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The Nambu-Goldstone mode �NGM�, associated with vortex nucleation in a harmonically confined, two-
dimensional dilute Bose-Einstein condensate is studied. We argue, based on exact diagonalization calculations,
that the NGM manifests in the lowest-lying envelope of the quasidegenerate spectrum that emerges as the
vortex is about to enter the condensate. The quasidegenerate states constitute a series of octupole-mode
branches that originate primarily from pairwise repulsive interactions between octupole excitations and are
distinguished by the number of admixed quadrupolar excitations. As the vortex approaches the center of the
condensate and the system’s axisymmetry is restored, the NGM becomes massive due to its coupling to higher
rotational bands. We clarify the mechanism of this mass acquisition by using a newly developed projection-
operator method.
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I. INTRODUCTION

A unique feature of gaseous Bose-Einstein condensates
�BECs� is the fine tunability of their interatomic interactions
using the Feshbach resonance �1,2�. This degree of freedom
can be utilized to explore some unique features of a rotating
BEC by making the strength of the interactions close, but not
equal, to zero. Then, as the angular momentum �AM� �L of
the system increases, the low-lying states of the BEC in a
harmonic potential become quasidegenerate �3,4� and hence
highly susceptible to symmetry-breaking perturbations. This
high susceptibility is considered to be the origin of vortex
nucleation. Both experimental �5� and mean-field theoretical
studies �6–9� have demonstrated that as L increases, vortices
enter the system from the edges of the BEC by spontane-
ously breaking the system’s axisymmetry. A Nambu-
Goldstone mode �NGM� must be associated with this axi-
symmetry breaking, but it has not yet been identified. The
purpose of this paper is to reveal the NGM using many-body
theory and to show that this mode becomes massive as the
vortex approaches the center of the BEC, at which point the
axisymmetry of the system is restored. We investigate this
problem using both exact diagonalization calculations and an
analytic approach based on a newly developed projection-
operator method.

We consider a system of N identical bosons, each with
mass M, that undergo contact interactions and are confined in
a two-dimensional harmonic potential with frequency �. The
Hamiltonian of our system is given by

H = �
j=1

N � p j
2

2M
+

M�2

2
r j

2� +
2��2g

M
�
j�k

��r j − rk� , �1�

where p j is the momentum of the jth particle, r j ��xj ,yj�,
and g gives the ratio of the mean-field interaction energy per
particle to ��. In the following we use the complex coordi-
nate zj �xj + iyj and measure the length, energy, and AM in
units of �� /M��1/2, ��, and �, respectively. The single-

particle Hamiltonian H0 and interaction Hamiltonian V are
then given by

H0 = �
j=1

N �− 2
�2

�zj�zj
* +

	zj	2

2
� �2�

and

V = 2�g�
j�k

��zj − zk� , �3�

respectively. Throughout this paper we shall work in a sub-
space of a given angular momentum. When g�1, the Hilbert
space may be restricted to the space spanned by the basis
functions

�m�z� =
zm


�m!
e−	z	2/2 �m = 0,1,2, . . . � , �4�

where m is the AM quantum number. In this “lowest-
Landau-level” approximation, the field operator can be ex-
panded as

�̂�z� = �
m=0

�

b̂m�m�z� , �5�

where b̂m is the annihilation operator of a boson with AM m.
The second-quantized form of V then becomes �10�

V̂ = g �
m1,. . .,m4

Vm1,. . .,m4
b̂m1

† b̂m2

† b̂m3
b̂m4

, �6�

where

Vm1,. . .,m4
=

�m1+m2,m3+m4
�m1 + m2�!

2m1+m2
m1!m2!m3!m4!
. �7�

We note that if all the particles occupy the same quantum
state, say that with m=0, the interaction energy is given by
gN�N−1�. Thus the mean-field interaction energy per par-
ticle is on the order of gN.
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We study the properties of the system as a function of the
angular momentum L. We note that in the lowest-Landau-

level approximation, the noninteracting Hamiltonian Ĥ0=L
+N becomes a constant of motion for a given L and N and
that the dynamics of the system are therefore determined by

V̂ alone. The lowest-energy state of this system for a given L
is referred to as the yrast state. The trace of the yrast state
viewed as a function of L is called the yrast line. In the
following, we measure the energy of the system from that of
the yrast state.

This paper is organized as follows. In Sec. II we use the
exact diagonalization method to identify the NGM in a ro-
tating BEC. In Sec. III we develop a projection-operator
method to clarify why the NGM becomes massive as L in-
creases to N. We show that this mass acquisition occurs due
to the coupling of the NGM to higher-rotational bands. In
Sec. IV we summarize the main results of this paper.

II. NAMBU-GOLDSTONE MODE IN A ROTATING
BOSE-EINSTEIN CONDENSATE

The Nambu-Goldstone mode should appear when the vor-
tex is about to nucleate, that is, when the axisymmetry of the
system is being broken. In this regime �L�N�, the excitation
spectrum is divided into two groups having very different
energy scales �11�. One group involves excitations whose
energies are of the order of gN and the other involves exci-
tations whose energies are of the order of g. The latter group
originates primarily from pairwise repulsive interactions be-
tween octupole modes with an excitation spectrum given by
�11�

Ô =
27g

34
b̂3

†b̂3�b̂3
†b̂3 − 1� . �8�

Because the energy scale ��g� of the latter group is smaller
than that of the former, by a factor of 1 /N, and hence van-
ishes in the thermodynamic limit, it might be supposed that

Ô describes the NGM. However, this is not the case. We
show that the NGM manifests in the states in the envelope of
equally spaced octupole-mode branches that are generated by
the admixture of quadrupole-mode excitations to the states
described by Eq. �8�. The envelope is labeled G in Fig. 1 and

is obtained by exact diagonalization of V̂ for N=256. This
envelope structure has not been found previously because it
emerges only for large N and for relatively large values of
L /N �12�. In Fig. 1, octupole-mode branches are indicated by
solid and dotted curves, which are equally spaced with 	L
=2. We have confirmed that this spacing corresponds to the
admixture of one quadrupole-mode excitation.

For a mode to qualify as a NGM, it must meet three
conditions: it must be massless, it must be associated with a
broken symmetry, and it must restore the broken symmetry.
Here by massless we mean that the excitation energy van-
ishes in the thermodynamic limit. Because the G mode be-
longs to the second group mentioned above, i.e., with exci-
tation energies of the order of g, the excitation energy of the
G mode vanishes in the thermodynamic limit, thus meeting
the first condition. Since the yrast states for L
N are ener-

getically degenerate under rotation with angular velocity �
=�Etot /�L=��1−gN /2�, axisymmetry breaking is expected
to occur for an infinitesimal, axisymmetry-breaking pertur-
bation. In fact, mean-field theory predicts �6� that as the vor-
tex enters the system, the axisymmetry of the density profile
is spontaneously broken, as illustrated in Fig. 2. Thus the
second condition is met. Since the symmetry-restoring force
is a correction to the mean-field result, we invoke the many-
body theory to determine whether or not the third condition
is met.

We note that in exact diagonalization calculations the
single-particle density-distribution function

��r� = ��̂†�r��̂�r� , �9�

is isotropic �i.e., ��r�=��	r	�� and is not suitable for studying
the problem of axisymmetry breaking. Symmetry breaking
can be studied with the conditional distribution function
�CDF� �13� defined as

��r;r0� =
1

��r0�
��̂†�r��̂†�r0��̂�r0��̂�r� , �10�

where r0 is the position of a test particle, which we assume
without loss of generality to be located on the x axis, i.e.,
r0= �r0 ,0�. Here the test particle should be placed well out-
side of the border of the condensate 	r	�1, so that a mixing
of effects due to pair repulsion between atoms and vortex
structure is negligible. In the following discussion we there-
fore take r0=3. Here, by negligible we mean that ��	r	� is not

FIG. 1. Many-body energy spectrum of V̂ of Eq. �6� with N
=256. The energy is measured from the yrast line �horizontal bot-
tom line� and excited states that involve center-of-mass motion are
not shown. The solid and dotted curves are obtained from least-
squares fits of the data to quadratic polynomials. The solid curve
shows the branch that arises from pairwise repulsive interactions
between octupole-mode excitations alone and is well described by
Eq. �8�. The dotted curves are displaced from the solid curve by 2,
4, 6, and 8 units of angular momentum. These shifts are caused by
the admixture of 1, 2, 3, and 4 quadrupole-mode excitations, respec-
tively. The envelope of lowest-lying excited states is labeled G, for
which the Nambu-Goldstone mode manifests. As L increases, the
envelope develops an energy gap on the order of N, indicating mass
acquisition by the Nambu-Goldstone mode.
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affected by putting the test particle at r0. The test particle
thus acts as an infinitesimal symmetry-breaking perturbation
on the two-body correlation function.

In a harmonic potential, the single-particle density-
distribution function ��	r	� varies in space. To subtract this
single-particle part of the variation from the CDF, we define

�̃�r;r0� �
N

N − 1
��r;r0� − ��	r	� . �11�

For later use, we define the Fourier components Cm of �̃ as

�̃�r;r0� = �
m=0

�

Cm�r; 	r0	�
cos�m�


�
, �12�

where r and  are the polar coordinates of r. Only the cosine
terms appear in the expansion because of the reflection sym-
metry of �̃ against → –.

Figure 3 illustrates the CDF �̃�r ; 	r0	=3� for the yrast
states of 76 bosons with L=6, 9, and 12. Figure 3�a� exhibits
twofold symmetry, reflecting the fact that the AM of the yrast
state is carried mostly by quadrupole-mode excitations. At
this stage the vortex is not yet nucleated and the AM is
carried by rotation of the entire condensate which is de-
formed in a quadrupolar manner. As the AM increases, the
CDF develops a dip, indicating the entrance of the vortex
from the positive X direction.

We note that for L /N�1 one of the peaks is located near
the boundary of the condensate where the vortex enters. This
implies that for L /N�1 the quadrupole-mode excitations
compensate for the density depletion caused by the entrance
of the vortex in the same way that the octupole-mode exci-
tations do �as discussed below�.

Figure 4 illustrates the CDF for the first excited states
with L=6, 12, and 30. The CDF in Fig. 4�a� exhibits three-
fold symmetry, reflecting the fact that the AM of the first
excited states is carried mostly by octupole-mode excita-
tions. It should be noted that one of the peaks is located near
the boundary of the condensate where the vortex enters. This
implies that the octupole-mode excitations compensate for
the density depletion caused by the entrance of the vortex,
thus restoring the axisymmetry of the system. A further in-
crease in L is caused by quadrupole-mode excitations �the
dotted curves in Fig. 1�, so that the lowest-lying excited state
gradually loses its threefold symmetry, as illustrated in Fig.
4�b�. For larger values of L the CDF eventually shows a
dipolelike structure, as shown in Fig. 4�c�. On the other
hand, the yrast state gradually loses its twofold symmetry
�Fig. 3�b�� and the CDF of the yrast state at L=12 features a
dipolelike structure �Fig. 3�c��. The dipolelike distribution
signifies the entrance of the first vortex into the condensate
by breaking the axisymmetry of the system.

Figures 5�a�, 5�b�, and 5�c� show the Fourier coefficients
Cm�r ; 	r0	=3� of Eq. �12� for m=1, 2, and 3, respectively, for
the lowest-lying excited states, which constitute the G
branch in Fig. 1. We note that C1�r ; 	r0	=3� is negative with
a large magnitude around r=1 �i.e., around the periphery of
the condensate�, which implies that this component is re-
sponsible for the entry of the vortex. On the other hand, the
signs of Cm�r ; 	r0	=3� for m=2 and m=3 are positive for L
�N and their magnitudes are maximal around r=1. This
implies that these two modes cooperate with each other to
counteract the density depletion caused by the entrance of
the vortex, in agreement with what is stated above. We note
that the amplitudes of C2 and C3 dwindle rapidly and that C2
changes its sign when L increases beyond the quasidegener-
ate region. We have confirmed that the signs of C4 and C5 are
also positive, but that their magnitudes are negligibly small

FIG. 2. �Color� Mean-field
density profiles of BEC for �a�
L /N=0.125, �b� L /N=0.5, and �c�
L /N=0.875.

FIG. 3. �Color online� Condi-
tional distribution functions
�̃�r ; 	r0	=3� defined by Eq. �12�
for the yrast states with �a� L=6,
�b� L=9, �c� L=12. The number
of bosons is 76 and the test par-
ticle is placed at r0= �3,0�.
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compared with that of C3. This also supports our claim that
the modes with m=2 and m=3 constitute the NGM.

III. MASS ACQUISITION OF THE NAMBU-GOLDSTONE
MODE

The NGM, which is labeled as G in Fig. 1, is massless
only in the regime L�N. We note that the same branch
acquires a finite energy gap proportional to N as L ap-
proaches N, that is, the NGM becomes massive. Physically,
this is because the axisymmetry is restored as the vortex
reaches the center of BEC. In this section we consider the
mechanism by which the NGM becomes massive as L in-
creases. Because the center-of-mass �c.m.� motion in the har-
monic potential is decoupled from the other degrees of free-
dom, we can separate the coordinates into the c.m.
coordinate

zc =
1

N
�
j=1

N

zj �13�

and the relative coordinates uj �zj −zc, where

�
i=1

N

ui = 0. �14�

The total Hamiltonian can then be decomposed into a c.m.
component Hc.m. and a relative component Hrel+V, where

Hc.m. = −
2

N

�2

�zc�zc
* +

N

2
	zc	2, �15�

Hrel =
2

N
�

j,k=1

N−1

�1 − N� jk�
�2

�uj�uk
* +

1

2�
j=1

N

	uj	2, �16�

V = 2�g�
j�k

��uj − uk� . �17�

Accordingly, a many-body wave function can be separated
into the counterparts:

��z1, . . . ,zN� = �c.m.�zc��rel�u1, . . . ,uN−1� . �18�

The Schrödinger equation for Hc.m.

Hc.m.�m
c.m. = �m

c.m.�m
c.m.,

can easily be solved, giving the eigenenergies

�m
c.m. = m + 1 �m = 0,1,2, . . . � ,

and the corresponding eigenfunctions

�m
c.m.�zc� =
Nm+1

�m!
zc

me−�N/2�	zc	2.

To solve the Schrödinger equation for Hrel

Hrel�rel = �rel�rel,

we put �rel= fe−�1/2��j=1
N 	uj	

2
, obtaining

�
j=1

N−1 �uj
�

�uj
+ uj

* �

�uj
* − 2

�2

�uj�uj
*� f +

2

N
�

j,k=1

N−1
�2f

�uj�uk
*

= ��rel − �N − 1��f . �19�

The ground state corresponds to constant f which gives

�0
rel = N − 1 �20�

and

FIG. 4. �Color online� Condi-
tional distribution functions
�̃�r ; 	r0	=3� for the lowest-lying
excited states with �a� L=6, �b�
L=12, �c� L=30. The number of
bosons is 76 and the test particle
is placed at r0= �3,0�.

FIG. 5. �Color online� Expan-
sion coefficients Cm�r ; 	r0	=3� for
�a� m=1, �b� m=2, and �c� m=3,
shown for the lowest-lying excited
state for each L satisfying 8
L

N=76. The test particle is
placed at r0= �3,0�.
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�rel =
1


N�N−1
e−�1/2��i=1

N 	ui	
2
.

The right-hand side of Eq. �20� represents the zero-point en-
ergy of the system minus the zero-point energy of the c.m.
motion.

In the lowest-Landau-level approximation, f does not de-
pend on uj

* and Eq. �19� reduces to

�
j=1

N−1

uj
�f

�uj
= ��rel − �N − 1��f . �21�

When the total AM of the system is L, the general solution to
Eq. �21� is given by

fL = ��Cm1,. . .,mN−1
u1

m1
¯ uN−1

mN−1, �22�

where the primed sum runs over all possible nonnegative
integers of mj subject to the constraint � j=1

N−1mj =L. Bose sym-
metry requires that the coefficients Cm1,. . .,mN−1

be symmetric
under exchange of any two arguments:

C. . .,mi,. . .,mj,. . . = C. . .,mj,. . .,mi,. . . .

Thus f is a symmetric polynomial of order L. In the follow-
ing we focus only on this polynomial part and omit the ex-

ponential part e−�1/2��i=1
N 	ui	

2
.

The most even way to distribute L �
N� units of AM over
N particles is to assign one unit to each of L particles and
then sum over all possible choices of L particles from a total
of N particles with equal weight

YL = �
1
i1�i2�¯�iL
N

ui1
ui2

¯ uiL
, �23�

where the sum runs over all integers i1 , i2 , . . . , iL that satisfy
1
 i1� i2� ¯ � iL
N. We define Y0=1 and note that Y1
=0, due to Eq. �14�. The state �23�, referred to as the yrast
state, is the lowest-energy state of the system subject to a
given AM L, and it satisfies �10,14� �see also Appendix A�

VYL = gN�N − 1 −
L

2
�YL. �24�

To analyze low-lying excited states above the yrast state,
we introduce a projection operator ei, the action of which is
to eliminate those terms that contain the factor ui in the op-
erand. For example,

eiuj = �1 − �ij�uj ,

�1 − ei�uj = �ijui,

eiujuk = �1 − �ij��1 − �ik�ujuk. �25�

We also note that the identity operator can be decomposed as
follows:

1 = eiej + ei�1 − ej� + �1 − ei�ej + �1 − ei��1 − ej� . �26�

This decomposition will be used later. Many-body wave
functions can be constructed in a systematic way by the ap-
propriate operation of ei on the yrast-state wave function

�23�. The low-lying excitations of interacting Bose systems
are collective in nature �4�; we claim that the main features
of the excitation spectrum �i.e., the large energy gap of the G
mode for large L and the almost linear high-lying rotational
bands� arise from a particular set of coupled collective exci-
tations generated by the operators

Pm = �
i=1

N

ui
mei �m = 0,1, . . . � . �27�

These operators are analogous to Mottelson’s multipolar op-
erators Qm��izi

m �4� but differ in that zi is replaced by ui and
that the projection operator ei is incorporated. Both of these
modifications are essential for identifying an invariant sub-
space spanned by the yrast states and for constructing the
desired many-body excited states above the yrast state.

We consider a linear superposition of the states

ML
�m� � PmYL−m �m = 3,4, . . . ,L� , �28�

where ML
�m� describes an excitation in which one particle

carries an AM of m and L−m particles each carry a unit of
AM:

ML
�m� = �

i1�¯�iL−m+1

�
k=1

L−m+1

uik
m−1 �

l=1

L−m+1

uil
. �29�

The remaining N−L+m−1 particles carry no AM and thus
the condition L
N+m−1 must be met. Our strategy is to
seek an approximate eigenstate spanned by YL and ML

�m�.
Toward this end, we should understand how they are trans-
formed under application of V. Because the yrast state has an
eigenenergy given by Eq. �24�, it is convenient to define

gṼ � V − gN�N − 1 −
L

2
� . �30�

Then

ṼYL = 0. �31�

The transformation law of ML
�m� under the application of Ṽ is

given �for details, see Appendix B� as

ṼML
�m� =

1

2
��m + 23−m − 4�N + �22−m�m − 1� + 1�

��L − m� + 4�1 − 21−m��ML
�m� −

1

2
�1 − 22−m�

��N − L + m�ML
�m+1� + 22−mm�L − m + 1�

�ML
�m−1� + Rm+1 + Rm, �32�

where �k� l�=1 if k� l and �k� l�=0 otherwise, and

Rm = �m � 4��
k=2

m−2
21−mm!

k!�m − k�!
Pm−kML−m+k

�k� . �33�

Equation �32�, together with Eq. �33�, is the desired recur-
sion relation. We see that each mode described by ML

�m� is
coupled with other modes ML

�k� with k=3,4 , . . . ,m−1 and k
=m+1. Since the coefficient of ML

�m+1� in Eq. �32� includes

NAMBU-GOLDSTONE MODE IN A ROTATING DILUTE¼ PHYSICAL REVIEW A 73, 043603 �2006�

043603-5



the factor N−L+m, the weight of this term decreases mono-
tonically with increasing L. By introducing the truncation
approximation discussed below and ignoring contributions
from higher-order terms such as Ml

�l�ML−l
�m�, we obtain a closed

set of linear equations that can be solved easily even for a

large value of m. It turns out that to quantitatively reproduce
the G mode in Fig. 1, we must take into account values of m
up to relatively large values, e.g., up to 7, because higher
rotational bands couple strongly to the G mode, as discussed
below. Writing Eq. �32� explicitly for m=3, . . . ,7, we obtain

ṼML
�3� =

1

4
�4L − 9�ML

�3� −
N − L + 3

4
ML

�4� −
3

4
L�L − 2�YL,

ṼML
�4� = −

L

4
ML

�3� +
2N + 7L − 24

8
ML

�4� −
3

8
�N − L + 4�ML

�5� +
3

4
L�L − 2�YL,

ṼML
�5� = −

5

8
�L − 3�ML

�3� −
5

16
�L − 2�ML

�4� +
10N + 12L − 55

16
ML

�5� −
7

16
�N − L + 5�ML

�6�,

ṼML
�6� = −

15

32
�L − 3�ML

�3� −
15

32
�2L − 7�ML

�4� −
3

32
�3L − 10�ML

�5� +
34N + 21L − 120

32
ML

�6� −
15

32
�N − L + 6�ML

�7�,

ṼML
�7� = −

7

32
�L − 3�ML

�3� −
7

64
�5L − 18�ML

�4� −
21

64
�2L − 9�ML

�5� −
7

64
�2L − 9�ML

�6� −
98N + 38L − 259

64
ML

�7� −
31

64
�N − L + 7�ML

�8�.

�34�

We note that the diagonal coefficients of ML
�m� for m=4

and 5 are �2N+7L−24� /8 and �10N+12L−55� /16, respec-
tively, and that they reproduce rather well the almost linear
spectra in Fig. 6. We refer to these as higher rotational bands.
We also note the coupling of ML

�m� �m�4� to ML
�3� becomes

very strong, on the order of O�N�, near L�N. To reproduce
the lowest-lying branch consisting mainly of ML

�3�, we there-
fore have to solve the coupled equations for m=3,4 , . . .. By
ignoring the last term with ML

�8�, the set of equations in Eq.
�34� is closed and can be solved with the condition of Eq.
�31� in a straightforward manner. The solid curve in Fig. 6
shows the lowest excitation energy obtained by solving the
above closed set of equations. This curve matches the G
mode rather well.

These considerations clearly show that the mechanism of
mass acquisition of the NGM with increasing L is due to its
coupling to higher rotational bands, whose coupling con-
stants grow with L. Physically, this appears quite natural be-
cause as L approaches N, the axisymmetry of the system,
which is spontaneously broken upon vortex nucleation, is
almost fully recovered and hence the NGM should disappear.

IV. SUMMARY

In this paper we investigated the Nambu-Goldstone mode
�NGM� associated with vortex nucleation in a two-
dimensional Bose-Einstein condensate by using the numeri-
cal diagonalization method and an analytic approach based

on a projection-operator method. Mean-field theory predicts
that the axisymmetry of the system is spontaneously broken
when the vortex enters the system, as shown in Fig. 2. How-
ever, the NGM associated with this axisymmetry breaking

FIG. 6. Comparison between the excitation energy of the G
mode obtained by solving a set of linearized equations for m
=3,4 , . . . ,7 �solid curve� and that obtained by the exact diagonal-
ization of the Hamiltonian �open circles� for N=76. The dashed
lines describe �2N+7L−24� /8 and �10N+12L−55� /16, which are
the diagonal coefficients of ML

�m� in Eq. �34� for m=4 and 5, respec-
tively �see text�. The energy is measured from the yrast state, which
corresponds to the horizontal bottom line.
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had been elusive. We claim that the NGM manifests in the
lowest-lying envelope of a series of octupole-mode branches
that are shifted from each other by admixtures of
quadrupole-mode excitations. This mode, which is denoted
as G in Figs. 1 and 6, possesses all the properties required
for it to qualify as the NGM: �1� it is associated with the
axisymmetry breaking, �2� it is a zero mode whose excitation
energy is of the order of 1 /N and therefore vanishes in the
thermodynamic limit, and �3� it restores the broken axisym-
metry.

As shown in Fig. 6, the excitation energy of the G mode
becomes of the order of gN which therefore does not vanish
in the thermodynamic limit. The NGM thus becomes mas-
sive as L approaches N. We have developed a projection-
operator method to show that this mass acquisition occurs
due to coupling of the NGM to higher rotational bands.

ACKNOWLEDGMENTS

M.U. and T.N. acknowledge support by Grants-in-Aid for
Scientific Research �Grant Nos. 15340129, 17071005, and
16740164� from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan. M.U. acknowledges sup-
port by a CREST program of the JST.

APPENDIX A: PROPERTIES OF THE MANY-BODY WAVE
FUNCTION YL OF THE YRAST STATE

We first note the following relation:

�
i1�¯�iL

�
k=1

L

�i,ik
ui1

¯ uiL
= uieiYL−1. �A1�

This can be proved by carrying out the sum over k and taking
out the common factor ui.

By applying Eq. �25� repeatedly, we obtain

eiYL = �
i1�¯�iL

�1 − �ii1
� ¯ �1 − �iiL

�ui1
¯ uiL

= �
i1�¯�iL

�1 − �
k=1

L

�i,ik�ui1
¯ uiL

= YL − uieiYL−1,

�A2�

where Eq. �A1� is used in deriving the last equality. Thus we
have

�1 − ei�YL = uieiYL−1. �A3�

Summing both sides of Eq. �A2� over i and using the relation
�i=1

N �k=1
L �iik

=L, we obtain

�
i

eiYL = �N − L�YL. �A4�

Equation �A3� can be used to derive

�
i

uieiYL−1 = �
i

�1 − ei�YL = NYL − �
i

eiYL

which, together with Eq. �A3�, gives

�
i

uieiYL−1 = LYL. �A5�

In a similar manner, we may derive various formulas. Here
we list some of the formulas that are relevant to this paper

�
i

ui
2eiYL−1 = − LYL, �A6�

�
i�j

uiujeiejYL−2 = L�L − 1�YL. �A7�

As an illustrative example, we prove Eq. �24� �see also
Ref. �14��. Applying the operator of Eq. �26� to YL and using
the relations of Eq. �25� we obtain for i� j

YL = eiejYL + �ui + uj�eiejYL−1 + uiujeiejYL−2. �A8�

Applying the operator 2���ui−uj� to both sides of Eq. �A8�
gives

2���ui − uj�YL = eiejYL + �ui + uj�eiejYL−1

+
�ui + uj�2

4
eiejYL−2

= YL +
�ui − uj�2

4
eiejYL−2,

where we have used ui, uj→ �ui+uj� /2 under the application
of 2���ui−uj�. Summing both sides over i and j gives

VYL = N�N − 1�YL + �
i�j

�ui − uj�2

4
eiejYL−2

= N�N − 1�YL +
1

2�
i�j

�ui
2 − uiuj�eiejYL−2.

Substituting Eqs. �A6� and �A7� into the right-hand side of
this equation proves Eq. �24�.

APPENDIX B: DERIVATION OF EQ. (32)

Applying the operator of Eq. �26� to ML
�m� gives

ML
�m� = eiejML

�m� + �ui + uj�eiejML−1
�m� + �ui

m + uj
m�eiejYL−m

+ uiujeiejML−2
�m� + �ui

muj + uiuj
m�eiejYL−m−1.

The application of 2���ui−uj� on both sides gives

2���ui − uj�ML
�m� = ML

�m� +
�ui − uj�2

4
eiejML−2

�m�

+ � �ui + uj�m

2m−1 − �ui
m + uj

m��eiejYL−m

+ � �ui + uj�m+1

2m − �ui
muj

+ uiuj
m��eiejYL−m−1.

Summing both sides of this equation over i and j��i�, we
obtain for m
3
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ṼML
�m� = Am + Bm + Cm, �B1�

where

Am =
NL

2
ML

�m� +
1

4�
i�j

�ui − uj�2eiejML−2
�m� ,

Bm = �
i�j

� �ui + uj�m

2m−1 − �ui
m + uj

m��eiejYL−m,

Cm = �
i�j

� �ui + uj�m+1

2m − �ui
muj + uiuj

m��eiejYL−m−1.

�B2�

These quantities can be calculated by expanding the right-
hand sides and evaluating each term. This can be carried out
by using the following identities, which can be proved in a
manner similar to that described in Appendix A:

�
i

eiML
�m� = �N − L + m − 1�ML

�m�,

�
i

uieiML−1
�m� = �L − m�ML

�m�,

�
i

ui
2eiML−2

�m� = − �L − m�ML
�m� − ML

�m+1�,

�
i

ui
keiML−k

�m� = ��N − 1��k0 + �− 1�k−1�L − m��ML
�m�

+ �k � 2��
l=1

k−1

�− 1�k+lML
�m+l�

+ �k � 3��
l=2

k−1

�− 1�k+l−1Ml
�l�ML−l

�m�

+ �k � 2��− 1�k�
i

uiML−1
�m� ,

where �k� l�=1 if k� l and �k� l�=0 otherwise. We may
use these relations to calculate Am, Bm, and Cm in Eq. �B2�.
The results are given by

Am =
1

2
�mN + L − m�ML

�m� −
1

2
�N − L + m�ML

�m+1�,

Bm = 2�21−m − 1��N − L + m − 1�ML
�m�

+ 22−mm�L − m + 1�ML
�m−1� + Rm,

Cm = 21−m�N − L + m�ML
�m+1� + 2�2−m�m + 1� − 1��L − m�ML

�m�

+ Rm+1,

where Rm is given by Eq. �33�. Substituting these into Eq.
�B1� proves Eq. �32�.
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