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We present an exact solution for a quantum spin chain driven through its critical points. Our approach is
based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin
Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local
properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The
entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We
analyze the anisotropic XY spin-1 /2 model evolved with a full many-body evolution operator. With the help of
Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved
system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains.
We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.
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I. INTRODUCTION

Recent advances in the studies of ultracold atoms trapped
in optical lattices have opened a new avenue of investigation
of nonequilibrium strongly correlated quantum systems
�1,2�. These new opportunities are epitomized by the pio-
neering experiments on tunable Mott insulator-to-superfluid
quantum phase transitions, observed by manipulation of the
optical lattice potential in three-dimensional �3D� �1� and 1D
�3� systems. The highly controllable environment and long
coherence times of these systems stimulated work on
nonequilibrium dynamics at low decoherence �4–6�.

One interesting question arising in this framework has to
do with the properties of defects produced by sweeping
through a critical point. For the phase transitions occurring at
finite temperature the defect production is described
by Kibble-Zurek �KZ� theory �7,8�. This theory, which
initially was applied to topological defects left behind by
cosmological phase transitions and only later found its way
in condensed matter physics, estimates the correlation length
in the ordered state using a causality argument. The correla-
tion length serves as a measure of the size of the ordered
domains and of typical separation between defects. Defect
production was probed in recent experiments employing
superfluid 3He �9,10� and superconducting Josephson junc-
tions �11�.

Phase transitions in cold atom systems are characterized
by a high degree of coherence, which makes the dynamics
near the critical point essentially nondissipative. The theory
of defect production in this situation has to be modified to
account for coherent dynamics. Defect production in quan-
tum dynamics can be studied using integrable 1D spin mod-
els. Spin models with varying coupling constants provide a
template for many quantum phenomena. Realizations of such
models have been proposed recently in 1D qubit chains �12�
and optical lattices �13�. The models of quantum spin quench
dynamics resulting from an abrupt change of coupling con-
stant which takes the system across the phase boundary were
considered in Refs. �6,14�. The quench dynamics, while pro-

viding useful insights, does not describe the situation of a
continuous sweep across the transition, which is addressed in
the present work.

Besides the defect production rate and density, there is an
interesting question of the entropy associated with the de-
fects. Naively, it may seem that the entropy cannot be pro-
duced at zero temperature by a system evolving unitarily in a
pure state. However, if the evolved state is sufficiently com-
plex, it may look entropic from a local point of view—i.e., if
observed in a volume much smaller than the total system
size. As we shall see, this is precisely the case in this
problem.

In the present article we study time evolution of a many-
body system which is swept at a constant speed through its
quantum critical point. With the help of an exactly solvable
1D quantum spin model with a time-dependent Hamiltonian
we explore how the time evolution across the critical point
manifests itself in the many-body effects and spin correlation
functions. In particular, we analyze the relation between the
sweep speed and spatial spin correlations, providing an ex-
tension of the KZ scenario to the quantum critical-point re-
gime. Our analytical results are in agreement with recent
numerical study of this problem, reported in Ref. �15�.

Our approach is based on a many-body generalization of
the Landau-Zener �LZ� transition theory. In this work we
focus on the anisotropic XY spin-1 /2 chain with time-
dependent couplings. We consider unitary evolution of the
system, initially in the ground state, which crosses its equi-
librium critical points. Since the Hamiltonian of the fermion-
ized spin chain is quadratic, the evolution of the many-body
state can be expressed with the help of a Bogoliubov trans-
formation through a suitable set of the 2�2 evolution prob-
lems of LZ form, one for each fermion momentum value.

Our analysis reveals that the evolved system state has a
number of interesting characteristics. First, despite being in a
pure quantum state in a global sense, its local properties are
identical to those of a system in a mixed state, characterized
by finite effective temperature and entropy density. Although
the finite entropy property of a pure state may seem counter-
intuitive, it naturally arises in the description of local prop-
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erties, such as correlation functions. We shall see that the
origin of finite entropy can be traced to coarse graining in
momentum space. On a more intuitive level, the system pure
state can described as a superposition of different configura-
tions of ordered domains with uniform magnetization. How-
ever, the coherence of amplitudes associated with different
domain arrangements cannot be detected locally without
having access to the entire set of variables in the system,
which leads to an apparent mixed state and finite entropy.

Second, the transition from the adiabatic to nonadiabatic
regime in the LZ problem, taken as a function of the sweep
rate, depends on the momentum value of the fermionic
mode. The characteristic crossover momentum can be asso-
ciated with the inverse correlation length � in the KZ picture,
corresponding to the typical domain size. This approach
yields a scaling relation between the correlation length and
the sweep speed, ��v−1/2. This relation, obtained directly
from an analysis of the many-body evolution operator, agrees
with the KZ causality argument prediction.

Last, due to a simple product structure of the evolved
state, the correlation functions can be obtained in a closed,
exact form with the help of the theory of Toeplitz determi-
nants. The correlation functions exhibit a crossover from
monotonically decreasing behavior at fast sweep speed, e−r/�,
to an oscillatory behavior at a slow speed, e−r/�cos��r−��.
The oscillatory behavior, which appears abruptly below a
certain sweep speed value, corresponds to alternate magneti-
zation signs in neighboring ordered domains �see Fig. 1�.
The spatial period 2� /� gives the characteristic domain size.
The parameters �, �, and � exhibit a singularity at the criti-
cal sweep speed, which is analyzed and explained in the
Toeplitz determinant framework via evolution of zeroes of
the generating function in a complex plane.

The plan of this article is as follows. We start with ana-
lyzing the full many-body evolution operator of the XY spin
chain with the help of Jordan-Wigner fermionization and re-
duction to the LZ transition problem in each fermion mo-

mentum subspace �Secs. II and III�. Next, in Sec. IV, we
show that in a macroscopic system �large number of sites,
N→��, a nonequilibrium steady state �NESS� emerges at
late times. This is a mixed state characterized by a density
matrix with finite entropy which depends on the sweep
speed. The state of a mixed character appears due to deco-
herence intrinsic to the many-body LZ process, without any
external decoherence effects. Technically, the mixed state
arises as a result of taking the large-N limit in the correlation
functions for spins separated by distances much less than the
system size, r�N. This procedure allows us to eliminate the
rapidly oscillating terms in the correlation functions, which
would disappear in a real system as a result of physical de-
coherence processes, even if the latter are extremely weak.
The entropy of the NESS is analyzed in Sec. V.

The density matrix description of the NESS is subse-
quently used in Secs. VI and VIII to characterize ordering
and analyze correlation functions. The method employed in
analytic calculation uses some results from the theory of
Toeplitz determinants which are reviewed in the Appendix.
We obtain the asymptotics of equal-time spin correlators in
the NESS which have nontrivial crossover behavior as a
function of the sweep rate. Both numerical and analytical
results are presented, compared, and found to be in agree-
ment.

II. SPIN CHAIN DYNAMICS

In this section, we consider a quantum XY spin-1 /2 chain
in time-dependent transverse field, described by the Hamil-
tonian

H�t� = −
1

2�
x=1

N

�J1	x
1	x+1

1 + J2	x
2	x+1

2 − h�t�	x
3� ,

where N is the number of sites. The anisotropic coupling
values are

J1 = J�1 + 
�/2, J2 = J�1 − 
�/2, h�t� = vt . �2.1�

Here J= 1
2 �J1+J2� is the average coupling and 
= �J1

−J2� / �J1+J2� is the anisotropy parameter. Note that the val-
ues 
=0, ±1 describe the isotropic XY model and the Ising
model, respectively. �Without loss of generality, we assume
J�0.�

In this article, the problem �2.1� is considered with peri-
odic boundary conditions; i.e., x=N+1 is identified with x
=1. Other choices, such as open boundary conditions, are
possible. While the properties of interest in the large-N limit
will be insensitive to the form of boundary conditions, peri-
odic boundary conditions will make the intermediate steps of
calculations more transparent.

The time-dependent transverse field h�t� defines the evo-
lution in the equilibrium system phase space which starts
from and ends at the state in which the external field h�t� is
much larger than the couplings J1,2 �Fig. 2�. Thus in the
asymptotic ground states at t→ ±� the spins are fully polar-
ized: �−�

�0� = �. . . ↓ ↓ ↓ ↓ . . . � and �+�
�0� = �. . . ↑ ↑ ↑ ↑ . . . �. A fully

adiabatic time evolution �with negligible speed v=dh /dt�

FIG. 1. �Color online� Spin correlation function schematic posi-
tion dependence for slow sweep speed and corresponding typical
arrangement of Kibble-Zurek domains. The correlation length and
oscillation period are controlled by domain size.
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would transform the initial state �−�
�0� into the state �+�

�0�. This
would also describe physical evolution at a finite but suffi-
ciently slow speed, provided that the ground and excited
states are separated by a finite gap at all times. However, if
the evolution takes the system through a critical point, where
the gap vanishes, the nonadiabatic effects inevitably give rise
to a state much more complex than �. . . ↑ ↑ ↑ ↑ . . . �.

To analyze the time-dependent state we evaluate the evo-

lution operator ÛT=T exp�−i�−T
T H�t�dt�, using a Schrödinger

representation. We choose a long evolution time interval,
−T tT, so that

T � tQ � J/v , �2.2�

where 2tQ is the transit time between the critical lines h
= ±J �Fig. 2�. Since the effect of the couplings J1,2 is impor-
tant only during a relatively short time interval of order tQ,
when h�t��J1,2, one expects the results to be fairly insensi-
tive to the specific value of T. Indeed, as we shall discover
shortly, in the limit described by Eq. �2.2� universal results
will arise.

The model �2.1� has a long history dating back to the
original solution of the equilibrium model by Lieb, Schulz,
and Mattis �17� who obtained an exact solution using Jordan-
Wigner fermionization. Let us recall the basic features of the
phase diagram in equilibrium. Barouch and McCoy �16� ob-
tained the phase diagram by considering spin correlators in
the ground state. These results were subsequently extended
by Tracy and Vaidya �18,19� and further generalized in Refs.
�20,21� which employ a quantum inverse-scattering tech-
nique.

For the reader’s convenience, here we summarize the
zero-temperature equilibrium phase diagram �16� as a func-
tion of h /J and 
 in Fig. 2. The system exhibits spontaneous
ferromagnetic Ising order for −JhJ �antiferromagnetic
for J0� and can be described for 	h 	 �J as disordered or
paramagnetic. The lines of critical points h= ±J, separating

these regimes, are in the Ising universality class. The gap in
the excitation spectrum

��k� = ± ��h + J cos k�2 + 
2J2sin2 k�1/2 �2.3�

vanishes on the critical lines. Outside the circular domain
marked in Fig. 2, 
2+h2 /J2�1, the correlators in the ground
state exhibit Ising-like pure exponential decay. In contrast,
for 
2+h2 /J2�1 the correlators have oscillatory subleading
terms. The ground state on the circle 
2+h2 /J2=1 is a direct
product of single-site spin states �22�. On the 
=0 line �J1

=J2� the Hamiltonian is isotropic. In this case, in the interval
−JhJ the ground state is quantum critical.

For our choice of the time-dependent field, the system is
deep in the disordered phase at both the early and late times,
	h�t� ±T� 	 �J. At such times the instantaneous eigenstates
of H�t� evolve quasiadiabatically, with a pure phase factor.
However, at intermediate times t� tQ we expect nontrivial
dynamics as the system enters the phase with spontaneous
Ising order, −JhJ, passing through the critical points at
h�t�= ±J.

Our exact solution of the dynamical problem is a direct
generalization of the equilibrium solution. We employ the
time-independent Jordan-Wigner string variables

�x = 

x�x

�− 	x�
3 � . �2.4�

In the Ising limit 
=1, the quantities �x are dual to 	x
1 and

represent so-called disorder variables �23�. With the help of
�x we define spinless fermionic operators

ax = �x	x
−, ax

+ = �x	x
+,

with 	x
±= 1

2 �	x
1± i	x

2� the raising and lowering operators.
The fermionized Hamiltonian is quadratic:

H = �
x=1

N

Axax
+ax+1 + Bxaxax+1 + H . c . − 2h�t�ax

+ax,

�2.5�

where we subtracted a constant E0=Nh�t�. Here the cou-
plings Ax=J1+J2=J and Bx=J2−J1=−
J are the same for all
1�xN and

Ax=N = J�N, Bx=N = − 
J�N. �2.6�

The string operator �N can be expressed as exp�i�N̂�, where

N̂=�x=1
N ax

+ax is the total fermion number. The complication
due to the presence of the operator-valued couplings �2.6� in
the Hamiltonian �2.5� turns out to be inessential �16�. In fact,
since different terms of Eq. �2.5� either conserve the fermion

number N̂ or change it by ±2, the operator �N is a constant of
motion, ��N ,H�=0. This allows us to replace �N by the c
number equal to its value in the initial state: �N= �−1�N. Thus
we obtain a truly quadratic translationally invariant Hamil-
tonian in the fermion representation with periodic or antipe-
riodic boundary conditions, depending on the parity of N.

It will be convenient to write fermionic operators using
two-component vectors

FIG. 2. Zero-temperature phase diagram of the anisotropic XY
model adapted from Ref. �16�. The lines of critical points, h= ±J
and 
=0 with 	h /J 	 �1, are marked by dashed lines; the circular
domain �h /J�2+
2�1 is marked by dotted lines �see text�. The
evolution trajectory of the system Eq. �2.1� due to time-dependent
h�t� is shown by a solid line.
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Cx = �ax

ax
† �, Ck = � ak

a−k
† � =

1
N

�
x

eikxCx, �2.7�

with k=2�m /N, where m is integer or half-integer, depend-
ing on the parity of N. The fermionized Hamiltonian, in the
momentum representation �2.7�, splits into a sum of indepen-
dent terms, H�t�= ��k�0Hk�t��+E0�, where each term operates
in the four-dimensional Hilbert space associated with the
momentum states k, and −k filled with different numbers of
fermions and E0�=�k�0J cos k is a constant. The operators
Hk�t� are bilinear in Ck and have the form

Hk�t� = − Ck
†�h�t� + J cos k i
J sin k

− i
J sin k − h�t� − J cos k
�Ck,

�2.8�

which conserves k due to translational invariance. Also, Hk
conserves the fermion occupancy number nk=ak

+ak+a−k
+ a−k

up to ±2 �i.e., the parity of nk� separately within each k
subspace �k ,−k�.

III. MANY-BODY LANDAU-ZENER TRANSITION

Using the representation �2.8� we can write the full many-
body evolution operator as a tensor product of partial evolu-
tion operators acting in the �k ,−k� subspaces:

U�t� = �
k�0

Ûk�t�, Ûk�t� = T exp�− i�
−T

t

Hk�t��dt�� .

�3.1�

To obtain Ûk, we consider the basis in the k, −k subspace
generated by the ak vacuum ak 	0�=0 as follows:

	0�, 	k,− k� = ak
†a−k

† 	0� ,

	k� = ak
†	0� . 	− k� = a−k

† 	0� .

The latter two states 	±k� of occupancy 1 are eigenstates of
the Hamiltonian �2.8�:

Hk�t�	 ± k� = �h�t� + J cos k�	 ± k� .

�This follows from conservation of k and the parity of nk.�
Thus each of the states 	±k� evolves in time with a phase
factor 	±k��t�=e−i��t� 	 ±k�, with

d�

dt
= h�t� + J cos k . �3.2�

The other two states 	0� and 	k ,−k� evolve as superposition
�k�t�=uk�t� 	0�+vk�t� 	k ,−k�. We denote the corresponding

2�2 evolution operator as Ŝk�t�.
This discussion can be summarized by writing the 4�4

evolution operator Ûk in a block-diagonal form

Ûk = �Ŝk�t� 0

0 e−i��t�1̂
� , �3.3�

with 1̂ a 2�2 identity operator. The first and second blocks
correspond to the states 	0�, 	k ,−k� and 	±k�, respectively.

To describe Ŝk�t�, we project the Hamiltonian Hk�t� onto
the subspace 	0�, 	k ,−k�, which gives an evolution equation
for uk�t� and vk�t� as follows:

i�t�k = �h�t� + J cos k − 2i
J sin k

2i
J sin k − h�t� − J cos k
��k. �3.4�

The form of Eq. �3.4� is identical to that of the LZ transition
problem �24,25� for two levels evolving linearly with time
through an avoided crossing of size �k=2
J 	sin k	.

The result of the evolution defined by Eq. �3.4� can be
represented as a 2�2 unitary matrix which depends on the
Landau-Zener adiabaticity parameter �k= 	�k	2 /v12, where
v12=2dh /dt=2v is the relative velocity of the levels. The
parameter �k is small for fast level crossing and large for
slow crossing. In our case, we have

�k = �4
2J2/2v�sin2 k � z sin2 k ,

where we introduced the dimensionless parameter

z = 2
2J2/v �3.5�

to be used throughout the rest of the paper.
The evolution matrix for the LZ problem can be obtained

exactly in analytic form. In the limit of the total evolution
time long compared to the level crossing time �realized in
our case, since T / tQ�1�, one can write the evolution opera-
tor Sk explicitly in terms of the LZ transiton amplitudes

rk = e−��k, sk = − sgn�k�1 − rk
2. �3.6�

The long-time asymptotic form of the matrix Ŝk �e.g., see
Ref. �26�� is as follows:

Sk = �rke
−i�k − ske

−i�k

ske
i�k rke

i�k
� ,

where the time-dependent phases are

�k = fk�xk
+� − fk�xk

−� ,

�k = fk�xk
+� + fk�xk

−� + �/4 − arg ��i�k� ,

fk�x� = x2/4 + �kln	x	 + O�x−2� . �3.7�

Here ��x� is the gamma function and

xk�t� = 2�vt + J cos k�/v1/2 �3.8�

is dimensionless time. Note that in the long-time limit only
the phases �k and �k depend on time, quickly growing as a
function of T, while the amplitudes rk and sk become time
independent, approaching the asymptotic values �3.6�.

Since the states 0�, 	±k�, and 	k ,−k� are invariant �up to a
phase factor� at t→ ±�, with LZ transitions between 	0� and
	k ,−k� happening only at times t�J /v, the asymptotic ma-
trix Sk can be used to describe transitions resulting from the
time evolution. In Fig. 3 we plot the probability

pk = 	rk	2 = e−2��k = e−2�z sin2 k �3.9�

for the system, evolving from the state 	0� at t=−T, to remain
in this state at late time t=T. �The quantity �3.9� also de-
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scribes the probability of the state 	k ,−k� to remain itself.�
The top curve in Fig. 3 corresponds to small z �fast sweep
rate v� when the levels cross quickly and the transition prob-
ability is small. The transition probability increases at larger
z, with the fully adiabatic regime reached for typical values
of k at very large z. In this limit, the system performs a
nearly complete transfer of population from the initial state
	0� to the state 	k ,−k�, which in spin language corresponds to
spin orientation reversal 	x

3→−	x
3. This behavior is illus-

trated by the lower curve in Fig. 3. In this case, while the
majority of the modes evolve adiabatically to the final state
	k ,−k�, a small fraction of the modes with k close to 0 , ±�
evolve nonadiabatically. These modes remain stuck in the
initial state 	0�, for pk�1, or form a superposition of the
states 	0� and 	k ,−k� with comparable weights, for pk�1/2
�see Fig. 3�.

To characterize the degree of adiabaticity of different
modes, it is convenient to define a special value of z which
will be of importance in the discussion below:

z* =
ln 2

2�
= 0.110 . . . . �3.10�

As Fig. 3 illustrates, at z=z* the curve pk is tangent to the
p=1/2 line at k= ±� /2. As we shall see in Sec. IV, the
modes with pk=1/2 are the ones for which the decoherence
due to partition at the LZ transition is the strongest. These
modes at large t evolve as an equal-weight superposition
u�t� 	0�+v�t� 	k ,−k� with 	u�t� 	 = 	v�t�	 and relative phase rap-
idly changing in time. The oscillatory phase factors will be
identified below with the source of intrinsic decoherence.

In addition, we shall see in Secs. VI and VIII that the
value z=z*, which marks the appearance of the modes with
pk=1/2, is also special in another way. We shall find that the
spin correlation functions in the final state undergo an abrupt
change at the sweep speed value corresponding to z=z*,
from monotonic at zz* to oscillatory at z�z*. Interestingly,

this transition in the correlation function behavior occurs at
the same speed value which corresponds to the largest phase
space of the modes with pk=1/2.

At fixed z, the degree of adiabaticity for a particular mode
is quite sensitive to the value of k. As illustrated in Fig. 3,
due to the sin2 k dependence in pk, the adiabatic regime for
the modes with different k is reached at different values of
the sweep speed, z sin2 k�z*. In particular, for the modes
with k sufficiently close to 0 and ±� the transition is adia-
batic only at very large z. These modes are special since they
are gapless on the critical lines h= ±J of the equilibrium
phase diagram, crossed by the evolution trajectory �Fig. 2�.
Such critical modes, characterized by small excitation fre-
quency, vanishing at k=0, ±�, are not able to react to field
sweep with finite velocity v, no matter how small the latter
is. For the whole system, the nonadiabatic behavior of the
k=0, ±� modes means that the spin reversal is incomplete
even at very slow sweep. The fraction of the spins that do not
accomplish reversal, at large z, can be estimated as

�n = �
k�0,±�

pk �
1

�
� e−2�zk2

dk = �2�2z�−1/2. �3.11�

The density of defects, �n, has an inverse square-root depen-
dence on the sweep speed v. By an order of magnitude, the
estimate �3.11� can be obtained also from the momentum
value k��z* /z�1/2 corresponding to the crossover at pk

�1/2.
Our result �3.11� for �n can be compared to the estimate

following from the KZ causality argument �7,8�, which pre-
dicts the domains of the ordered phase of size:

� = c� , �3.12�

where c is the velocity of gapless excitations at the critical
point and � is the characteristic transit time. In our case, from
the excitation spectrum �2.3�, at the critical points h= ±J the
velocity is c=
J. The transit time for the k mode can be
estimated as the time of sweeping across the gap: �k��k /v,
where �k=ck. After identifying � with 1/k, Eq. �3.12� be-
comes �=c2 / �v� �, yielding an � vs v dependence

� = c/v . �3.13�

The −1/2 power-law scaling is in agreement with the result
�3.11�, which confirms the KZ scenario �7,8� for 1D spin
chain and links it to the many-body LZ transition. Similar
observations were made in a recent numerical study of a spin
model in a finite-size system �15�.

IV. DECOHERENCE DUE TO TRANSIT THROUGH
THE CRITICAL POINT

Here we discuss the phenomenon of intrinsic decoherence
resulting from massive production of spin excitations at a
sweep through critical point. We start with noting that the
evolution during −T tT, taken formally, is manifestly
unitary and preserves all phase relationships. For the density
matrix of the entire system, the evolution i�̇= �� ,H� starting
with a pure state ��t=−T�= 	0N��0N	 of N spins obtains a pure
state:

FIG. 3. LZ probability �3.9� of remaining in the initial state for
z /z*=0.1,1 ,10 �from top to bottom�. The dashed line marks pk

=0.5. Note the regions near k=0, ±� �critical modes� where LZ
transition does not take place even at a slow sweep speed z /z*�1.
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��N,T� = ��t = T� = ÛT	0N��0N	ÛT
† . �4.1�

However, we shall see that some of the phases in the density
matrix �4.1� develop rapid oscillation at large T. The phase
growing with T will be found to depend on the momentum k
so that the oscillatory part of � averages to zero after inte-
gration over k in all local correlators.

It is beneficial to identify the oscillatory terms and sup-
press them early in calculation. This can be achieved by
replacing the unitarily evolved state �4.1� by a decohered
state from which the rapidly oscillating terms are removed.
This procedure, which will be seen to describe correctly the
local properties of the evolved system, leads to the notion of
a nonequilibrium steady state. Besides the benefit of simplic-
ity, early appearance of the NESS in the analysis also helps
to develop intuition about how the results of evolution de-
pend on various parameters, such as the sweep rate and cou-
pling strength.

Alternatively, one could proceed more formally, carrying
the oscillatory terms in � over and then arguing that they
drop out in the limit of long time T and large systems size.
For that, one would have to include the effect of some aux-
iliary physical decoherence mechanism and obtain suppres-
sion of the oscillatory terms independent of the strength of
the decoherence effect, no matter how weak the latter is.
Instead, we choose to build the NESS and its decohered den-
sity matrix prior to analyzing the correlators.

We shall focus on the observables—i.e., spin correlators,
which are more physical quantities than the full many-body
density matrix. Let us consider correlators in position space
within a block �1,n�:

�A�x� ¯ A��x���, 1 � x, . . . ,x� � n , �4.2�

where A¯A� are local observables given by products of a
finite number of fermion operators. In the discussion below
the intermediate length scale n will be much smaller than the
system size, n�N. These correlators can be evaluated with
the help of a reduced density matrix obtained by tracing out
all spin variables outside the block 1�x�n. The resulting
density matrix describes only the 2n spin states in the block:

��n,T� = TrN−n���N,T�� , �4.3�

where TrN−n denotes integration of the N−n spins outside the
block 1�x�n and T is the evolution time. The reduced
density matrix adequately describes the correlators and other
properties at distances shorter than n.

Next, we consider how by taking the three scales N, T,
and n to infinity in proper order one arrives at the NESS.
First, we take the thermodynamic limit N→� to eliminate
recurrence times of the order of level spacing for finite-size
systems. Second, we take the long-time limit T→� to sup-
press oscillations and arrive at a steady state. Finally, we take
the long-wavelength limit n→� and obtain the decohered
density matrix

�D = lim
n→�

lim
T→�

lim
N→�

�D�N,T,n� , �4.4�

which describes the NESS in an infinite system.

Not all phase relationships of the pure state density ma-
trix, Eq. �4.1�, survive the limiting procedure �4.4�. We de-
scribe this process as decoherence by analogy with loss of
phase information for density matrices of open quantum sys-
tems coupled explicitly to an environment �27,28�. In con-
trast to the latter, however, the decoherence described by Eq.
�4.4� is of an intrinsic origin, arising from the spin chain
acting as both the system undergoing decoherence and the
environment that induces it. An implicit separation between
the two emerges only when considering correlators in con-
trast to the explicit separation in open quantum systems.

We shall use the fermion representation constructed above
to evaluate �D. Formally, this restricts our theory to the cor-
relators of the form �4.2� with the observables A¯A� all
taken at equal times. In the fermion representation, the full
density matrix ��N ,T� decouples into a tensor product over
the k,−k subspaces: ��N ,T�= �k�0Rk with a 4�4 matrix Rk.
The latter has nonzero elements only between the states 	0�
and 	k ,−k�, since the amplitude of the states 	±k�, which is
zero in the initial state, cannot change with time �see Eq.
�3.3��. Thus within each k,−k subspace the density matrix Rk
is effectively 2�2, restricted to the subspace 	0�, 	k ,−k�
where it is nonzero:

��N,T� = �
k�0

�k, �k = � pk − qk
*

− qk 1 − pk
� , �4.5�

where �k is evaluated as Sk 	0��0 	Sk
−1. Here pk is given by Eq.

�3.9� and

qk = rkske
i��k+�k� �4.6�

are obtained from the S matrix �3.7�.
Now, let us consider correlation functions in the fermion

representation. Since the Hamiltonian is quadratic in this rep-
resentation, the state ��N ,T�, obtained by evolution of the t
=−T fermion vacuum, is of a Gaussian form. This allows us
to employ Wick’s theorem to write any correlator as a sum of
products of pair correlators. Thus an arbitrary local observ-
able can be expressed in terms of the 2�2 matrix of pair
correlators

G�x,x�,N,T� = �CxCx�
† � � Tr���N,T�CxCx�

† � , �4.7�

while �Cx�=0 for a Gaussian fermion state.
Using Eq. �4.7� we can obtain the decohered matrix �D by

demanding that it reproduce G�x ,x� ,N ,T� under the limits in
Eq. �4.4�. Taking N→� first, we write the result as an inte-
gral over a continuous k variable:

G�x,x�, � ,T� = �
−�

� dk

2�
e−ik�x−x���pk qk

qk
* 1 − pk

� . �4.8�

Turning to the T→� limit, we note that, while pk and the
modulus 	qk	 approach the asymptotic LZ values exponen-
tially quickly, the phase of qk exhibits oscillations as a func-
tion of time T. To the leading order, at large T we have

�k + �k � vT2 + 2JT cos k + O�ln T� . �4.9�

It is crucial that this phase have a cos k dependence on k.
Due to the k-dependent phase factor ei��k+�k�, with the oscil-
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lations becoming very fast at large T, the integral of qk over
k in Eq. �4.8� vanishes in the limit T→� �which practically
means T / tQ�1�. This argument shows that the off-diagonal
elements of the correlator G�x ,x� , � , � � vanish for arbitrary
x, x�. The result

G�x,x�, � , � � = �
−�

� dk

2�
e−ik�x−x���pk 0

0 1 − pk
�

�4.10�

means that can simply ignore the oscillatory terms by setting
qk=0 in all correlation functions. We point out that such a
result agrees with the intuition that the rapidly oscillating
off-diagonal matrix elements of � vanish due to arbitrarily
small decoherence and thus can be ignored in all correlation
functions.

Applying the qk=0 rule to ��N ,T� given by Eq. �4.5� we
obtain the decohered density matrix �D as a product of diag-
onal 2�2 matrices, restricted to the subspace 	0�, 	k ,−k�:

�D = �
k�0

�D,k, �D,k = �pk 0

0 1 − pk
� . �4.11�

With such an identification, the decohered pair correlator is
G�x ,x� , � , � �=Tr��DCxCx�

† �, as required. The relation of the
higher-order correlators with the pair correlators via Wick’s
theorem decomposition, including fermionic signs, remains
unchanged.

Finally, we note that pk=e−2�z sin2 k as a function of k has
periodicity �, while qk has periodicity 2� �see Eqs. �3.6� and
�3.7��. Thus the correlation functions of the decohered state
�D, obtained by setting qk=0, acquire even and odd sublat-
tice structure in position space. The correlators �4.10� vanish
if x and x� belong to different sublattices:

x − x� = 2n: G�x,x�� = �p̃n�z� 0

0 �n,0 − p̃n�z�
� ,

x − x� = 2n + 1: G�x,x�� = 0, �4.12�

where

p̃n�z� = �
−�

�

pke
−ikn dk

2�
= e−�zIn��z� , �4.13�

with In�x� a modified Bessel function of the first kind. The
decoupling of the even and odd sublattices in the decohered
state, manifest in Eq. �4.12�, indicates that the decohered
density matrix factorizes as

�D = �E � �O, �4.14�

where each �E ��O� acts only on the even �odd� sublattice.
This factorization will be used below in the analysis of spin
correlation functions.

V. ENTROPY OF THE DECOHERED STATE

The necessity of transition from the pure state to the
NESS, characterized by the decohered density matrix �D, can

be inferred without reference to pair correlators, by employ-
ing the procedure of coarse graining in momentum space.
Let us consider the evolved pure-state density matrix
��N ,T�, Eq. �4.5�. While the diagonal matrix elements of
��N ,T� are smooth functions of k and independent of T, the
off-diagonal elements between 	0� and 	k ,−k� rapidly oscil-
late as functions of both k and T. The oscillation k depen-
dence, described by the phase factors e±2iJT cos k �see Eq.
�4.9��, becomes increasingly more rapid at large T. This
property makes the oscillatory terms very sensitive to coarse
graining in k space: They vanish after intergrating over any
small interval �k�1 which is large compared to �JT�−1. This
argument, applied above to individual correlators evaluated
at finite separation in real space using the integral represen-
tation �4.10�, can also be applied to the entire density matrix.
The coarse graining selects the matrix elements of ��N ,T�
which are smooth in k, suppressing the oscillating parts.
Only the diagonal elements of ��N ,T� survive in �D, consis-
tent with the interpretation that the superpositions of the 	0�
and 	k ,−k� states decohere into a statistical mixture. Using
the language of open quantum systems �28�, one can identify
the instantaneous eigenstates 	0�, 	k ,−k� of H�t→ + � � with
the pointer states which survive decoherence.

To quantify the amount of information lost in the deco-
herence process �28�, we consider the von Neumann entropy
of the system, S=−tr �Dln �D. �It will be more convenient to
use natural base ln instead of a more standard log2.� An
expression for the entropy density s=S /N follows directly
from the form �4.11� of �D:

s = − �
−�

�

�pkln pk + �1 − pk�ln�1 − pk��
dk

2�
. �5.1�

Using Taylor series for ln�1− pk� and evaluating the integral
for each term, we obtain

s = ��z + 1�p̃0�z� − �zp̃1�z� − �
m=1

�
p̃0�z�m + 1��

m�m + 1�
, �5.2�

with p̃n�z� given by Eq. �4.13�. The entropy �5.2� as a func-
tion of sweep rate is plotted in Fig. 4. We note that s tends to
zero in the limit of small and large z, since for such z the
dynamics gives rise to few superposition states. The function
s�z� peaks near z�z*.

Let us consider the limit of slow sweep speed, z�z*. In
this case, Eq. �5.2� gives

s = ��
m=1

�
1

m�m + 1�3/2 −
1

2
��n � 0.0761�n , �5.3�

where �n= �2�2z�−1/2 is the density of defects in the spin-
reversed state �3.11�, which describes the fraction of the
spins remaining not reversed after slow evolution. For fast
sweeps, z�z*, using the expansion pk=1−2�z sin2 k, we
obtain
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s� = − �
−�

�

z sin2 k ln� e

2�z sin2 k
�dk � �0ln

c

�0
, �5.4�

where �0=�z is the density of the defects evaluated as
�−�

� �1− pk�dk /2� and c�1 is a constant. In this case, �0

describes the number of reversed spins, which is small at a
fast sweep.

It is interesting to compare these results to the entropy of
a classical gas of a low density �n�1,

sgas = − �n ln �n − �1 − �n�ln�1 − �n� � �n ln
e

�n
.

This agrees with the result for the fast sweep, Eq. �5.4�, upon
identification of �n with �0. In contrast, the value s obtained
for slow sweep, Eq. �5.3�, is small compared to sgas for the
same density:

sgas/s � 13.966 ln�e/�n� � 1.

Small entropy indicates that the arrangement of defects in the
quantum system after a slow sweep is more orderly than in
an ideal gas. Another manifestation of partial ordering and
correlations of the defects will be discussed in Secs. VI and
VIII, where we shall see that at slow sweep speeds the two-
point spin correlation function exhibits spatial oscillations,
with abrupt onset at z=z*. As illustrated by Fig. 1, such os-
cillations result from a quasiregular arrangement of KZ do-
mains.

VI. SPIN CORRELATORS AND TOEPLITZ
DETERMINANTS

Here we consider the correlation functions of spin vari-
ables 	x

� and of the string variable �x, Eq. �2.4�, used in the
fermionization transformation. We obtain exact expressions
for these correlators in the form of Toeplitz determinants,
which will allow us to analyze them at large spatial separa-
tion. We shall see that the asymptotic behavior of the corre-
lation functions is sensitive to the sweep speed, changing

abruptly from a pure exponential decay at zz* to an oscil-
latory dependence at z�z*. In this section, we focus on the
nontrivial behavior for the correlators of transverse spin 	x

1,
	x

2, and of �x and give a simple mathematical and physical
picture. The detailed derivation and additional results on 	x

3

correlators can be found in Sec. VIII.
It is convenient to write the quantities of interest as prod-

ucts of Majorana fermion operators Ax=ax
†+ax and Bx=ax

†

−ax. �For convenience, we omit the factors 1 /2 and i /2
often appearing in the definition of these operators.� The Ma-
jorana operators Ax and Bx satisfy the algebra

Ax
† = Ax, �Ax,Ay�+ = 2�xy , �6.1�

Bx
† = − Bx, �Bx,By�+ = − 2�xy , �6.2�

�Ax,By�+ = 0. �6.3�

In the fermion representation, the pair products of the spin
variables 	x

� as well as the string variables �x, appearing in
the correlators, can be expressed as products of Majorana
operators as follows:

	x
1	x+n

1 = BxAx+1Bx+1 ¯ Ax+n−1Bx+n−1Ax+n, �6.4�

	x
2	x+n

2 = AxAx+1Bx+1 ¯ Ax+n−1Bx+n−1Bx+n, �6.5�

�x�x+n = AxBxAx+1Bx+1 ¯ Ax+nBx+n. �6.6�

To obtain expectation values, we average the products of a
finite number of the operators Ax and Bx using Wick’s theo-
rem and the decohered density matrix �D, Eq. �4.11�, intro-
duced in Sec. IV.

An additional simplification occurs due to decoupling of
the fermionic correlators, evaluated with the decohered den-
sity matrix �D, into a product of separate contributions of the
even and odd sublattices, Eq. �4.14�. Let us explore this fac-
torization for the correlator �	x

1	x+2n
1 �. By regrouping the op-

erators Ax and Bx, separating the parts corresponding to the
two sublattices, we write

	x
1	x+2n

1 = �BxAx+2Bx+2 ¯ Ax+2n−2Bx+2n−2Bx+2n�

��Ax+1Bx+1 ¯ Ax+2n−1Bx+2n−1� . �6.7�

Comparing the two expressions in parentheses to Eqs. �6.5�
and �6.6�, we see that the spin operator pair product 	x

1	x+2n
1

evaluated on the full lattice is a product of analogous opera-
tors 	x

1	x+n
1 and �x�x+n, each evaluated on a sublattice. This

leads to factorization for the expectation values since fermi-
onic pair correlators do not mix different sublattices. The
result can be symbolically written as

�	x
1	x+2n

1 � = ��	x
1	x+n

1 �����x�x+n�� , �6.8�

where the brackets �¯� describe expectation values of op-
erators on the full lattice, while ��¯�� refer to an expectation
value on a sublattice. Similar reasoning for other correlators
leads to

�	x
2	x+2n

2 � = ��	x
2	x+n

2 �����x�x+n�� , �6.9�

FIG. 4. Entropy density s, Eq. �5.2�, as a function of z /z*, in-
verse sweep speed. Note that s peaks near z* and tends to zero for
small and large z.
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��x�x+2n� = ���x�x+n�����x�x+n�� , �6.10�

where single �double� brackets refer to correlators on the full
lattice �sublattice�. This allows us to focus just on the sub-
lattice correlators.

With the help of fermionization, the sublattice correlators
at separation n can be written in terms of n�n determinants
of Toeplitz matrices, defined by a set of constant diagonals:

Dn�f� = det�
f0 f−1 ¯ f−�n−1�

f1 f0 ¯ f−�n−2�

� � � �
fn−1 fn−2 ¯ f0

� . �6.11�

The structure of the matrix, completely specified by the set
of numbers fn, can be encoded in a generating function

f��� = �
n

fn�n, fn = �
C

d�

�
�−nf��� , �6.12�

with the contour C being the unit circle 	� 	 =1. The proper-
ties of Toeplitz determinants depend on the combination of
poles, zeros, and other singularities of f��� in the complex
plane �29�.

In our case, the Toeplitz matrix representation is obtained
by evaluating the sublattice correlators in Eqs. �6.8�–�6.10�
using a fermion representation. With the help of Wick’s theo-
rem, all correlators can be expressed as polynomials of pair
correlators of Majorana fermions. Due to the sublattice struc-
ture of �D, the nonzero pair averages are all of the form
�ax

†ax�� with x−x� even. In addition, the expectation values
�AxAx�� and �BxBx��, with x�x�, are zero due to Majorana
fermion algebra. Only the pairs of operators BxAx� give non-
zero expectation values:

�BxAx�� = �
−�

�

eik�x−x���1 − 2pk�
dk

2�
, �6.13�

where pk is the LZ probability, Eq. �3.9�. �We note that, while
AxAx�=BxBx�=2	x,x�, such combinations do not arise in the
fermionic representation of spin variables.� Summing over
all pair contractions with appropriate fermionic signs brings
the sublattice spin correlators to the Toeplitz determinant
form

��	x
1	x+n

1 �� = Dn�g+1,z� , �6.14�

��	x
2	x+n

2 �� = Dn�g−1,z� , �6.15�

���x�x+n�� = Dn�g0,z� , �6.16�

where the generating functions gm,z are defined as

gm,z��� = − �− ��m�1 − 2pk�, � = e2ik. �6.17�

This form of the generating function, and, in particular, the
origin of the factors �, �−1, can be understood as follows. The
string of AxBx operators appearing in the 	x

1 correlator has an
additional Bx at the beginning and Ax+n at the end compared
to a similar string for the � correlator. This results in a shift
of the matrix elements gn→gn+1 in the determinants for �

compared to the one for 	x
1, which translates to the mapping

g���→�g��� of the generating functions. Similar reasoning
accounts for the factor �−1 for the 	x

2 correlator generating
function. The factor of 2 in the relation �=e2ik arises because
the correlators are restricted to a sublattice, which makes the
k dependence � periodic rather than 2� periodic. The factor
−�−1�m ensures the correct fermionic sign.

The Toeplitz matrix representation allows us to study the
correlation functions numerically, since evaluating determi-
nants on a computer is a low-cost operation. However, as we
show below, the problem can also be handled analytically.
The benefit of an analytic treatment is that it provides a very
clear and complete description of the behavior of the corre-
lation functions at different sweep speeds, including the tran-
sition at z=z*.

VII. SPIN CORRELATORS ASYMPTOTICS

We are primarily interested in the behavior of the sublat-
tice correlators at large separation which maps to the large-n
asymptotics of Toeplitz determinants. It is instructive to re-
call the Szegö limit theorem result for the Toeplitz determi-
nant �6.11� asymptotic behavior:

Dn�f� � exp�n�
0

2�

ln f�ei��
d�

2�
� , �7.1�

which holds when the generating function f��� has a zero
winding number and no singularities on the unit circle. The
origin of the asymptotic �7.1� can be seen by noting that in
this case the matrix elements fn rapidly decrease with 	n	 and
the Toeplitz matrix can be approximated by a band matrix.
Then the result �7.1� naturally follows after closing the inter-
val 1�x�N into a circle and going to Fourier representa-
tion. The question of how the asymptotic �7.1� is modified in
the cases when the winding numbers are nonzero and/or the
generating function has singularities on the unit circle has
been a subject of many publications. Not trying to review all
the literature, in the discussion below we will cite the avail-
able results, either conjectured or proven, as appropriate.

We shall start with the simplest situation, for which Szegö
limit theorem provides a suitable framework. Let us consider
the Toeplitz determinant representation for the correlator
�6.16� with the generating function f���=g0,z���. This func-
tion is real for 	� 	 =1 and thus has zero winding number. In
this case, Eq. �7.1� yields

Dn�g0,z� � ean, a = �
0

�

ln�1 − 2e−2�z sin2 k�
dk

�
.

The expression for a is analytic at zz*, has a singularity at
z=z*, and becomes ill defined at z�z*. To clarify the origin
of this behavior, let us inspect zeros of g0,z. There is an
infinite number of zeros �=�p ,�p

−1 of multiplicity 1, with p
an integer, which can be found from the representation

g0,z��� = e−�z�1−2z*/z−x� − 1, �7.2�

where x= ��+�−1� /2. We obtain
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�p = exp�− arccosh�1 −
ln 2

�z
−

2ip

z
�� , �7.3�

where we choose the branch of arccosh�x� with positive real
part so that 	�p 	 �1. Note that 	�p 	 � 	�p�	 for 	p 	  	p�	, so
that the zeros closest to the unit circle are �0 and �0

−1, which
satisfy

1

2
�� + �−1� = 1 − 2z*/z . �7.4�

The ��z� dependence has a square-root singularity at z=z*.
To specify the analyticity branch near the singularity, we take
p= +0, with an infinitesimal positive part, in Eq. �7.3�.

The z dependence of the roots �7.4� is illustrated in Fig. 5.
Both roots are real and negative at zz*: �−1−1�0.
As z tends to z*, the roots move along the real axis towards
�=−1, approach one another and merge at z=z*, and then
split and remain on the unit circle at z�z*, with �0

−1=�0
*.

This leads to a singularity of the determinants Dn�g0,z�, and
thus of the correlation functions, at z=z*.

To better understand the behavior near z=z*, it is instruc-
tive to try isolate the effect of the roots �0 and �0

−1. For that,
we consider simplified generating functions

f �m���� = − �− ��m�0
−1�1 − �0���1 − �0�−1� , �7.5�

where m=0, ±1 and �0, �0
−1 are defined by Eq. �7.4�. The

simplified expressions �7.5� capture most of the nontrivial
behavior of the sublattice correlators arising at z�z*. Each
of the functions f �m� has only three nonzero Fourier coeffi-
cients fn

�m�, and thus the Toeplitz matrix in this case is three-
diagonal. One can easily calculate the corresponding Toeplitz
determinants, obtaining

Dn�f �±1�� = �− 1�n, �7.6�

Dn�f �0�� = �− 1�n�0
n+1 − �0

−�n+1�

�0 − �0
−1 . �7.7�

These quantities, obtained from the simplified generating
functions, Eq. �7.5�, describe the qualitative behavior of the

sublattice correlators for 	x
1, 	x

2, and �x, according to Eqs.
�6.14�–�6.16�.

The expressions �7.6� are independent of �0, indicating a
smooth behavior of 	x

1 and 	x
2 sublattice correlators with z

which will persist upon including the full generating func-
tion. The m=0 determinant, Eq. �7.7�, is analytic as a func-
tion of �0 even at �0=�0

−1. More interestingly, and somewhat
unexpectedly, it is analytic as a function of z at z=z*, since
the right-hand side of Eq. �7.7� is polynomial in �0+�0

−1. As
a function of n, the expression �7.7� exhibits a crossover
from exponential behavior at zz* to oscillatory behavior as
z�z*. In addition, it grows linearly with n exactly at z=z*.
This crossover behavior, as well as nonanaliticity in z, per-
sists upon including the full generating function.

For comparison, let us consider the asymptotics for sub-
lattice correlators obtained from the full generating function,
as discussed in Sec. VIII:

��	x
�	x+n

� �� � E1�− G�n �� = 1,2� , �7.8�

���x�x+n�� � E1�− G�n�0
n+1E2 − �0

−n−1E2
−1

�0 − �0
−1 , �7.9�

where G and E1,2, given by Eqs. �8.4�–�8.6�, have a smooth z
dependence. We note the similarity of the behavior of these
expressions to Eqs. �7.6� and �7.7� at �0��0

−1. We see that
the origin of the crossover behavior in the sublattice correla-
tors, resulting in nonanaliticity in z, is indeed the motion of
the zeros �0 from the real axis to the unit circle.

It will be useful to also write the sublattice correlators in
the canonical form

��	x
�	x+n

� �� � A	e−n/�	cos �n , �7.10�

���x�x+n�� � A�e
−n/��cos���n − ��� �7.11�

��=1,2�. The parameters appearing in these expressions—
the amplitudes A	,�, the correlation lengths �	,�, the wave
number of spatial oscillations ��, and the phase ��—are plot-
ted as a function of z /z* in Fig. 6.

The correlation lengths �	 and �� both become large at a
slow sweep speed. At a fast sweep, the 	x

1,2 correlators be-
come short ranged, while the �x correlator is long ranged.
The oscillatory behavior of the �x correlator appears abruptly
at z=z*, with the spatial frequency and other parameters dis-
played in Fig. 6 having nonanalytic behavior. The character
of this singularity is similar to that exhibited by the simpli-
fied model discussed above, Eqs. �7.6� and �7.7�, which is
controlled by the zeros of the generating function nearest to
the unit circle.

Although the sublattice correlators are mathematically
convenient, the physical content of our results becomes more
transparent in the full lattice correlators. From the factoriza-
tion relation, Eq. �6.8�, since cos �n= �−1�n, the 	1,2 correla-
tors are simply given by

�	x
�	x+2n

� � � A	A�e
−n/�cos��� − ���n + ��� �7.12�

��=1,2�, where �−1=�	
−1+��

−1.
Now, let us discuss the physical regimes described by

these correlations functions. In the time evolution considered

FIG. 5. Motion of the roots �0 and �0
−1 as a function of z from

the negative real axis for zz* to the unit circle for z�z*. The
direction of the arrows indicates increasing z.
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here, the system is driven from the disordered through the
ordered phase and back into the disordered phase. In equi-
librium, the correlations of 	x

1,2 are absent at the early and
late times—i.e., in the disordered phases—but can build up
at intermediate times when the system is in the ordered
phase. The simplest situation arises at small z—i.e., high
sweep speed. In this case, all the modes in the system can be
treated in a sudden approximation. There is very little time
for correlations in the ordered phase to build up, which re-
sults in very-short-range correlations described by exponen-
tial decay with a small correlation length.

In contrast, large z describes the slow-sweep-speed re-
gime when the dynamics becomes more adiabatic. However,
full adiabaticity cannot be reached for a system driven across

quantum critical points where the gap vanishes. The buildup
of correlations upon crossing the first quantum critical point
from the disordered to ordered phase, h=−J, can be under-
stood in the KZ framework as the appearance of ordered
domains of size ��c /v, Eq. �3.13�. The length scale �
characterizes the separation between defects of the ordered
state, resulting from nonadiabaticity at crossing the critical
point. The defects for the ferromagnetically ordered state,
describing our system in equilibrium at −Jh�t�J, are do-
main walls separating domains with opposite magnetization.
The magnetization sign alternation in the domains leads to an
oscillatory behavior of the correlators on top of exponential
decay, as illustrated in Fig. 1. Subsequent crossing into the
disordered phase at h=J then leads to suppression of the
correlations built up in the ordered phase. This is consistent
with the behavior of the full lattice correlators where both
the correlation length � and the spatial period 2� / ��−���
grow as z1/2 at large z, while the correlator amplitude A�A	

goes to zero.
The crossover between the two regimes, occurring at z

=z*, corresponds to the sweep speed of the order of the in-
verse bandwidth. As in the discussion of Eqs. �7.6� and �7.7�,
the behavior of the correlation functions near z=z* at fixed n
is analytic and is described as a smooth crossover. The ap-
parently singular behavior in Fig. 6 is analogous to Stoke’s
phenomenon �30� for asymptotic series, where the coeffi-
cients of an asymptotic expansion of a function may not be
analytic in some parameters even when the function itself is
analytic in those parameters.

VIII. SPIN CORRELATORS II

In this section we outline the details of derivation of the
results discussed above. A general procedure for calculating
the asymptotics for Toeplitz determinants from the structure
of the singularities in the generating function is described in
the Appendix. We note that, while this procedure in its most
general form is only a conjecture, it is a reasonable extension
of known rigorous results. Moreover, since our generating
function, Eq. �6.17�, has only simple zeros of integer order,
the approach used below stands on firm ground: In this case,
as discussed in the Appendix, our procedure follows from a
rigorous result of Ref. �31�. In addition, we have compared
our analytic results to the correlation functions obtained from
direct numerical evaluation of the Toeplitz determinants and
found them to be in full agreement.

As discussed above, among all roots of our generating
function, Eq. �7.3�, one pair �0 and �0

−1 plays a special role.
We write the generating function gm,z in the form

gm,z��� = − �− ��m�0
−1�1 − �0���1 − �0�−1�eh���, �8.1�

which isolates these most relevant roots into a factor identi-
cal to the simplified generating function discussed above, Eq.
�7.5�. The remaining part eh��� has the form

eh��� = e�z��+�−1�/4 �z
2e�z 


p�0

z�1 − �p���1 − �p�−1�
4	p	�p

.

�8.2�

It is explicit in this expression that eh��� has all its singulari-
ties located farther away from the unit circle than �0 and �0

−1.

FIG. 6. The sublattice correlation function parameters, Eqs.
�7.10� and �7.11�, dependence on the inverse sweep speed z /z*: �a�
the correlation lengths �	 and ��, �b� the frequency �� and phase
shift ��, and �c� the amplitudes A	 and A�. Shown are the analytical
dependences obtained from Eqs. �7.8� and �7.9�, which were veri-
fied by evaluating Toeplitz determinants numerically.
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The expression for h��� can be written in a more compact
form

h��� = ln�1 − e−�z�1−2z*/z−x�

2�1 − 2z*/z − x� � , �8.3�

where x= ��+�−1� /2.
We obtain the correlator asymptotics given in Eqs. �7.8�

and �7.9� either by using the result of Ref. �31� or the more
general method of the Appendix. The latter procedure in-
volves a contour C that passes through the two roots �0 and
�0

−1 closest to the unit circle. �This contour does not have to
be a circle when 	�0 	 �1.� We isolate the contributions of �0
and �0

−1, and incorporate the rest of the generating function
into a part smooth off of C, denoted by h���. In the contri-
bution of h��� to the quantities in the asymptotics, given by
contour integrals over C, we can deform C to the unit circle.
Finally, we reparametrize the complex variable � on the unit
circle in the contour integral with x=cos � and �=ei�. This
yields expressions for the parameters Gand Ei of the form

ln G = h0 = �
−1

1 dx
1 − x2

h̃�x� , �8.4�

ln E1 = �
n=1

�

nhn
2

= ln�2G

�z
�

+
1

2�2W
−1

1

W
−1

1

dxdyh̃��x�
h̃�x� − h̃�y�

x − y
1 − x2

1 − y2 ,

�8.5�

ln E2 = �
n=1

�

hn��0
n − �0

−n�

= − ln��z3G

32
���z* − z�

−
1

�W−1

1 dx
1 − x2

h̃�x�
��0 − �0

−1�/2
��0 + �0

−1�/2 − x
, �8.6�

where ��x� is the step function. Here hn are the Fourier

coefficients of h���=�nhn�n and the function h̃�x� is just h���
reparametrized with x= ��+�−1� /2. The integrals are in the
principal-value sense where appropriate. Both G and E1 are
positive and smooth in z. However, E2 is real for zz* and a
pure phase for z�z* which is the same behavior as �0.

In passing from correlators in the form of Eqs. �7.8� and
�7.9� to the canonical form of Eqs. �7.10� and �7.11� we have
to formally drop the �0

n for zz* since it is subleading com-
pared to �0

−n. This gives the following relation between the
parameters:

A	 = E1, �8.7�

�	
−1 = − ln G , �8.8�

ln A� = Re ln� E1

E2�1 − �0
2�� , �8.9�

��
−1 = − Re ln� G

�0
� , �8.10�

�� = �� − Im ln �0���z − z*� , �8.11�

�� = �Im ln��0E2� − �/2���z − z*� , �8.12�

where �=1,2 and ��x� is the step function. We note that ��

and �� are nonzero only at z�z*. Also, the two correlation
lengths �	 and �� are equal at z�z* and differ at zz*
�see Fig. 6�.

Now, let us consider the behavior at large z, describing
slow sweep speed. As we noted earlier, in this case the length
scales �	, �� and 2� / ��−���−1 are comparable to the typical
length scale separating KZ defects �i.e., domain walls�.
These quantities are given by ln G and ln �0 via
Eqs. �8.8�, �8.10�, and �8.11�. Equation �7.3� gives
ln �=−arccosh�1−2z* /z� which has a known large-z expan-
sion. Using the integral representation in Eqs. �8.4�–�8.6� we
obtain

ln G = ln�1 − 2e−�z� −
2

�W0

2�z

dx
arccos�1 − x/�z�

ex − 2

�8.13�

after integrating once by parts and changing variables x
→�z�1−x�. For large z, we can drop the ln term, which is
exponentially small, expand acos in 1/z, and integrate term
by term with the upper limit at infinity to obtain the large-z
expansion. This procedure yields

�	
−1 = ��

−1 � �
n=0

�
An

�2�z�n+1/2 , �8.14�

�� � � − �
n=0

�

Bn� ln 2

2�z
�n+1/2

. �8.15�

Here the coefficients An and Bn are given by

An =

��n +
1

2
�2

Re Lin+3/2�2�

�3/2��n + 1�
, �8.16�

Bn =

��n +
1

2
�

�1/2�n +
1

2
���n + 1�

, �8.17�

where Li��x� is the polylogarithm function and ��x� is the
gamma function. These expressions exhibit the scaling �	,�,
��−��−1�z1/2, expected from the KZ picture.

IX. MAGNETIZATION

The correlators of 	x
3 are much simpler to analyze since

they are composed of a fixed number of Majorana fermions:
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	x
3 = AxBx, �9.1�

	x
3	x+n

3 = AxBxAx+nBx+n. �9.2�

Averaging these expressions with the help of Eq. �4.12�, we
find

mz = �	x
3� = 1 − 2e−�zI0��z� , �9.3�

�	x
3	x+2n

3 � = �	x
3�2 − �2e−�zIn��z��2, �9.4�

where n�0 and, as before, the brackets �¯� denote the av-
erages in the full lattice. The magnetization mz is plotted in
Fig. 7.

The behavior of magnetization at fast and slow sweep is
given by the small-z and large-z asymptotics:

mz = �− 1 + 2z̃ + O�z2� , z̃ � 1,

1 − �2/�z̃�1/2 + O�z−3/2� , z̃ � 1,
� �9.5�

where z̃=�z. The asymptotic expansion in Eq. �9.5� is in
integer powers at small z and in negative half-integer powers
at large z. The small-z limit corresponds to fast sweep, and so
the magnetization deviates little from the initial H�t→−� �
ground-state value of mz=−1. In contrast, large z describes
slow sweep when the magnetization follows the dynamical
field h�t� nearly adiabatically, and thus mz approaches the
H�t→ + � � ground-state value mz= +1.

The magnetization correlator �	x
3	x+2n

3 � is also a smooth
function of z. Subtracting �	x

3�2, we obtain the irreducible
�connected� correlator

Dn = �	x
3	x+2n

3 � − �	x
3�2 = − �2e−�zIn��z��2. �9.6�

Correlations of magnetization at distant points are given by
the large-n expansion of Dn at fixed z. We obtain

e−�zIn��z� = �
−�

�

e�z�cos �−1�ein� d�

2�
= �2�z�−1/2e−n2/2z,

where we used an expansion near the saddle point, 1
−cos �= 1

2�2+O��4�, and a Gaussian approximation for the
integral over �. This gives an asymptotic behavior

Dn = −
2

�z
e−n2/z. �9.7�

The correlation length, which is very short at small z �fast
sweep�, grows as ��z1/2 at large z �slow sweep�, in agree-
ment with KZ picture.

X. CONCLUSION

This article presents an exact solution for a quantum spin
chain driven through quantum critical points. We consider an
anisotropic XY chain in a time-dependent transverse field
h�t� that drives the system from a disordered paramagnetic
phase at early times into an ordered Ising phase and back
into the paramagnetic phase at late times, crossing two quan-
tum critical points along the way. We construct an exact
many-body evolution operator in fermionized representation
with the help of Landau-Zener transition theory and use it to
study the evolved state. It is found that the evolved many-
body state, while technically a pure state, acquires local
properties of a mixed state. The emerging nonequilibrium
steady state is characterized by finite entropy density, which
is a function of the sweep speed. The transformation of a
pure state into an entropic state, resulting from intrinsic de-
coherence, is analyzed via coarse graining in momentum
space.

Correlation functions in the final entropic state are calcu-
lated using the method of Toeplitz determinants. We present
exact results for the asymptotic behavior of spin correlators
at large spatial separation. The correlation length dependence
on the sweep speed is found to be consistent with the Kibble-
Zurek −1/2 power-law scaling. We characterize the cross-
over behavior in which the correlation functions, monotonic
at fast speed, acquire oscillatory spatial dependence at slow
speed. The critical speed for this transition is found near
which the correlation function parameters exhibit nonana-
lytic behavior.
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APPENDIX: TOEPLITZ DETERMINANT ASYMPTOTICS

Toeplitz matrices, having constant diagonals, and their de-
terminants, Eq. �6.11�, arise in many mathematical and
physical problems. In particular, one is often interested in the
large-n behavior of Dn�f�. Toeplitz determinant asymptotics
forms the basis for a number of rigorous results, being par-
ticularly useful in the computation of various quantities in
two-dimensional Ising model �see, for example, Ref. �32��.
However, the rather daunting mathematical literature on the
subject has led to some confusion on the status and use of
various results such as the Szegö’s limit theorem and gener-
alizations of the Fisher-Hartwig conjecture �for example, see
Chap. 10 of Ref. �29��. We give a formulation of Toeplitz
determinant asymptotics that unifies all previously known

FIG. 7. Magnetization mz, Eq. �9.3�, as a function of the inverse
sweep speed z /z*. Note the smooth transition from small to large z.
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results, both conjectured and mathematically rigorous, and
extend them to a larger class of Toeplitz determinants.

The central quantity in the study of Toepltiz determinants
is a function of complex variable, called a generating func-
tion, which is specified for some contour C that encloses the
origin once. The generating function fC��� integral over C
gives the matrix elements fn via

fn = �
C

d�

�
�−nfC��� . �A1�

The theory of Toeplitz determinants links the large-n behav-
ior of Dn�f� to the analytic structure of fC���, in particular its
singularities. Here we wish to stress two points. The first
point is the importance of specifying the contour C in relat-
ing fC��� to fn as it gives an explicit distinction between
singularities inside, outside, and on C. This point is well
known in the literature where C is taken to be the unit circle
and figures prominently in the derivation of known results on
Toeplitz determinants.

The second point is the freedom to deform C to C� when
f��� is analytic between the two contours. This point was
briefly mentioned in Ref. �33� and used to obtain the behav-
ior of spin correlation functions of the two-dimensional Ising
model above the transition temperature. The freedom to de-
form C in a general setting is a key element of our proposed
extension of Toeplitz asymptotics.

We consider the class of generating functions, first studied
by Fisher and Hartwig �34�, which are given by

fC��� = eH����m

p

�1 − �p
−1���p�1 − �p�−1��p, �A2�

with H���=h+���+h−���+h0, where h+ �h−� is analytic inside
and on C �outside and on C� satisfying h+�0�=0 �h−���=0�
and m is an integer winding number. The roots �p are on C
and give power-law singularities with exponent �p ��p�.
However, this representation of fC��� is not unique in the
sense that different choices of C, h0, h±, �p, �p, and �p will
give the same matrix elements fn. For fixed C, the formal
identity

1 = �− �−1��n�1 − �−1��n�1 − ��−1�−n �A3�

for integer n shows that the transformation

eh0 → eh0

p

�− �p�np, �A4�

m → m − �
p

np, �A5�

�p → �p + np, �A6�

�p → �p − np �A7�

gives a generating function with the same Fourier coeffi-
cients fn, Eq. �A1�, as those obtained for the original function
fC���. Under such a transformation, while the parameters h0,
�p, �p, and m change, the Toeplitz matrix is preserved. The
consequences of such transformation were first pointed out

by Basor and Tracy �35�, who noted that all different gener-
ating function representations contribute to the asymptotics.

Let us now consider deformations of the contour C. We
note that Eq. �A2� allows singularities to be on C. Since the
matrix elements fn given by Eq. �A1� must remain the same
upon deforming C to C�, such a deformation must not en-
close any singularities, but C� can possibly pass through ad-
ditional singularities that C does not. In the representation
�A2�, singularities strictly inside �outside� of C are described
by h− and h+ while singularities on C are described by the
roots �p. By appropriately deforming C to C�, we can move
power-law singularities from h+ and h− and include them in
additional roots �p� on C�.

The most general result in the literature is for C fixed to
be the unit circle but taking into account the transformations
of Eqs. �A4�–�A7�. It was first proposed by Basor and Tracy
�35� and is known as the generalized Fisher-Hartwig conjec-
ture. Each representation given by Eqs. �A4�–�A7� gives a
contribution to Dn�f� of the form

�m,0Aeh0nn�p
�p�p, �A8�

with the prefactor

A = exp��
k=1

�

khkh−k�

p

G�1 + �p�G�1 + �p�
G�1 + �p + �p�

�e−�ph−��p�−�ph+��p� 

p��p

�1 −
�p�

�p
�−�p�p�

, �A9�

where G�x� is the Barnes G function �35� which satisfies
G�x+1�=��x�G�x� and

h±��� = �
k=1

h±k�
±k.

The constraint �m,0 in Eq. �A8� means that the contributions
for nonzero winding numbers m are not of the above form
but decay faster than n� for all real �0. The asymptotic of
Dn�f� is obtained by summing the terms which give the lead-
ing contribution for large n.

This conjecture has been proven rigorously in some cases.
The case for arbitrary �p and �p, but such that only one
representation contributes to the leading term, has only been
proven relatively recently �36,37�. The case for positive in-
teger �p and �p but with multiple representations contribut-
ing at leading order was proven by Böttcher and Silbermann
�31�.

The generalized Fisher-Hartwig conjecture as stated
above gives the asymptotics of Dn�f� as a sum of contribu-
tions from each equivalent representation of the generating
function fC���, but with C fixed to be the unit circle. The
natural extension is to also allow arbitrary deformations of C
to C� that may touch but not cross the singularities and then
sum over the leading contributions from the additional
equivalent representations. This procedure can be concisely
expressed as follows. One writes down the generating func-
tion in the form of Eq. �A2� with the power-law singularities
for �p arbitrarily distributed in the complex plane. Then one
generates the equivalent representations via Eqs. �A4�–�A7�
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and sums over the contributions given by Eq. �A8�. In prac-
tice only the singularities closest to the unit circle need to be
considered. This is because under the transformation of Eqs.
�A4�–�A7�, eh0 gets multiplied by powers of �p. Since the
contribution to Dn�f� given by Eq. �A8� contains eh0n, the
singularities far from the unit circle generically give sublead-
ing contributions.

This proposed extension of the generalized Fisher-
Hartwig conjecture is particularly useful for generating func-
tions with power-law singularities off of the unit circle but
nonzero winding number. The generalized Fisher-Hartwig
conjecture is not applicable in this case due to the presence
of winding numbers. �Note �m0 in Eq. �A8�.� However, by
using the freedom to deform the contour C to the singulari-
ties off of the unit circle we can absorb the winding number
into �p and �p via Eqs. �A4�–�A7�. After that the zero-
winding-number result, Eq. �A8�, can be used.

Essentially, the generalized Fisher-Hartwig conjecture re-
lates power-law singularities on the unit circle to the
asymptotic behavior of Toeplitz determinants. Our proposed

extension just states that the same relation holds for power-
law singularities with a generic location in the complex
plane. The literature on Toeplitz determinants mostly consid-
ers singularities on the unit circle, with an exception of the
result obtained by Day �38� for rational generating functions

f��� =

p

�� − �p�


q
�� − �q�

, �A10�

where �p and �q are arbitrary in the complex plane. This
function is clearly of the form of Eq. �A2�. The correspond-
ing Toeplitz determinant can be evaluated explicitly, and the
result is given exactly by generating all equivalent represen-
tations using all the roots via Eqs. �A4�–�A7� and summing
over the corresponding contributions of Eq. �A8�. This pro-
vides evidence that the extension proposed here holds in a
general setting, although we expect it to give only the lead-
ing asymptotic contribution and not the exact determinant in
this case.
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