shows the unfavorable tendency
of scaling down the frequencies of the visible or IR devices.
This is one of the contributing factors of the difficulty in
generating THz radiation that is falling in the gap between
the microwave and IR radiation.

Now that we have calculated the A and B coefficients, we
are ready to discuss coherent radiations from quantum me-
chanical perspective. Electrons in a monoenergetic beam are
in the excited state described by �P�. Stimulated emission can
occur by the electrons making transition to the lower states,
e.g., �P��. This is clearly a case of population inversion since
the lower states are empty. However the allowable higher
states are empty also to which the electron can make a tran-
sition by absorbing a photon. Therefore population inversion
alone does not ensure net stimulated emission since the pro-
cess is proportional to �Bemi−Babs�INe, where I is the inten-
sity of the radiation field. Equations �17� show that �Bemi

−Babs����� /Ep�1, therefore only minute gain in the am-
plified stimulated emission process. This effect is confirmed
by the experiments �6,20� in which a second cavity CR de-
vice is used as an amplifier and small gain is observed. The
conclusion is that the amplified stimulated emission or lasing
is not responsible for the coherent radiation from this type of
devices.

We now turn our attention to another coherent radiation
generation mechanism. Coherent radiation can indeed be

generated by the spontaneous radiation from radiators, if the
occupying space dimension is much smaller than the radia-
tion wavelength. The phenomenon has been analyzed �23�
even before the advent of laser and is known as the super
radiance or super radiation. In super radiation, the radiators
interact with the vacuum fields of the same phase thus the
amplitudes of the transition matrix elements for all radiators
are added so that the power is proportional to the square of
the number of radiators. The effect has been well studied for
atoms which are immobile compared to the speed of light.
For electron devices, the electrons need to be grouped to-
gether while traveling, and process is known as bunching. A
bunched beam has the output power proportional to the
square of the bunched electrons, P=Acav��Ne

2. The electrons
can be both prebunched as in experiment �5� or self-bunched
during the interaction as in experiments �6,20�, which is true
for many other free electron radiation devices. As an ex-
ample for THz radiation generation, assuming A=6.48
�102 s−1 for the TM02 mode in the smaller device �Table II�,
we find that 5�107 bunched electrons in the cavity is needed
to give 1 mW power from the device. The current level for
that number of electrons corresponding to the electron speed
of u=0.635c in a 20 cm cavity is 7.5 mA, which seems prac-
tical for a real device.

V. CONCLUSION

We have made a quantum electrodynamic approach to
analyze the basic radiation properties of the cavity CR radia-
tion. Analytical expressions for the Einstein’s A and B coef-
ficients of the device are derived, which enable us to com-
pare the Čerenkov radiation device with other radiation
sources especially for the purpose of developing new radia-
tion sources such as THz. We have shown that the Einstein’s
coefficients are profoundly modified by the cavity properties,
and the coherent radiation is generated by the super radiation
of spontaneous emission instead of stimulated emission. The
theory has provided formula to calculate these effects and
can be extended to explore more quantum effects for elec-
trons in a cavity, in parallel to cavity QED.
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TABLE I. A coefficient at different frequency for Walsh’s
cavity.

Mode Frequency �GHz� A �s−1�

TM01 21.9 1.07�107

TM02 60.7 4.53�105

TM03 101.5 2.07�103

TABLE II. A coefficient at different frequency for the designed
cavity.

Mode Frequency �GHz� A �s−1�

TM01 296 1.07�106

TM02 944 6.48�102

TM03 1601 1.88�101
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