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A coupled-cluster approach for systems of N bosons in external traps is developed. In the coupled-cluster
approach the exact many-body wave function is obtained by applying an exponential operator exp�T� to the
ground configuration ��0�. The natural ground configuration for bosons is, of course, when all reside in a single
orbital. Because of this simple structure of ��0�, the appearance of excitation operators T=�n=1

N Tn for bosons
is much simpler than for fermions. We can treat very large numbers of bosons with coupled-cluster expansions.
In a substantial part of this work, we address the issue of size consistency for bosons and enquire whether
truncated coupled-cluster expansions are size consistent. We show that, in contrast to the familiar situation for
fermions for which coupled-cluster expansions are size consistent, for bosons the answer to this question
depends on the choice of ground configuration. Utilizing the natural ground configuration, working equations
for the truncated coupled-cluster with T=T1+T2, i.e., coupled-cluster singles doubles are explicitly derived.
Finally, an illustrative numerical example for a condensate with up to N=10 000 bosons in an harmonic trap is
provided and analyzed. The results are highly promising.
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I. INTRODUCTION

Following the experimental demonstrations of Bose-
Einstein condensates in dilute gases �1,2	, the problem of
many bosonic atoms interacting in a trap potential has at-
tracted an accelerated interest by the scientific community,
see Refs. �3,4	, and references therein. There are many phe-
nomena trapped bosons exhibit that can be described quite
well by the standard mean-field approach, namely, Gross-
Pitaevskii �GP� theory �5	, see Refs. �3,4	, and reference
therein. Side-by-side, the necessity to go beyond mean-field
and describe many-body facets of trapped bosons has be-
come well accepted and pursued by the community, see the
reviews �6,7	, and references therein.

The many-boson problem is difficult to tackle. Consider,
for instance, the standard configuration-interaction �CI� ap-
proach which employs a basis set expansion. When the in-
teraction between the N bosons is substantial and/or many of
them are present, the number of configurations necessary to
properly describe the correlated wave function quickly in-
creases beyond computational reach and truncations become
a must. When truncations of the CI expansion are made,
there are hints and evidences to slow convergence of the CI
expansion, see, e.g., Refs. �8,9	. Evidently, development of
other many-body methods which truncate the full configura-
tion space in a different manner are of high relevance and
actuality. Such methods are reviewed in Refs. �6,7	, the latter
being devoted to the extensively studied homogeneous Bose
gas problem.

Coupled-cluster theory was first formulated in nuclear
physics by Coester �10	 and Coester and Kümmel �11	, and

soon after was introduced to electron-structure theory by
Čižek �12	 and Čižek and Paldus �13	. Coupled-cluster
theory has since proven to be a very valuable and accurate
approach in the many-fermion problem, see Refs. �14–16	,
and references therein. For atomic and molecular systems,
coupled-cluster theory is currently considered to be one of
the, if not the, most powerful many-body tool for calculating
electron-correlation energies �14–16	, also in relativistic sys-
tems �17	. In the coupled-cluster approach the exact many-
body wave function is obtained by applying an exponential
operator exp�T� to the ground configuration ��0�. In practice,
one truncates of course the operator T. For fermions, it is
widely known that truncated coupled-cluster expansions are
size consistent, which is another advantage the coupled-
cluster approach possesses in comparison to truncated CI ex-
pansions which are not size consistent �18	.

Our aim in this work is to derive a coupled-cluster theory
for bosons with emphasis on systems of interacting indistin-
guishable bosons in traps with up to many particles. We in-
vestigate aspects such as size consistency and what to use as
the initial ground configuration ��0�. We would like to men-
tion that coupled-cluster approaches for molecular vibrations
�19	, “bosonic nuclei” �20	, the spin-boson model �21	, and
within bosonization of many-electron systems �22	 have
been studied in the literature, but are very different from the
present work.

The structure of the paper is as follows. In Sec. II, we
briefly discuss the standard configuration-interaction ap-
proach. In Sec. III, the coupled-cluster theory for bosons is
developed, where the issue of size consistency is extensively
analyzed. Working equations for a truncation of the coupled-
cluster to single and double excitations �CCSD� are derived
in Sec. IV, and an illustrative numerical example is provided
in Sec. V. Finally, summary and conclusions are drawn in
Sec. VI.
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II. THE STRAIGHTFORWARD APPROACH:
CONFIGURATION INTERACTION

Consider a system of interacting N identical particles, for
simplicity either spinless or all of the same spin projection.
We introduce M one-particle functions �i�r�� , i=1,2 , . . . ,M,
which are called orbitals. The N particles can be distributed
over these orbitals and each allowed distribution defines a
configuration �i1,i2,. . .,iN

. If the particles are fermions, the
configuration is a determinant

�i1,i2,. . .,iN
= Â�i1

�i2
. . . �iN

�1�

and if they are bosons, it is a permanent

�i1,i2,. . .,iN
= Ŝ�i1

�i2
. . . �iN

. �2�

Â and Ŝ denote the antisymmetrizing and symmetrizing op-
erators, respectively. In the absence of interaction, each con-
figuration is an eigenfunction of the Hamiltonian H of the
system. In the presence of interaction between the particles,
the exact eigenfunction � in the space defined by the M
orbitals is given by a superposition of all the allowed con-
figurations

� = �
i1,i2,. . .,iN

Di1,i2,. . .,iN
�i1,i2,. . .,iN

, �3�

where the D’s are complex numbers. The D’s are usually
determined variationally by diagonalizing the Hamiltonian
matrix �
�i1,i2,. . .,iN

�H �� j1,j2,. . .,jN
��. Clearly, to obtain the cor-

rect exact eigenfunction, the orbital basis should be com-
plete, i.e., M→�, but in practical calculations M is kept
finite.

How many distinct configurations participate in the CI
expansion �3�? Two fermions cannot reside in a single orbital
and, therefore, the number of configurations is simply given
by

FN
M = �M

N
� . �4�

In the case of bosons there is no restriction on how many
particles can reside in an orbital. We find that the number of
bosonic configuration reads

BN
M = �M + N − 1

N
� . �5�

These numbers grow rapidly with the size M of the orbital
basis and much more rapidly for bosons than for fermions.
Consider, for example, 165 particles. For fermions M =165 is
needed in order to have a single configuration. Adding just
five more orbitals, i.e., M =170, increases the number of con-
figurations to over a billion �109�. For bosons, M =1 is
needed to have a single configuration and employing
M =170 leads to an astronomically large number of configu-
rations.

For 165 fermions to have only five additional �so-called
virtual� orbitals at their disposal is usually insufficient for the
calculation of their correlation energy. For an accurate calcu-
lation more virtual orbitals are required making the straight-

forward CI approach impractical. Fortunately, the number of
orbitals needed for accurate calculations for bosons is much
less than for fermions. Because many or even all bosons may
reside in a single orbital, the structure of the orbitals used
play a major role in the calculation and the appropriate
choice of the orbitals is essential. The orbitals are preferen-
tially determined self-consistently as done, for instance, by
the use of the GP equation �5	, see also Refs. �3,4	. Never-
theless, to achieve meaningful results M is not small and the
number of configurations is often beyond reach. To return to
our example of N=165, the number of configurations ex-
ceeds a billion with just M =6, i.e., with just five additional
�virtual� orbitals. Note that the numbers of bosonic and fer-
mionic configurations are identical for the same number of
virtual orbitals �M −N orbitals for fermions and M −1 for
bosons� as can be seen from Eqs. �4� and �5�.

In the following we concentrate on bosons and make use
of the destruction and creation operators bi and bi

†,
i=1,2 , . . . ,M, corresponding to the orbitals �i introduced
above. These operators fulfill the usual commutator relations

�bi,bj
†	 = �i,j, �bi,bj	 = �bi

†,bj
†	 = 0 �6�

for bosons. Utilizing these operators, we define the ground
configuration

��0� =
1

N!
�b1

†�N�0�, 
�0��0� = 1 �7�

which is the ground state of the system in the absence of
interaction between the particles. �0� denotes the vacuum. All
other configurations ��i1,i2,. . .,iN

� are obtained directly by ap-
plying excitation operators to �0�. Singly excited configura-
tions read bi

†b1 ��0�, doubly excited ones are given by
bi

†bj
†�b1�2 ��0�, and so on. In analogy to Eq. �3� the exact state

��� can be expanded in these orthogonal configurations

��� = ��0� + �
i1=2

M

di1
bi1

† b1��0� + �
i1,i2=2

M

di1i2
bi1

† bi2
† �b1�2��0�

+ ¯ + �
i1,i2,. . .,iN=2

M

di1,i2,. . .,iN
bi1

† bi2
†
¯ biN

† �b1�N��0� .

�8�

For later use we choose explicitly intermediate normalization
of the exact state, i.e., 
�0 ���=1, do not impose normaliza-
tion on the orthogonal configurations except on ��0�, and
allow for redundancy in that the same configuration may
appear several times in the expansion. We note that the ex-
pansion coefficients are independent of the order of the
indices: di1,. . .,i,. . .,j,. . .,iN

=di1,. . .,j,. . .,i,. . .,iN
. Obviously, there is a

one to one correspondence between the coefficients in Eq.
�8� and those in the expansion in distinct normalized con-
figurations.

With the aid of the expansion �8� it is relatively straight-
forward to express the exact energy E0 in terms of the ex-
pansion coefficients. Starting from the Schrödinger equation
H ���=E0 ��� one immediately arrives at
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E0 = 
�0�H��� . �9�

As usual the system’s Hamiltonian consists of an one-

particle operator ĥ�r�� and a two-particle interaction V̂�r�−r���.
Expressed in destruction and creation operators H takes on
the common appearance �23	

H = � hijbi
†bj +

1

2 � Vijklbi
†bj

†bkbl, �10�

where

hij =� �i
*ĥ� jdr� ,

Vijkl =� � �i
*�r��� j

*�r���V̂�r� − r����k�r���l�r���dr�dr��. �11�

Inserting Eqs. �8� and �10� into Eq. �9� leads to

�E0 − 
�0�H��0�	/N = �
l=2

M

�h1l + �N − 1�V111l	dl

+ �N − 1� �
k,l=2

M

V11kldkl. �12�

The energy correction per particle due to the dressing
�0→� can be expressed by the coefficients �dl� and �dlk�.
The orbitals ��l� can be conveniently chosen to simplify Eq.
�12� further by eliminating the �dl�; see next section for
details.

We should keep in mind that in spite of the compactness
of expression �12� this equation cannot be used to determine
the unknown coefficients �dl ,dkl� since 
�0 �H ��� in Eq. �9�
is not subject to a variational principle. These coefficients are
determined by diagonalizing the Hamiltonian matrix which
is—as discussed above—of immense dimensionality and, in
general, not amenable to practical calculations. One, there-
fore, resorts to approximations such as keeping M very small
and/or truncating the CI expansion �8�. A particularly appeal-
ing approach is to truncate the expansion by taking into ac-
count only a few classes of configurations. In analogy to
electron structure calculations we may consider ��0� and all
singly excited configurations �CIS�, add to these all doubly
excited configurations �CISD�, and so on.

III. COUPLED-CLUSTER THEORY FOR BOSONS

A. General aspects

The CI approach discussed in the preceding section is
formally straightforward but impractical. Truncating the CI
expansion cannot be expected to solve the problem satisfac-
torily in many cases. In particular, when the interaction be-
tween the bosons is substantial and/or many bosons are
present, numerous highly excited configurations may con-
tribute rendering systematic truncations impossible. We are,
therefore, searching for more efficient approaches which are
amenable to systematic approximations.

In the coupled-cluster approach the exact wave function is
obtained by applying an exponential operator to the ground
configuration �7�

��� = eT��0� . �13�

The operator T is a superposition of excitation operators

T = �
n=1

N

Tn, �14�

where for bosons we may write

Tn = tn�b1�n,

tn = �
i1,. . .,in=2

M

ci1,i2,. . .,in
bi1

† bi2
†
¯ bin

† . �15�

For simplicity we have again introduced redundancies to
avoid unpleasant restrictions on the summation indices. The
yet unknown coefficients ci1,i2,. . .,iN

do not depend on the or-
dering of the subscripts, i.e., ci1i2

=ci2i1
, etc. It is convenient

to note that �Tn ,Tm	�0 and hence exp�T�
=exp�TN�¯exp�T1�. Because of the simple structure of ��0�,
see Eq. �7�, the appearance of the coupled-cluster operator T
for bosons is much simpler than that for fermions, see, e.g.,
Refs. �12,14	.

Using Eq. �13� and the Schrödinger equation it is easily
seen that the exact energy reads

E0 = 
�0�e−THeT��0� . �16�

The wave function �13� is subject to intermediate normaliza-
tion 
�0 ���=1 as can be deduced directly from

�0 �exp�±T�= 
�0�. In this respect the situation is similar to
that discussed in the preceding section, see Eq. �9�. On the
other hand, Eq. �16� is much more powerful because
exp�−T�H exp�T� can be evaluated using the useful expan-
sion

Ȧ � e−TAeT = A +
1

1!
�A,T	 +

1

2!
†�A,T	,T‡ + ¯ , �17�

which can be applied to any operator A.
As discussed in the preceding section, an expression simi-

lar to �16� is not subject to a variational principle and cannot
be used to determine the unknown coefficients ci1,i2,. . .,in

. To
proceed we notice that e−THeT ��0�=E0 ��0� and hence pro-
jecting on any excited configuration provides an equation for
the coefficients. The singly excited configurations lead to the
�M −1� equations


�0�b1
†bie

−THeT��0� = 0, i = 2,3, . . . ,M �18�

and the doubly excited ones to the M�M −1� /2 distinct equa-
tions


�0��b1
†�2bibje

−THeT��0� = 0, i 	 j = 2,3, . . . ,M , �19�

and so on. The number of independent equations corresponds
exactly to the number of distinct coefficients, M −1 coeffi-
cients ci, M�M −1� /2 coefficients cij, etc. The equations
above are nonlinear in the unknown coefficients and, further-
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more, are coupled to each other. The set �18� contains the ci
as well as the cij, while the set �19� also the cijl. Since the
highest possible excitation is N-fold, the final set of equa-
tions does not contain new unknown coefficients.

The total number of distinct coefficients in Eq. �15� is, of
course, identical to the total number of distinct bosonic con-
figurations given in Eq. �5�. We have argued above that this
number is enormous. Moreover, equations such as Eq. �18�
used to determine the coefficients are nonlinear. So where is
the gain with respect to the straightforward CI method dis-
cussed in the preceding section? The gain is in the favorable
properties of the coupled-cluster ansatz �13� when truncating
the sum of excitation operators in Eq. �14�. Let us for dem-
onstration include only single and double excitation opera-
tors in T, i.e., T=T1+T2. Then, the only coefficients available
are the ci and cij which can be determined from Eqs. �18� and
�19�. By inspecting that

��� = ��0� + �T1 + T2���0� +
1

2!
�T1

2 + 2T1T2 + T2
2���0� + ¯

�20�

one readily notices that this expansion of the wave function
contains all possible distinct configurations of the system.
Equations �18� and �19� determine the ci and cij coefficients
such that the expansion �20� is optimal in providing
e−THeT ��0�. In contrast to this CCSD approach as we
would call it in analogy, the CISD expansion, on the
other hand, knows only singly and doubly excited configu-
rations, i.e., is rather related to truncating Eq. �20� as ���
= ��0�+ �T1+ 1

2!T1
2+T2� ��0�. For additional advantages of the

coupled-cluster ansatz see the following two sections.

B. Impact of the single excitation operator T1

The influence of T1 is particularly transparent. For this
purpose we consider exp�T1� ��0� and remind that the ground
configuration is particularly simple for bosons, see Eq. �7�.
Using the series �17�, it is easily seen that

eT1b1
†e−T1 = b1

† + �
l=2

M

clbl
† �21�

which defines a new creation operator

b̃1
† =

1
1 + �c�2

�b1
† + �

l=2

M

clbl
†� , �22�

where �c�2=�l=2
M �cl�2, which fulfills the boson commutator

relation �b̃1 , b̃1
†	=1. Consequently, the action of exp�T1� on

the ground permanent �0 is to define a new permanent

��̃0� � eT1��0� 
 �b̃1
†�N�0� �23�

which is, however, not normalized to 1, but rather to

�̃0 � �̃0�= �1+ �c�2	N.

To proceed, one can consider the quantities appearing in
Eq. �22� as the first column of an unitary matrix U which

defines a new set of M creation operators �b̃1
† , b̃2

† , . . . , b̃M
† �

= �b1
† ,b2

† , . . . ,bM
† �U. This transformation defines a new set of

corresponding orthonormal orbitals �̃1 , �̃2 , . . . , �̃M. In turn,
the new set of creation and destruction operators or, equiva-
lently, of orbitals, can be formally utilized to eliminate T1
from T. The remaining operators of T, the Tn with n	2,

are now defined with the operators b̃1 and b̃i
†, e.g.,

T2=�i1,i2=2
M c̃i1i2

b̃i1
† b̃i2

† �b̃1�2.
Clearly, the impact of T1 is to introduce a new orbital �̃1

optimal for the coupled-cluster expansion. In particular, if we
put all Tn=0, n	2, this new orbital can be constructed ex-
plicitly. As discussed in Sec. IV, this orbital then minimizes
the energy functional 
�0 �H ��0�.

C. Size consistency

Let us consider a super system consisting of R noninter-
acting replica of our original N-particle system. Clearly, the
exact energy of this super system is E0�R�=RE0, where E0 is
the energy of the N-particle system. This result will, of
course, be reproduced if either the full configuration interac-
tion expansion �8� or the coupled-cluster expansion
�13�–�15� is used. In general, the full expansion cannot be
utilized and one has to resort to approximations. We, there-
fore, have to pose the question whether truncated CI and
coupled-cluster expansions for bosonic systems lead to ener-
gies which scale correctly with the number of replica R, i.e.,
whether these truncated expansions are size consistent.

Size consistency plays an important role in electronic
structure calculations �18	. Imagine, for instance, a molecule
which is being broken up into fragments or a cluster consist-
ing of weakly interacting atoms. The computational methods
used must be size consistent in order to describe correctly the
break up of the molecule into fragments or the cluster. In-
deed, it is well known that truncated CI expansions are gen-
erally not size consistent whereas truncated CC expansions
are size consistent for electrons. In the following we would
like to address the issue of size consistency for bosons. The
concept of size consistency is also relevant for bosons.
Bosonic systems, e.g., in an external double-well trap can be
fragmented �24,25	, and the computational method used
must be able to describe fragmentation correctly. Another,
even more extreme example is the superfluid to Mott-
insulator transition of Bose-Einstein condensates in a lattice
trap �26,27	. In the superfluid phase all bosons communicate
with each other and in the insulator phase each potential well
of the lattice contains a single boson which hardly interacts
with the other bosons.

The ground configuration �0 of the super system is a sym-
metrized product of the R ground configurations of the indi-
vidual replica. We write

��0� =
1

�N ! �R/2�
k=1

R

�b1k

† �N�0� , �24�

where b1k

† is the creation operator for bosons in the occupied
orbital of the kth replica. The Hamiltonian of the super sys-
tem is, of course, just the sum of the individual Hamiltonians

H = H1 + H2 + ¯ + HR. �25�
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We first show that the truncated CI expansion is not size
consistent. For this purpose we proceed in analogy to the
considerations done for fermions �electrons� �18	 and assume
each of the R replica to consist of two orbitals, or equiva-
lently two destruction operators b1k

and b2k
, of different spa-

tial symmetry. It is sufficient to demonstrate that CID is not
size consistent. This implies that the expansion of the total
wave function ��� consists of the superposition of the
ground configuration ��0� given above in Eq. �24� and of the
doubly excited configurations �b2k

† �2�b1k
�2 ��0�, k

=1,2 , . . . ,R. In this space the Hamiltonian matrix H repre-
sentation of H is an “arrow” matrix of dimension R+1, the
elements of which read

H00 = 
�0�H��0� ,

H0k = C
�0��Hk��b2k

† �2�b1k
�2��0� ,

Hkk� = �C�2
�0��b1k

† �2�b2k
�2�Hk��b2k

† �2�b1k
�2��0��kk�, �26�

where C is the normalization constant of a double excited
configuration. Note that all matrix elements H0k ,k
=1,2 , . . . ,R are identical to each other and so are all the Hkk.
We put for convenience H0k=V and Hkk= 
�0 �H ��0�+�.
The diagonalization of H can be performed analytically by
searching for the roots of E− 
�0 �H ��0�=�k �H0k�2 / �E
−Hkk	. This immediately leads to

E0�R� = 
�0�H��0� +
�

2
− R1/2�V2 +

�2

4R
�1/2

�27�

which implies that the truncated CI expansion is not size
consistent. Using Eqs. �24� and �25� one sees that the expec-
tation value 
�0 �H ��0� is size consistent and the correction
term E0− 
�0 �H ��0� scales as R1/2 for large R instead of
being proportional to R.

In contrast to the truncated CI expansion, the truncated
coupled-cluster expansion is size consistent. The operator T
is a sum of T�k� for the k=1,2 , . . . ,R replica. Each of the T�k�

has the appearance as in Eqs. �14� and �15� for the individual
replica. One has just to index the destruction and annihilation
operators appearing there by a further subscript k for the kth
replica. The values of the coefficients c in Eq. �15� are, of
course, the same for all replica. Clearly, the various T�k� com-
mute with each other and, consequently, exp�T� can be fac-
torized as �k=1

R exp�T�k�� leading to

��� = �eT�1�
�b11

† �N	�eT�2�
�b12

† �N	 ¯ �eT�R�
�b1R

† �N	�0� �28�

which is size consistent for any truncation of the T�k�.
In spite of the favorable structure �28� a major problem

arises. If we a priori know that our system consists of R
noninteracting replica, we may, of course, use the �0 in Eq.
�24� and obtain a size consistent result. However, the inten-
sion is to apply the coupled-cluster method not knowing a
priori how our system behaves, i.e., whether it is superfluid
or breaks up into weakly interacting subsystems. Lacking
this knowledge, we cannot use the ansatz �24� for �0. Re-
sorting to

��0� =
1

�NR�!
�b1

†�NR�0� �29�

which does not distinguish between the R replica as is the
case in Eq. �24�, we may again pose the question: is a trun-
cated coupled-cluster ansatz size consistent?

To proceed, we first have to identify the b1
† operator ap-

pearing in Eq. �29� in terms of the operators b1k

† of the indi-
vidual replica. Since all replica are identical, we can con-
struct R new operators B11

† ,B12
† , . . . ,B1R

† of the super system
by linearly combining the b1k

† . Without loss of generality we
can always chose

b1
† � B11

† = R−1/2�b11

† + b12

† + ¯ + b1R

† � , �30�

i.e., as a trivial superposition of the creation operators corre-
sponding to the occupied orbitals of the individual replica.
All the B1i

† will posses different permutational symmetries
which simplifies the evaluation considerably. For instance,
for R=2 we have B11

† =2−1/2�b11

† +b12

† � and B12
† =2−1/2�b11

†

−b12

† �. We note that for each set of virtual orbitals an analo-
gous procedure can be applied to introduce the remaining
orbitals of the super system: b21

† ,b22

† , . . . ,b2R

† are linearly
combined to give B21

† ,B22
† , . . . ,B2R

† and so on. This results in
RM creation operators of the super system emerging from
the M operators of each of the replica. Since only one orbital
is occupied in the ground configuration of the super systems,
all the other ones are virtual orbitals, i.e., also the
B12

† ,B13
† , . . . ,B1R

† refer now to virtual orbitals.
The Hamiltonian �25� and the coupled-cluster operator T

are now expressed in the Bik
† of the super system. Let us

consider as an example the one-body part of H in the occu-
pied space of the individual replica:

�
k

R

h11b1k

† b1k
= �

k

R

h11B1k
† B1k.

Note that in the two-body part of the H operator products
such as B1k

† B1k�
† B1kB1k� ,k�k�, appear. Let us begin the

analysis by inspecting the mean-field energy 
�0 �H ��0�.
Here, only the terms of the Hamiltonian containing B11

† B11
and B11

† B11
† B11B11 contribute. These terms take on the explicit

appearance

h11B11
† B11 +

V1111

2R
B11

† B11
† B11B11,

where h11 and V1111 are the quantities defined in Eq. �11� for
an individual replica. One immediately finds


�0�H��0� = NRh11 +
NR�NR − 1�

2R
V1111

=R�Nh11 +
N�N − 1/R�

2
V1111� �31�

implying that even the mean-field energy is not size consis-
tent; a surprising result. The mean-field energy of an indi-
vidual replica is Nh11+ �N�N−1� /2	V1111. Consequently, size
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consistency is achieved only if each individual replica con-
tains many bosons, i.e., for N�1.

To better understand the implications of the above finding,
let us briefly consider the coupled-cluster operator T of the
super system. Since now there is only a single occupied or-
bital �related to B11�, all the other operators Bik

† relate to
virtual orbitals of the super system. Consequently, T can be
broken up into a part T� which contains excitations solely
within the original occupied orbitals of the different replica
and the remaining part T� where excitations to the originally
virtual orbitals of these replica are included. As an example
we consider the double excitation operator T2 �see Eqs. �14�
and �15�	:

T2 = T2� + T2� = �
k=2

R

ck�B1k
† �2�B11�2 + �

k=1

R

�
i,j

M

�cijkBik
† Bjk

† �B11�2.

�32�

In T2� the terms with B11 and those of T2� are not included as
indicated by the primed summation symbol ��. In the ex-
ample of two replica, we have the T2� excitation operator
�b11

† −b12

† �2�b11
+b12

�2 which is actually an excitation within
the occupied manifold of the replica. Obviously T� and T�
commute.

Interestingly, the full impact of exp�T�� is needed in order
to restore the size consistency. Indeed, a calculation shows
that


�0�e−T�HeT���0� = R�Nh11 +
N�N − 1�

2
V1111� �33�

which is the expected correct mean-field result and is iden-
tical to the expectation value of H obtained with the ansatz
�24� for �0 where the knowledge of having R replica has
been used.

The result �33� follows only if the expansion of exp�T�� is
fully considered and not truncated. The impact of exp�T�� is
to transform �0 in Eq. �29� into the form of Eq. �24� which is
appropriate for R replica. In other words, truncated coupled-
cluster expansions are not size consistent once the ansatz
�29� is used for �0. The good news is that the violation of the
size consistency at least for the mean-field energy leads to
negligible errors for large individual systems �N�1�, see Eq.
�31�. In this respect bosons and fermions behave differently.
Due to the fact that each fermion resides in its own orbital,
size consistency in truncated coupled-cluster expansions fol-
lows straightforwardly, as was also found above for bosons
starting with the �0 of Eq. �24�.

D. On the choice of the ground configuration �0

In contrast to fermions, the choice of the structure of the
ground configuration �0 as the starting point is crucial for
bosons if fragmentation or, in particular, phase transitions
such as the superfluid to Mott-insulator transition are to be
studied. In the absence of interaction between the bosons, the
exact ground state has the appearance 
�b1

†�N �0�. It is, there-
fore, natural to start in the presence of interaction from an
analogously structured ground configuration �0 as done in

what follows Eq. �7�. In the presence of interparticle interac-
tion we have the freedom to choose the orbitals defining the
destruction and annihilation operators. At least as long as this
interaction is weak, it is favorable to choose the occupied
orbital which minimize the energy expectation value

�0 �H ��0�. This readily leads to the equation

�ĥ + �N − 1�Ĵ11	�1�r�� = 1�1�r�� �34�

which determines the occupied orbital �1�r��. The number 1

can be called orbital energy or chemical potential. The direct

interaction operator Ĵ11 is a local operator and reads

Ĵ11 =� �1
*�r���V̂�r� − r����1�r���dr��. �35�

Equation �34� defines an Hermitian Fock-like operator

F̂ � ĥ + �N − 1�Ĵ11,

F̂�i = i�i, �36�

the eigenfunctions of which define a complete set of orthogo-
nal orbitals to be used in the coupled-cluster calculation.

For convenience �see Sec. IV� one may introduce the

more physical operator F̄
ˆ

F̄
ˆ � ĥ +

N − 1

2
�Ĵ11 + K̂11	 ,

F̄
ˆ
�i = i�i �37�

which also contains the nonlocal exchange interaction opera-

tor K̂11:

K̂11�i =� �1
*�r���V̂�r� − r����i�r����1�r��dr��. �38�

Because of the structure of �0, both F̂ and F̄
ˆ

produce the
same occupied orbital �1 and the same chemical potential.
All other orbitals and orbital energies are generally different.
To avoid confusion, we shall indicate in the following which
set of orbitals has been used. Finally, we would like to point

out that if one chooses V̂�r�−r���
��r�−r���, both F̂�1=1�1

and F̄
ˆ
�1=1�1 reduce to the well-known and widely used

GP equation �3,4	.
As long as the system does not undergo a break up like in

the superfluid to Mott-insulator transition in an optical lattice
potential �0 of Eq. �7� and the orbital set of Eq. �36� or,
preferentially, of Eq. �37� can be used in the coupled-cluster
calculations. What to do when a break up is possible? Here,
we would like to stress that Eq. �34� has been obtained from
the minimization of the mean-field energy 
�0 �H ��0� within
the ansatz �7� for �0. But, this ansatz does not necessarily
lead to the lowest possible mean-field energy, i.e., it is not
necessarily the best mean-field ansatz. The best mean-field
ansatz allows the bosons to reside in different orbitals �28	:
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��0� 
 �br
†�nr

¯ �b2
†�n2�b1

†�n1�0�, n1 + n2 + ¯ nr = N .

�39�

The number r of different orbitals as well as the occupation
numbers ni , i=1,2 , . . ., r which tell us how many bosons re-
side in which orbital, are not a priori fixed numbers but are
determined variationally to minimize the mean-field energy.
The r optimal orbitals involved are, of course, also deter-
mined variationally. For brevity of presentation, we do not
present the equations of the best mean-field approach and
refer to the literature �28	.

The best mean-field ansatz has been shown to be flexible
enough to predict and describe fragmentation and superfluid
and a whole zoo of insulator phases �24,25,29	. We, there-
fore, have reason to expect that Eq. �39� provides a useful
starting point for many coupled-cluster studies. Other ways
to determine the orbitals and their occupation numbers can
also be anticipated in connection with the coupled-cluster
approach.

IV. DERIVATION OF THE WORKING EQUATIONS

In this section the working equations of the coupled-
cluster approach are derived and discussed. We concentrate
here on the ansatz 1

N!
�b1

†�N �0� for the ground configuration
for which all the necessary ingredients have been introduced
and discussed in the preceding section. Working equations
can also be derived starting from ansatz �39� for �0. This
ground configuration contains several occupied orbitals and
consequently the working equations are more elaborate.

We begin by transforming the boson destruction and cre-
ation operators with exp�T�. Using the expansion �17� one

readily finds that �Ȧ�e−TAeT�

ḃ1 = b1,

ḃi
† = bi

†, i = 2,3, . . . ,M . �40�

The destruction operator corresponding to the orbital occu-
pied in �0, and the creation operators of the virtual orbitals
are invariant to the coupled-cluster transformation. In con-
trast, the respective dual operators change

ḃ1
† = b1

† − L1,

ḃi = bi + Li, �41�

where

L1 = �
n=1

N

ntn�b1�n−1,

Li = �
n=1

N

ntn
�i��b1�n. �42�

The operators tn can be found in Eq. �15� and the operators
tn
�i� operate in the virtual space and read

tn
�i� = �

i2,i3,. . .,in=2

M

ci,i2,i3,. . .,in
bi2

† bi3
†
¯ bin

† ,

t1
�i� = ci. �43�

In the calculations below it is gratifying to note that the L
operators commute

�Li,L j	 = �L1,Li	 = 0 �44�

and that their action on 
�0� from the right is simple:


�0�L1 = 0, 
�0��b1�mL1 = 0,


�0�Li = ci
�0�b1. �45�

To proceed, we break up the Hamiltonian �10� into several
terms according to the number of operators related to the

occupied orbital �1. The transformed one-body part Ḣ0 of the
Hamiltonian then consists of four terms

Ḣ0 = h11ḃ1
†b1 + �

k=2

M

h1kḃ1
†ḃk + �

k=2

M

hk1bk
†b1 + �

k,l=2

M

hklbk
†ḃl

�46�

out of which the second is the most involved one. The trans-

formed two-body operator V̇ contains many contributions
which can be casted into nine terms which, for ease of pre-
sentation, are listed in the Appendix.

We now calculate the energy E0= 
�0 � Ḣ ��0�, see Eq.

�16�. The first term of Ḣ0 in Eq. �46� and that of V̇ in the
Appendix contribute because of Eq. �45� only to the mean-
field energy giving


�0�H��0� = N�h11 +
N − 1

2
V1111� . �47�

The only terms contributing to the energy correction

E0− 
�0 �H ��0� are the second term of Ḣ0 in Eq. �46� and the

second and fourth terms of V̇ in the Appendix. The final
result for the exact energy reads

E0 = 
�0�H��0� + N��
k=2

M

�h1k + �N − 1�V111k	ck

+
N − 1

2 �
k,l=2

M

V11kl�2ckl + ckcl�� . �48�

Inspection of this expression makes clear from which of the
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above mentioned contributing terms the various matrix ele-
ments originate. The appearance of the result �48� is similar
to that derived by the straightforward configuration interac-
tion approach, see Eq. �12�. The major difference is in the
ckcl term which is missing in the CI expression �12� and
arises due to the contribution of the single excitation operator
T1 to the wave function, see Eq. �20�.

Until now the orbitals used are arbitrary and have not
been specified. If we utilize the optimized orbitals arising

from the Fock-like operators F̂ and F̄
ˆ

discussed in Sec. III D,
we obtain in both cases the same result for the exact energy

E0 = 
�0�H��0� +
N�N − 1�

2 �
k,l=2

M

V11kl�2ckl + ckcl� . �49�

The other term in Eq. �48� has disappeared due to the fact

that 
�k � F̂ ��1�=0, see Eqs. �36� and �37�. In analogy to the
notion of electron correlation energy �18	 we might call the
correction E0− 
�0 �H ��0�, which is caused by the interpar-
ticle interaction beyond the mean field, boson correlation en-
ergy.

To determine the coefficients �ckl� and �ck� we have to
evaluate the series of coupled equations �18� and �19� and so
on as discussed in Sec. III A. The series consists of N sets of
such equations, one set for each type of excitation operator
Tn ,n=1,2 , . . . ,N. In practical calculations the expansion
T=�Tn is truncated. For instance, if T1 and T2 are considered
and the Tn ,n	3, are put to zero, then only the sets of equa-
tions �18� and �19� must be considered in order to determine
the derived coefficients. In the following we calculate this
CCSD approach as we may call it.

Whereas the expression �49� for the energy is invariant to

the choice of either F̂ or F̄
ˆ

to define the orbital basis used,
the equations determining the coefficients do depend on this
choice. We have computed these equations for an arbitrary
set of orthonormal orbitals, but present here only the results

obtained with the orbitals of F̄
ˆ
. Let us begin with


�0 �b1
†biḢ ��0�=0. From the nine terms of V̇ shown in the

Appendix it is easy to see that the fifth, eighth, and ninth
terms do not contribute as they all exhibit two creation op-
erators for virtual orbitals. All other terms contribute. Using
Eqs. �41�–�45� we obtain a set of M −1 coupled equations
�i=2,3 , . . . ,M�

�1 − i�ci = �
k=2

M

h1k�2cki + ckci� + �N − 1�� 1

2�
k=2

M

�V1i1k

+ V1ik1�ck + �
k,l=2

M

�V1ikl − V11klci��2ckl + ckcl�

+ �N − 2� �
k,l=2

M

V11kl�3ckli + ckcli + clcki�� .

�50�

This set of equations is the result of the exact evaluation of


�0 �b1
†biḢ ��0�=0 and thus contains the coefficients ckli of

T3. These coefficients have to be put equal to zero if CCSD
is to be evaluated. Consulting Sec. III B we see that ck�0
implies the introduction of a new optimized orbital and we
may assume that in CCS and M→� this orbital is just the

eigenfunction �1 of F̂ �or, equivalently, F̄
ˆ �.

To complete the CCSD we have to solve also for the set
of M�M −1� /2 distinct coupled equations resulting from


�0 � �b1
†�2bibjḢ ��0�=0, see text around Eq. �19�. Here, all

terms of Ḣ contribute except of the third term of Ḣ0 in Eq.

�46�. Using the relations �41�–�45� and the expressions of Ḣ
given in Eq. �46� and in the Appendix, the derivation of the
coupled equations is lengthy but straightforward. In prin-
ciple, one could derive diagrammatic rules to simplify the
procedure in analogy to the situation for fermions �12,13	,
but this is unnecessary for bosonic systems, at least as long
as �0 in Eq. �7� is used. The resulting set of coupled equa-
tions reads �i , j=2,3 , . . . ,M�

2�21 − i −  j�cij − Vij11 − �2cij + cicj�V1111

= �
k=2

M

�Vijk1 + Vjik1�ck − �Vi111cj + Vj111ci�

+ �
k=2

M

��V1i1k + V1ik1��kj + �i ↔ j�	 + �
k=2

M

V111k�kij

+ �
k,l=2

M

V11kl�klij − �
k,l=2

M

�V1iklcj + V1jklci�ckcl

+ �
k,l=2

M

Vijkl�2ckl + ckcl� . �51�

In contrast to Eq. �50� which contains ckli coefficients arising
from T3, we have concentrated in Eq. �51� on CCSD and put
all coupled-cluster operators Tn ,n	3, to zero. The quantities
�, �, and � appearing in Eq. �51� are given by

�kj = ckj�N − 3� − ckcj ,

�kij = 2��ckjci + ckicj��3N − 5� + 2cijck�N − 2� + cicjck	 ,

�klij = 4ckiclj�N − 2��N − 3� − 2�N − 2��2cij�2ckl + ckcl�

+ ckiclcj + clickcj + ckjclci + cljckci	

− �2ckl + ckcl��2cij − cicj� . �52�

It is worth noting that Eq. �50� arising from 
�0 �b1
†biḢ ��0�

=0 are all homogeneous, whereas Eq. �51� originating from


�0 � �b1
†�2bibjḢ ��0�=0 are inhomogeneous. The inhomoge-

neity Vij11 is due to the fifth term of V̇ given in the Appendix,
i.e., from the only term which is invariant to the exp�T�
transformation.

Before closing this section let us briefly discuss CCS.
Here, we have to put in Eq. �50� all the ckli=0 as well as all
the ckl=0 and disregard the set of equations �51�. The result-
ing equations are homogeneous in the ck coefficients and
ck=0 is a proper solution. This implies that CCS leads to that
mean-field energy which is the minimum of 
�0 �H ��0�, see
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Sec. III D. Would we have not used the orbitals of F̄
ˆ

but
rather some set of arbitrary orthonormal orbitals, then Eq.
�50� will become an inhomogeneous equation and ck�0.

V. ILLUSTRATIVE EXAMPLE

As an example we apply the CCSD approach to N inter-
acting bosons in an external trap and restrict the orbital space
to two real orbitals �1 and �2 of different spatial symmetry.
Consequently, the CCSD �or equivalently the CCD� wave
function reads ���=exp�c22�b2

†�2�b1�2	 ��0�. In other words,
the wave function depends only on a single unknown param-
eter c22. It is easily seen that

��� = �
m=0

N/2
c22

m

m!
� N ! �2m�!

�N − 2m�!�1/2

�N − 2m,2m� , �53�

where for simplicity we assume N to be an even number and
�m ,m�� is the normalized configuration with m bosons in �1
and m� bosons in �2.

We remind the reader that in coupled-cluster theory
intermediate normalization of the wave function is used,

�0 ���=1, and define the norm of the wave function

N = 
���� . �54�

Using Eq. �53� it is readily shown that this norm obeys a
local “decay” law as a function of the parameter c22:

dN
dc22

=

n2�
c22

N , �55�

where 
n2� is the expectation value of the occupation number
of bosons in orbital �2. Because of the different spatial
symmetry of �1 and �2, these orbitals are the eigenfunctions
of the reduced one-particle density matrix �natural orbitals�
and the respective eigenvalues are 
n1� and 
n2� with

n1�+ 
n2�=N. Clearly,


n2� = 
��b2
†b2���/
���� , �56�

which can be evaluated by using Eq. �53�. Analogously, the
variance of the occupation number of bosons in orbital �2
can be obtained from the second derivative of the norm

d2N
dc22

2 =

n2

2� − 
n2�
c22

2 N , �57�

where 
n2
2�= 
� � �b2

†b2�2 ��� / 
� ���. In the absence of inter-
action between the bosons, c22=0 and 
n2�=0, N=1. As the
interaction strength grows, the value of the coupled-cluster
coefficient �c22� grows as well and with it the mean number
of bosons in the orbital �2. The quantity �
n2� /c22� increases
and determines the rate of change of the norm according to
Eq. �55�.

To be specific, we consider now the widely used, one-
dimensional harmonic trap potential − 1

2
�2

�x2 + 1
2x2, and use the

contact interaction V̂�x−x��=�0��x−x��, see Refs. �3,4	, and
references therein. We would like to examine here the per-
formance of the CCSD approach. It should be reemphasized

that the CCSD wave function contains only a single param-
eter c22. To solve for this parameter Eq. �51� can be used
which reduces to the simple quadratic equation

c22
2 ��N2 − 7N + 9� + c22��2 − 1� + ��N − 3� + �	

+ �/4 = 0, �58�

where

� = �0� ��1�x��2��2�x��2dx ,

� =
�0

2
�� ��1�x��4dx +� ��2�x��4dx� .

Note that 1 here is the usual chemical potential of the GP
equation. The ground-state energy of the CCSD approach
reads

E0�CCSD� = EGP + N�N − 1��c22. �59�

Here, EGP= 
�0 �H ��0� is the usual ground state GP energy

EGP = N�h11 +
N − 1

2
�0� ��1�x��4dx� . �60�

For completeness we would like to compare our CCSD
results with those of the CISD. The latter wave function also
contains only one parameter d22 �see Sec. II� and the expres-
sion for the energy E0�CISD� is identical to that in Eq. �59� if
we replace c22 by d22. The CISD wave function is, however,
a superposition of only the two configurations �N ,0� and
�N−2,2�. The value of the parameter can be simply obtained
by diagonalizing the Hamiltonian H in the space of these two
configurations. This leads to the quadratic equation

d22
2 �N�N − 1� − 2d22��2 − 1� + ��N − 3� + �	 − �/2 = 0

�61�

for the configuration interaction parameter.
The results of our numerical example are summarized in

Figs. 1–3. In Fig. 1 we test the performance of CCSD
method in terms of the correlation energy. The correlation
energy is defined as the difference between the Gross-
Pitaevskii energy EGP and the exact energy E0�exact�. The
latter is obtained in our model by diagonalizing the many-
body Hamiltonian within the full configuration-interaction
space spanned by �m ,m�� ,m=0, . . . ,N ,m�=N−m. We first
calculate the CCSD energy E0�CCSD� using Eqs. �34�–�36�
and �58�–�60�. How much of the exact correlation energy
EGP−E0�exact� is captured by CCSD is given in percent by

%Ecorrelation=100
EGP−E0�CCSD�

EGP−E0�exact� . We have calculated %Ecorrelation

for N=100, 1000, and 10 000 for several values of the inter-
action strength �0. The results are plotted in Fig. 1 versus the
coupling constant �=�0�N−1�, which is the only interaction
parameter entering the GP energy, see Eq. �60�. For compari-
son, the corresponding values obtained by the CISD method
were calculated as well. We remind that both methods con-
tain one parameter only, c22 and d22, respectively. It is seen
that the CCSD is remarkably successful in obtaining the cor-
relation energy, with absolute error of less than 4% up to a
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huge coupling constant �=2�104. The quality of the CISD,
on the other hand, starts to deteriorate already from �=1 on
and saturates at about 50%, see Fig. 1. Another result ob-
served in Fig. 1 is that the performance of CCSD in terms of
%Ecorrelation improves with increasing N, whereas that of
CISD worsens.

Next, let us examine the many-body wave function ob-
tained by the CCSD method and compare it to the exact one.
For this, we first normalize the CCSD wave function �53�
and express it as �m=0

N/2 C2m �N−2m ,2m�. In Fig. 2 the absolute
value of the C2m coefficients �they alternate in sign because
c22 is negative� for N=10 000 bosons and �=100 are plotted.
Although the coupling constant is large, it is remarkable that
the CCSD C2m coefficients almost perfectly match the exact
coefficients and it is difficult to distinguish between the red
and black curves of Fig. 2. Another property of the many-
body wave function when � is growing is that the tail of the
coefficients C2m is extending further, showing that more and
more excited configurations contribute to the many-body
wave function. For comparison, the two coefficients of the

CISD are also shown, which deviate much from the exact
solution, see Fig. 2.

Finally, we examine the capability of the CCSD method
to reproduce the exact ground-state depletion, i.e., the aver-
age number 
n2� of bosons occupying the orbital �2. As men-
tioned above, 
n2� and 
n1�=N− 
n2� are the eigenvalues of
the reduced one-body density and hence are a very sensitive
tool for the quality of the CCSD many-body wave function.

We have calculated 
n2� for N=100, 1000, and 10 000 for
several values of the interaction strength �0 up to the huge
value of �=2�104. The results are plotted in Fig. 3 together
with the exact ones and the corresponding values obtained
with CISD. It is seen that the CCSD is extremely successful
in obtaining the depletion 
n2� up to a large coupling con-
stant �=102. From about this value on, the quality of the
CCSD wave function in terms of 
n2� depends on the specific
number N of bosons. For N=100 it is very good for all val-
ues of �. For N=10 000 at the extreme value �=2�104 it
predicts 2.5 as much depletion as the exact many-body wave
function gives, namely, almost 20 bosons instead of 8 out of
10 000 bosons. We remind the reader that all these results are

FIG. 1. �Color online� Performance of CCSD method: correla-
tion energy. Shown is the percent of correlation energy, denoted by
%Ecorrelation, obtained by the CCSD for N=100,1000,10 000
bosons and several values of interaction strength �0. The correlation
energy is defined as the difference between the Gross-Pitaevskii
energy EGP and the exact energy. The exact energy is obtained in
our model by diagonalizing the many-body Hamiltonian within the
full configuration-interaction space. For comparison, the corre-
sponding values obtained by CISD are also plotted.

FIG. 2. �Color online� Performance of CCSD method: many-
body wave function. Shown are the coefficients C2m of the
normalized many-body wave function �m=0

N/2 C2m �N−2m ,2m�, for
N=10 000 bosons and �=�0�N−1�=100 obtained by the CCSD
method, see Eqs. �53� and �54�. Although the coupling constant is
large, it is remarkable that the CCSD C2m coefficients almost per-
fectly match the exact coefficients, namely the red curve “sits” atop
the black curve. For comparison, the two coefficients of the CISD
are also shown, which deviate much from the exact solution.
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obtained with a single parameter c22. The deviations of 
n2�
for large N and larger interaction strength �0 is related to the
tail of the C2m distribution. As N and �0 increase, there are
more and more non-negligible CCSD coefficients which start
to deviate from the exact ones. While this does not lead to an
error of more than 3% in the correlation energy, see Fig. 1, it
does influence the more sensitive measure of exactness of the
wave function 
n2�. For comparison, we also computed the
corresponding 
n2� values with CISD and plotted the results
in Fig. 3. We obtained that the values of 
n2� for all N satu-
rates at about 0.18 with increasing �, which is more than an
order of magnitude smaller than the exact and CCSD results.
This near independence of 
n2� in CISD from the number of
bosons N is a manifestation of the minimal correlations em-
bedded in the CISD wave function, in contrast to the CCSD
wave function.

Summarizing the results depicted in Figs. 1–3, we see that
the CCSD for bosons performs remarkably well even for
large interaction strengths. Utilization of the ground configu-
ration in Eq. �7� is an appropriate choice for the coupled-
cluster expansion at least for this example �see also the dis-
cussion below�.

VI. SUMMARY AND CONCLUSIONS

The straightforward configuration-interaction approach
rapidly becomes impractical in the many-body problem.
When the interaction between N bosons is substantial and/or
many of them are present, the number of configurations nec-
essary to correctly describe the correlated wave function
quickly increases beyond computational reach. In searching
for more efficient approaches which are amenable to system-
atic approximations �truncations�, we have developed in this
paper a coupled-cluster theory for systems of bosons in ex-
ternal traps.

In the coupled-cluster approach the exact wave function is
obtained by applying an exponential operator exp�T� to the
ground configuration ��0�. The ground configuration ��0� de-
pends, of course, on the particle statistics. While for fermions
it is a determinant with M =N different orbitals, the situation
for bosons is more intricate. Since there is no limitation on
the number of bosons occupying a certain orbital, there are
ample legitimate choices for the ground permanent of N in-
teracting bosons over M available orbitals. The most natural
choice for noninteracting or weakly interacting bosons is, of
course, to let all bosons reside in the orbital lowest in energy
�1, ��0�= 1

N!
�b1

†�N �0�, which is our main choice for the
coupled-cluster theory presented here.

Because of the simple structure of ��0�, the appearance of
excitation operators T=�n=1

N Tn for bosons is much simpler
than for fermions. When the simplest truncation T=T1 is
chosen, namely, CCS, the effect of exp�T1� on ��0� is to
transform �1 to another orbital �̃1. exp�T1� optimizes this
orbital by mixing the M available orbitals. This reminds us
of the situation encountered for fermions, where the opera-
tion of the fermionic T1 transforms the ground determinant
into another determinant �Thouless theorem �30	�.

In a substantial part of this work we addressed the issue of
size consistency for bosons and enquired whether truncated
coupled-cluster expansions are size consistent. It turns out
that the answer to this question depends on the choice of
ground configuration �permanent�. Considering R noninter-
acting replica of the N-boson system, it has been found that
truncated coupled-cluster expansions are not size consistent
with the simplest choice for the R-replica ground permanent
��0�= 1

�NR�! �b1
†�NR �0�, already for the mean-field energy


�0 �H ��0�. This is a surprising result when compared to the
case of fermions. Fortunately, this violation of size consis-
tency, at least for the mean-field energy, leads to negligible
errors for large individual systems �N�1�. Can size consis-
tency in bosonic systems be fully restored, perhaps with an-
other choice of the R-replica ground permanent? Yes, it has
been straightforwardly shown that truncated coupled-cluster
expansions are size consistent with the ground permanent

FIG. 3. �Color online� Performance of CCSD method: ground-
state depletion. Shown is the average number of bosons in orbital
�2, 
n2�, for N=100,1000,10 000 bosons and several values of in-
teraction strength. Because of the different spatial symmetry of �1

and �2, these orbitals are the eigenfunctions of the reduced one-
particle density matrix �natural orbitals� and the respective eigen-
values are 
n1� and 
n2� with 
n1�+ 
n2�=N. It is seen that the CCSD
is extremely successful in obtaining the depletion 
n2�, which is a
very sensitive measure of the exactness of the many-body wave
function, for all N up to a large coupling constant �=102. The CISD
results are also shown for comparison. See text for more details.
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��0�= 1
�N!�R/2 �k=1

R �b1k

† �N �0�, which “distinguishes” between the

R replica; also see discussion below.
Next, we moved to derive working equations of the

coupled-cluster approach for the natural ground configura-
tion ��0�= 1

N!
�b1

†�N �0�. First, it has been shown that the exact
correlation energy depends on two kinds of coefficients only:
�ck� and �ckl� of the single and double excitation operators T1
and T2. For a given truncation of the coupled-cluster expo-
nential operator exp�T�, it is possible in principle to calculate
the correlation energy. Here, for the specific truncation of
T=T1+T2, i.e., CCSD, general working equations for �ck�,
�ckl� have been explicitly derived.

Finally, we tested the performance of the CCSD in a
model where an exact solution can be computed. We em-
ployed an harmonic trap and restricted the orbital space to
two orbitals of different spatial symmetry. The exact solution
is obtained, of course, by diagonalizing the many-body
Hamiltonian within the full configuration-interaction space
spanned by �m ,m��, m=0, . . . ,N ,m�=N−m. In contrast, the
CCSD approach requires here one parameter only, c22, which
is a solution of a simple algebraic equation of the second
degree, see Eq. �58�. The performance of the CCSD ap-
proach for N=100,1000, and 10 000 interacting bosons was
tested in terms of three criteria: correlation energy, many-
body wave function, and ground-state depletion. It was
found that the CCSD is remarkably successful in obtaining
the correlation energy, with absolute error of less than 4% up
to a huge coupling constant �=2�104, see Fig. 1. The qual-
ity of the CCSD many-body wave function and its ability to
accurately describe ground-state depletion were found to be
remarkably good for all boson numbers and coupling con-
stants as large as �=102, see Figs. 2 and 3. For comparison,
we examined the performance of CISD, which similarly de-
pends on one parameter only d22. CISD was found to be
substantially poorer in comparison to CCSD. For instance, it
accounts for about 50% of the correlation energy only.

The coupled-cluster theory for bosons presented in this
work, as certainly supported by the numerical example, is a
promising approach to be further developed in the many-
boson problem. The expressions of the bosonic coupled-
cluster theory are much simpler than those for fermions
since, generally, the ground configuration �permanent� em-
ploys one orbital only. Consequently, we can treat a very
large number of bosons with coupled-cluster expansions and
employ more virtual �nonoccupied� orbitals than the fermi-
onic coupled-cluster can. These qualities open the way to
study few- to many-boson systems up to a substantial inter-
action where several orbitals are needed to describe the real-
ity.

The issue of size consistency, as extensively discussed
above, is delicate for bosons, and depends on the choice of
the ground configuration. It relates to the following practical
point: what is a suitable choice of the ground permanent
when a coupled-cluster expansion is to be employed with a
specific physical system? We can say that, for bosons in a
single-well trap an useful choice is the simplest permanent
where all bosons reside in the same orbital, which is the
standard mean-field GP orbital. However, if we wish to use-
fully apply coupled-cluster expansions to a bosonic system

undergoing spatial fragmentation or superfluid to Mott-
insulator transitions, situations that occur in double-well and
multiple-well traps, we have to be more careful with the
choice of ground configuration, and depart from the simplest
permanent constructed from the GP mean-field orbital. Re-
cently, a more general mean-field theory has been intro-
duced, allowing for bosons to reside in several orbitals �28	.
We anticipate that in combination with coupled-cluster ex-
pansions they can be useful for studying many bosons in
double-well and multiple-well traps.
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APPENDIX

The transformed two-body operator V̇ of the transformed

Hamiltonian Ḣ= Ḣ0+ V̇ consists of the nine terms listed be-
low.

V̇ = �
p=1

9

V̇�p� ,

V̇�1� =
1

2
V1111ḃ1

†ḃ1
†b1b1,

V̇�2� = �
k=2

M

V111kḃ1
†ḃ1

†b1ḃk,

V̇�3� = �
k=2

M

Vk111bk
†ḃ1

†b1b1,

V̇�4� =
1

2 �
k,l=2

M

V11klḃ1
†ḃ1

†ḃkḃl,

V̇�5� =
1

2 �
k,l=2

M

Vkl11bk
†bl

†b1b1,

V̇�6� = �
k,l=2

M

�V1k1l + V1kl1�ḃ1
†bk

†b1ḃl,

V̇�7� = �
j,k,l=2

M

V1jklḃ1
†bj

†ḃkḃl,

V̇�8� = �
j,k,l=2

M

Vjkl1bj
†bk

†ḃlb1,

V̇�9� =
1

2 �
i,j,k,l=2

M

Vijklbi
†bj

†ḃkḃl.
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