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We study the ground-state properties of a trapped Bose-Einstein condensate with a neutral impurity. By
varying the strength of the attractive atom-impurity interactions, the degree of localization of the impurity at
the trap center can be controlled. As the impurity becomes more strongly localized, the peak condensate
density, which can be monitored experimentally, grows markedly. For strong enough attraction, the impurity
can make the condensate unstable by strongly deforming the atom density in the neighborhood of the impurity.
This “collapse” can possibly be investigated in bosenova-type experiments.
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I. INTRODUCTION

The study of impurities immersed in liquids and solids
has a long history. In 1933, Landau predicted, using quantum
mechanical arguments, that the localization of electron im-
purities in a crystal could be used to probe the activation
energy of solids �1�. Electron impurities have also played a
key role in the study of liquids, in particular liquid 4He �2�.
More recently, the study of doped mesoscopic helium clus-
ters has attracted much attention �3,4�. Some atom impurities
reside on the cluster surface while others migrate to the cen-
ter of the helium cluster. Spectroscopic measurements of
molecules located at the center of the cluster have, e.g.,
shown unambiguously that 4He clusters with about 60 atoms
are superfluid �5�.

Recently, the study of impurities immersed in a gaseous,
coherent atom background has become possible �6,7�. Theo-
retical studies on, e.g., ion impurities in a condensate have
been initiated �8,9�, raising questions about the appropriate
treatment of systems with long-range interactions �unlike
short-ranged atom-atom potentials, which behave as 1/r6 for
large interparticle distances, atom-ion potentials fall off as
1 /r4�. Here, we consider a neutral impurity in an inhomoge-
neous Bose gas, assuming contact atom-impurity interactions
�10�. Treatments for more complicated atom-impurity inter-
actions exist �11–13�; the results may, however, be model
dependent. Our self-consistent mean-field treatment provides
a first step toward a systematic understanding of impurities
in a Bose condensate. We also discuss a simple variational
treatment which reproduces the key features of the self-
consistent results. We point toward possible experimental
signatures of our predictions, which will be aided by the
possibility of tuning the atom-atom and atom-impurity inter-
actions in the vicinity of a Feshbach resonance by applica-
tion of an external magnetic field �14,15�. This tunability is
unique to gaseous condensate-impurity systems; it does not,
for example, exist in helium where the interaction strength is
set by nature.

We consider a weakly interacting Bose condensate in a
harmonic trap, doped with a single impurity. For now, we
assume that the impurity experiences no external trapping
potential; later, we discuss how the presence of an impurity
trapping potential modifies the results. Figure 1 shows the

equilibrium “phase diagram” �16� determined within mean-
field theory as a function of the number of atoms N and the
atom-impurity scattering length aai. The phase diagram sepa-
rates into three distinct regions: �A� For aai�aai,c1, the im-
purity is unbound and can move away from the trapped atom
cloud. �B� For aai,c1�aai�aai,c2, the impurity is localized,
i.e., bound to the atom cloud �17�. �C� For aai�aai,c2, short-
range physics, which cannot be described within mean-field
theory, becomes relevant. Regions A and B are separated by
an N-dependent critical value aai,c1 �upper solid bold line in
Fig. 1�, which is approximately independent of the atom-
atom scattering length aaa. Since the impurity feels no trap-
ping potential, interaction-induced localization of the impu-
rity occurs only if aai is more attractive than aai,c1. Regions B
and C are separated by an N-dependent critical value aai,c2,
which also depends on the atom-atom scattering length aaa.

FIG. 1. Phase diagram for trapped Bose gas with a single impu-
rity, which experiences no confining potential, as a function of the
number of atoms N and the atom-impurity scattering length aai for
equal atom and impurity masses, i.e., mi=ma. The phase diagram
contains three regions: in region A the impurity is unbound; in
region B the impurity is localized �the localization is “weak” for
comparitively small �aai� and “strong” for comparatively large �aai�;
see Sec. II for details�; and in region C short-ranged physics be-
comes relevant. Regions A and B are separated by a critical value
aai,c1 �upper bold solid line�, which is approximately independent of
aaa. Regions B and C are separated by a critical value aai,c2, which
is shown for aaa=0.005aho �lower bold solid line�, 0 �dotted line�,
and 0.05aho �dashed line�.
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The lower bold solid line in Fig. 1 shows aai,c2 for aaa
=0.005aho, the dotted line that for aaa=0, and the dashed line
that for aaa=0.05aho. If aai is more negative than aai,c2, the
attractive atom-impurity interactions can “collapse” the con-
densate, pulling atoms into a short-ranged state about the
impurity.

The next section outlines the self-consistent mean-field
treatment used to calculate the phase diagram shown in Fig.
1. Section III develops a simple variational framework,
which reproduces the key features of the full self-consistent
mean-field treatment. Finally, Sec. IV discusses possible ex-
perimental realizations of the systems under study, including
implications of possibly non-negligible three-body recombi-
nation rates, and concludes.

II. SELF-CONSISTENT MEAN-FIELD TREATMENT

We describe N atoms of mass ma in the presence of a
harmonic trapping potential with angular frequency �ho and
a single impurity of mass mi, which experiences no external
potential, within mean-field theory. The applicability of
mean-field theory is justified a posteriori at the end of this
section. Assuming that the atom-atom and atom-impurity in-
teractions can be described by contact potentials, the many-
body Hamiltonian reads

H = �
j=1

N �−
�2

2ma
� j

2 +
1

2
ma�ho

2 x� j
2� −

�2

2mi
�i

2
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N

��x� j − x�k� + Uai�
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N

��x� j − x�i� , �1�

where Uqp=2��2aqp /mqp, mqp=mqmp / �mq+mp�, and �q , p�
= �a ,a� or �a , i�. In Eq. �1�, x� j and x�i denote the position
vectors of the jth atom and the impurity, respectively. We
approximate the ground state wave function � as a product
of single-particle wave functions,

��x�1,x�2, . . . ,x�N;x�i� = �	
j=1

N

�a�x� j���i�x�i� , �2�

and derive a set of coupled Hartree-Fock equations,
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Here, aho denotes the oscillator length �aho=
� /ma�ho and
r�=ahox��, and 
a and 
i the chemical potentials �or “orbital
energies”� of the atoms and the impurity. The coupled mean-
field equations are equivalent to those for a two-component
condensate �18� if one replaces one of the two components
by a single impurity. In writing Eqs. �3� and �4�, we have

implied spherical symmetry, �a,i�r��=�a,i�r�=
	a,i�r�

4�r

with
�0

��	a,i�r��2dr=1. For repulsive atom-impurity interactions,
not considered here, symmetry-breaking states can exist �19�.

The impurity experiences an effective potential Vef f,i �de-
fined as the second term in large parentheses on the left hand
side �LHS� of Eq. �4��, which is created by the atom density
��a�2. The impurity density ��i�2 enters Eq. �3� and creates,
together with the trapping potential and the atom density
itself, an effective potential Vef f,a �defined as the last three
terms in large parentheses on the LHS of Eq. �3��. For weak
atom-impurity interactions, the condensate atoms act to a
good approximation as a static background with which the
impurity interacts. However, as the strength of the atom-
impurity interactions increases the full coupled nature of
Eqs. �3� and �4� becomes important.

We discuss the self-consistent solutions to Eqs. �3� and
�4�, obtained by numerical means, for a specific set of pa-
rameters. The behavior is qualitatively similar for other pa-
rameters. Figure 2�a� shows the chemical potentials 
i and 
a
as a function of aai for N=104 and aaa=0.005aho, and mi
=ma. Equal atom and impurity masses can be realized ex-
perimentally by, e.g., promoting a single condensate atom to
a different hyperfine state �6�. Figure 2�a� shows that the
chemical potentials 
i and 
a change approximately linearly
with the atom-impurity scattering length for −0.005
�aai /aho�−0.05. This linear behavior is what one would
expect from a perturbative treatment. To visualize the sys-
tem’s behavior, Figs. 2�b� and 2�c� show the effective poten-
tials Vef f,i�r� and Vef f,a�r� for a few selected atom-impurity
scattering lengths. Figure 2�b� shows that Vef f,i becomes
deeper as aai /aho goes from −0.01 to −0.03 to −0.05. Ac-
cordingly, the impurity wave functions �i, shown in the inset
of Fig. 2�b�, become more localized as �aai� increases. Al-
though ��i�2 changes significantly as aai /aho goes from −0.01
to −0.05, Vef f,a and ��a�2 change only slightly �see Fig. 2�c��.

For aai /aho
−0.05, the impurity chemical potential 
i
�and, to a lesser degree, the atom chemical potential 
a�
changes in a nonlinear, i.e., nonperturbative, fashion. For the
parameters at play here, this defines the regime of strong
atom-impurity coupling. To highlight the dramatic changes
of the system in this strongly-coupled regime, Figs. 2�b� and
2�c� show self-consistent effective potentials for three nearly
identical atom-impurity scattering lengths, i.e., aai /aho=
−0.06,−0.061,−0.0615. The peak impurity density grows
with increasing �aai� and creates a “hole” at the center of
Vef f,a, which in turn causes the atom density to grow a
“bump” at the trap center �see inset of Fig. 2�c�� with a
length scale of roughly the condensate healing length �. The
healing length is given by the competition between the ki-
netic energy and the condensate’s mean-field energy, �
=1/
8�naaaa �20�, where na denotes the peak density of the
atoms, na=N��a�r=0��2. For the parameters of Fig. 2, �
�0.26aho. Since the healing length � is the scale over which
the condensate “reacts” to spatial perturbations, it is natural
that the atom density develops a variation near the trap cen-
ter of size �.

The inset of Fig. 2�c� illustrates the peak atom density
growth with increasing �aai�. To quantify this growth, we
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calculate the excess number of atoms �N associated with the
bump of the atom density. In analogy to a homogeneous
system �9�, we define �N as

�N = 4�N

0

rc

���a
aai�0�r��2 − ��a

aai=0�r��2�r2dr , �5�

where the atom wave function �a
aai�0�r� is calculated self-

consistently for a Bose gas with finite atom-impurity scatter-
ing length and �a

aai=0�r� for a Bose gas with vanishing atom-
impurity scattering length �for the same N and ma�. When
evaluating Eq. �5� for a specific system, we choose the cutoff
radius rc to roughly coincide with the r value at which the
bump of the atom density starts growing. Triangles in Fig. 3
show the resulting number of excess atoms �N for N=104,
mi=ma, aaa=0.005aho �the same parameters as in Fig. 2�, and
rc=1aho for different values of the atom-impurity scattering
length aai. The number of excess atoms increases roughly
linearly with increasing �aai�. Just before the onset of insta-
bility at aai,c2�−0.062aho, the number of excess atoms �N
reaches 12, which corresponds to 0.12% of the total number
of atoms. For comparison, a dashed line in Fig. 3 shows an
estimate for the number of excess atoms derived for a weakly
interacting impurity-doped homogeneous Bose gas �9�,

�N = −
maa

mai

aai

aaa
. �6�

Figure 3 shows good agreement between the number of ex-
cess atoms �N calculated for the inhomogeneous impurity-
doped condensate �triangles� and the analytical expression,
Eq. �6�. This suggests that Eq. �6� describes the number of
excess atoms for large enough, weakly interacting inhomo-
geneous condensates quite accurately.

Finally, if aai becomes more negative than a critical value
of aai,c2�−0.062aho, we no longer find a self-consistent so-
lution to Eqs. �3� and �4�. This implies that the condensate
collapses, i.e., atoms are drawn into a short-ranged state
about the impurity. It appears likely that this collapse in-
volves only a fraction of the condensate atoms, but a definite
answer lies beyond the scope of the present work. Just as in
the case of pure atomic condensates with negative atom-
atom scattering length, mean-field theory predicts the onset
of collapse for our coupled equations but cannot describe the

FIG. 2. �Color online� Self-consistent mean-field results ob-
tained for attractive atom-impurity interactions, N=104, aaa

=0.005aho, and mi=ma. �a� shows the chemical potentials 
i and 
a

as a function of aai. Solid lines in �b� and �c� show the effective
potentials Vef f,i�r� and Vef f,a�r�, respectively, for a few selected
atom-impurity scattering lengths �see legend in �c� and text�.
Dashed lines show the corresponding chemical potentials �note that
the change of 
a is not visible on the scale chosen in �c��. The insets
of �b� and �c� show the corresponding impurity wave function �i�r�
and atom density ��a�r��2, respectively. The critical values aai,c1 and
aai,c2 of this system are �−4�10−5aho and −0.062aho, respectively.

FIG. 3. Triangles show the number of excess atoms �N calcu-
lated from Eq. �5� using the self-consistent mean-field solutions for
N=104, aaa=0.005aho and ma=mi �the same parameters as in Fig.
2�, as a function of the atom-impurity scattering length aai. For
comparison, a dashed line shows the analytical estimate, Eq. �6�.
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system’s behavior in the regime dominated by short-range
physics.

We now estimate the critical value aai,c1, which separates
the unbound impurity phase from the localized impurity
phase for mi=ma �see upper bold solid line in Fig. 1�. The
impurity feels a strictly short-ranged potential, i.e., Vef f,i�r�
falls off faster than a power law of r. Since the impurity
equation, Eq. �4�, is linear, we can compare the volume-
integrated strength of Vef f,i with the corresponding critical
value − �3

6
�2b
mi

�21�, for forming a bound state in three dimen-
sions in a potential of range b. If we identify the range b with
aho, we find that the critical value of aai scales as 1 /N, i.e.,
aai,c1�N� /aho=− �2

24N �− 0.411
N . For positive aaa, the atom cloud

is somewhat larger, and our estimate will be off by a numeri-
cal factor of order 1. The upper bold solid line in Fig. 1
shows our analytical estimate. The results of our numerical
calculations are consistent with this analytical estimate. The
critical value aai,c1 might be difficult to observe experimen-
tally since the transition from region A to region B involves
a diverging length scale. Furthermore, it might be difficult to
experimentally realize a trapping setup with tunable atom-
impurity scattering length aai for which the impurity feels no
confining potential �see also Sec. IV�.

The behavior of the impurity-doped condensate was illus-
trated in Fig. 2 for N=104 atoms. We find similar qualitative
features for a smaller number of atoms, including the disap-
pearance of the mean-field solutions. The critical values aai,c1
and aai,c2 vary with N as shown in Fig. 1. We note that the
notion of a condensate healing length, and thus the discus-
sion of the disappearance of the mean-field solution at the
point when the impurity becomes more tightly localized than
this scale, becomes less meaningful for small enough number
of atoms. It will be interesting to further investigate the prop-
erties of an impurity immersed in a small condensate since
such systems can be realized experimentally with the aid of
optical lattices.

We now justify the applicability of mean field theory for
the systems considered in this section. Throughout our work,
we are treating weakly interacting Bose gases with naaaa

3

�1, where na denotes the atom density. For �aai��aaa, as is
the case prior to collapse, the dominant correction to the
ground state energy varies as 
�na+ni��aai�3 �22�. To estimate
the magnitude of this expansion parameter we consider the
worst case scenario, i.e., we evaluate it using the densities at
the center of the trap just prior to the onset of mean-field
collapse. For small aaa, i.e., aaa=0 and aaa=0.005aho, the
values of �ni+na��aai�3 just prior to collapse are between 0.01
and 0.05 for N=10–104 atoms, indicating that the mean-field
description is meaningful over the whole range of atom-
impurity interactions, including these “worst cases” just prior
to collapse. For aaa=0.05aho, �ni+na��aai�3 takes on values
from 0.1 to 0.2 prior to collapse for N=10 to 104 atoms, and
beyond mean-field effects may begin to be non-negligible.

III. VARIATIONAL TREATMENT

To further illustrate how the neutral impurity alters the
atom cloud, we minimize the total energy variationally for

the Hamiltonian given in Eq. �1� and the wave function given
in Eq. �2� with

�i � e−pir
2

and �a � �e−par2
+ ce−pbr2

� . �7�

The variational parameters pi and pa determine, respectively,
the width of the impurity and of the atom wave function. To
be able to describe the growth of the atom peak density in
the strongly interacting regime and the collapse of the con-
densate, �a contains an additional Gaussian with two more
variational parameters, the relative amplitude c and param-
eter pb. We restrict pb to be greater than pa to separate the
background condensate cloud from the more localized con-
densate bump.

Figure 4 shows the results of our variational calculations
for N=104, aaa=0, and mi=ma as a function of aai. To reduce
the parameter space we set pa=0.5aho

−2; we checked that al-
lowing pa to vary changes its value only little. The optimal
values of the remaining three variational parameters pi, pb,
and c are shown in Figs. 4�c� and 4�d� by triangles, and the
corresponding chemical potentials of the impurity and atom,
respectively, are shown in Figs. 4�a� and 4�b� by triangles.
The variational analysis predicts a critical value of aai,c2�

FIG. 4. �Color online� Triangles show the chemical potentials 
i

and 
a ��a� and �b��, and the parameters pb, pi, and c ��c� and �d��
for N=104, aaa=0, and mi=ma as a function of aai, obtained from
the variational treatment. For comparison, circles in �a� and �b�
show 
i and 
a, and those in �d� the parameter c obtained by fitting
the self-consistent solutions of Eqs. �3� and �4� �see text�.
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−0.020aho; at this critical value aai,c2, the local minimum in
the variational energy disappears as the variational energy
becomes unbounded from below. For comparison, our self-
consistent solutions to Eqs. �3� and �4�, which are shown in
Figs. 4�a� and 4�b� by circles for comparison, predict a some-
what less attractive critical value, i.e., aai,c2�−0.016aho.
This is to be expected since the self-consistent total energy
�not shown� provides a better lower bound than the varia-
tional energy. The variational parameters pi, pb, and c shown
in Figs. 4�c� and 4�d� nicely illustrate the degree of impurity
localization. For small �aai�, the amplitude c is negligible,
indicating that the presence of the impurity barely affects the
condensate. As �aai� increases, the impurity becomes more
tightly localized, i.e., pi increases �note that the width of the
impurity density scales as 1 /
pi�, which in turn drives the
growth and localization of the condensate bump, i.e., c and
pb also increase. Since pi drives the increase of pb, pb nec-
essarily increases more slowly than pi with increasing �aai�.

To connect our results for the variational parameter c with
the full self-consistent solutions, we fit our solutions to Eqs.
�3� and �4� to the wave functions of Eq. �7� with the proper
normalization, treating pi, pb, and c as fitting parameters. The
circles plotted in Fig. 4�d� show the resulting values of c
extracted from the self-consistent solution. To a very good
approximation, c2 describes the percentage change in the
peak condensate density for the system with non-vanishing
aai as compared to the system with vanishing aai �assuming
we keep aaa and the number of atoms N fixed�. Figure 4�d�
shows that, just before collapse at aai,c2, c�0.53 for the full
self-consistent solution to Eqs. �3� and �4� and c�0.68 for
the variational solution. These values of c correspond to
changes in the peak condensate density, as compared to the
condensate without impurity, of greater than 25%. We note
that a similar growth of the peak condensate density is seen
in the inset of Fig. 2�c� for the same number of atoms, i.e.,
N=104, but nonvanishing atom-atom interactions, i.e., aaa
=0.005aho.

The variational wave function given in Eq. �7� is best
suited to describe the case of aaa=0. For aaa�0 the atom
cloud deviates from a Gaussian, and for strong enough inter-
actions a Gaussian form for the atom cloud is a poor approxi-
mation. Consequently, as the atom-atom interactions in-
crease, we find that the simplistic variational wave function
given in Eq. �7� cannot describe the tightly localized impu-
rity at the trap center prior to the onset of collapse. Nonethe-
less, for the case aaa=0 discussed above, the variational
treatment reproduces the key features of the full self-
consistent solution and provides us with further insights. In
particular, the form of the variational wave function, Eq. �7�,
is useful in visualizing how the condensate develops features
characterized by a length scale much smaller than the oscil-
lator length. Furthermore, the disappearance of the local
minimum as the variational energy becomes unbounded from
below is another indication, along with the disappearance of
the self-consistent solutions, of the collapse of the conden-
sate.

IV. DISCUSSION AND CONCLUSION

Sections II and III discuss the behaviors of a single neu-
tral impurity, which feels no external confining potential, im-

mersed in a trapped condensate. If the impurity feels an ex-
ternal trapping potential with angular frequency �i, which
might be the case in an experiment �see below�, region A in
Fig. 1 is absent, i.e., the impurity is always localized due to
the presence of the external potential. Assuming that the im-
purity trapping potential has a characteristic length that is
larger than roughly the condensate healing length �for large
enough numbers of atoms�, the comparatively strong impu-
rity localization prior to collapse and the crossover from re-
gion B to region C in Fig. 1 are, however, nearly unaltered.
For example, for N=104, aaa=0.005aho, mi=ma, and �a=�i,
the onset of collapse occurs at the same critical value of
aai,c2�−0.062aho that we find without an impurity trap.

As the atom-impurity scattering length aai approaches the
critical value, the interatomic spacing near the trap center
becomes comparable to �aai�. This indicates that the three-
body recombination rate K3 �23� may become large as �aai�
approaches the critical value. Unfortunately, few quantitative
calculations of K3 for atom-atom-impurity type systems exist
to date �24�, and throughout we assume that a trapped impu-
rity system with sufficiently long lifetimes can be prepared
experimentally, even near the collapse regime.

Impurity-doped condensates can be realized experimen-
tally with present-day technology �6�. If one considers a
magnetically trapped condensate, an impurity can, e.g., be
created by promoting one of the condensate atoms to a dif-
ferent hyperfine state. The promoted atom may or may not
experience magnetic confinement. Alternatively, one could
implant a different atom, magnetic or nonmagnetic, into the
cloud. Such systems have the disadvantage that the atom-
impurity interactions cannot be tuned via a magnetic Fesh-
bach resonance. To take advantage of the tunability of inter-
species scattering lengths �25�, one can consider an optical
potential red detuned with respect to the atoms and the im-
purity. In such an experimental realization both the atom and
the impurity would experience trapping potentials.

As the atom-impurity interactions are tuned closer to
aai,c2, the growth of the peak atom density at the center of the
trap can potentially be monitored experimentally in expan-
sion experiments. Since the condensate bump at the trap cen-
ter involves only a few atoms, direct detection of the changes
in the peak density may, however, be nontrivial. We suggest
that the impurity-doped condensate could alternatively be
probed in a bosenova-type experiment that applies a se-
quence of time-dependent magnetic field ramps �26�. By tun-
ing the atom-impurity scattering length to a large negative
value, one could experimentally induce collapse and conse-
quently density oscillations, which might involve a signifi-
cant fraction of the condensate atoms.

A key result of our study is that the degree of localization
of the impurity at the trap center in region B of the phase
diagram �see Figs. 1 and 2� can be controlled by varying the
atom-impurity scattering length, i.e., the width of the impu-
rity wave function for a system with ma=mi can be varied
from a size much greater than the oscillator length aho to a
size significantly smaller than aho. In addition to changing
the atom-impurity scattering length, one can consider un-
equal atom and impurity masses, e.g., a Cs atom immersed in
a Na condensate. Not surprisingly, as the impurity mass in-
creases, the degree of impurity localization also increases.
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The localized impurity itself may present the possibility for
forming interesting single-atom devices, perhaps using the
impurity’s spin degrees of freedom. The favorable coherence
properties of Bose condensates may make the localized im-
purity states viable for quantum computing schemes. Fur-
thermore, extensions to two or more impurities will allow
one to consider the role of condensate-mediated interactions
between impurities.

Finally, we return to our finding that a single neutral im-
purity can deform the condensate sufficiently to induce a
collapse that may only involve a fraction of the condensate
atoms. The resulting collapsed state may be related to the
mesoscopic droplets that have been predicted to form about

an ion immersed in a condensate �8�. More work is needed to
fully understand these ion states, the collapsed states pre-
dicted in the present work, and possible connections between
the two.
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