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Two-electron ionization and stabilization beyond the dipole approximation
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A two-dimensional model atom is employed to study the ionization behavior of helium subjected to strong
laser fields in the high-frequency regime. The evolution of the system is studied by means of numerical
integration of the Schrodinger equation beyond the dipole approximation. Ionization probabilities of the two-
electron atom in highly intense laser fields have been calculated for different pulse shapes. It is confirmed that
the mutual repulsion between the two electrons as well as the length of the laser pulses significantly alter the
ionization probabilities of the system. Nondipole effects are shown to lead to a considerable increase of the
ionization probabilities. For certain laser pulse shapes, a regime of ionization suppression is investigated which
exists in addition to two-electron stabilization. The applicability of our model scheme to the case of heliumlike
systems is discussed, and it is shown that stabilization may also occur in these systems, and how it is altered

in dependence of the nuclear charge.
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I. INTRODUCTION

Throughout the last years, steady progress in technology
has led to an overall increase in the intensity [1] and fre-
quency [2] range of modern laser systems. Nowadays, com-
mon table-top laser systems are able to deliver pulses of such
field strength to compete with or even surpass the electronic
binding forces in atoms. In this intensity regime, the interac-
tion between the light field and the atom cannot be described
any more by standard perturbation theory, but the influence
of both the ionic potential as well as the laser pulse on the
electrons have to be treated on an equal footing. Conse-
quently, a wealth of highly nonlinear or even relativistic ef-
fects such as above-threshold ionization (ATI) or high-order
harmonic generation (HHG) start to arise [3-5].

These effects have been studied in detail and are well
understood for the case of hydrogenlike atoms or ions, and
naturally, the interest now focuses on complex systems such
as multielectron atoms [6,7], molecules [8], clusters [9], and
solids [10], where the interplay between the electrons be-
comes extremely important for the response of these systems
to the applied laser fields.

It has been found that even for the case of helium the
interaction between both electrons leads to significant modi-
fications of the ionization dynamics, such that calculations
within the single-active electron approximation are not ap-
propriate. For instance, in the tunneling regime, the dominant
mechanism for double ionization has been shown to be non-
sequential, where the rescattering scenario [7,11] has been
found to successfully explain the measured ionization rates:
In the first step, one electron tunnels from its bound state and
enters into the laser field, where it is driven away from the
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atom. When the relative phase of the laser changes, it is
accelerated back towards its parent ion, where it may ionize
the second electron by laser-assisted impact ionization. Cor-
related electron momentum measurements on different
atomic and molecular species have corroborated the validity
of this ionization mechanism [12], where deviations from
this simple picture may arise from the structure of the target
atoms [13] or molecules [14].

From the theoretical point of view, a variety of nonpertur-
bative methods has been employed to address the ionization
of multielectron atoms and molecules in intense laser fields,
such as S-matrix calculations [15], density functional theory
[16], classical [17] and quantum-classical approaches [18],
or R-matrix calculations [19]. However, the most straightfor-
ward approach to this problem is the direct integration of the
time-dependent Schrodinger equation. This has been carried
out successfully for model systems in one [20-23], two
[24-26], and three spatial dimensions [27].

To reduce the complexity of the computations, in most of
the calculational methods mentioned above the dipole ap-
proximation is employed, which consists in neglecting the
spatial dependence of the laser pulse, and therefore, the in-
fluence of its magnetic field on the electronic motion. How-
ever, in highly intense laser pulses, the dipole approximation
is not sufficient. For a free electron subjected to the laser
field, the Lorentz force leads to a displacement in the laser
propagation direction. In bound systems such as atoms or
molecules, this drift motion may suppress the interaction be-
tween the ionizing electron and the remaining ion. This leads
to consequences for the generation of high harmonics, since
here the subsequent ionization and recombination of the
laser-driven electron into its ground state is essential for the
emission of coherent radiation [4]. Nonsequential double and
multiple ionization has also been shown to be suppressed due
to this Lorentz-force induced drift [28], for in this case the
electron moving in the laser field on its return to the nucleus
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Three-dimensional numerical calculations within the di-
pole approximation are despite the progress in computer
technology still only feasible on high-performance facilities,
whereas calculations taking nondipole terms into account are
far beyond the capacity of present computer systems [29]. In
contrast, in one-dimensional calculations the dipole approxi-
mation is assumed implicitly, such that the retardation of the
laser pulse is neglected. Furthermore, due to the reduced
phase space the interaction between both the electrons and
the nucleus is overemphasized. Two-dimensional model at-
oms, however, are suited well to study the impact of nondi-
pole effects on the electronic motion while the numerical
complexity of the problem is seriously reduced due to the
restricted phase space of the electrons.

One of the most remarkable effects arising during the in-
teraction of atoms with strong, high-frequency laser fields is
the so-called stabilization [30]. This term denotes the phe-
nomenon that the ionization probability of an atom must not
necessarily rise when the intensity of the incident laser pulse
is increased, but from a certain threshold intensity this trend
may be halted or even reversed. It is worthwhile to note that
this is a dynamical effect arising in highly-intense, high-
frequency laser fields which must not be confused with ion-
ization suppression due to population trapping in states with
small ionization cross sections [31]. Even though stabiliza-
tion has been predicted by theoretical calculations in the first
place, a number of experiments have confirmed the existence
of this effect [32]. Experimental verification of stabilization
up to now has been restricted to Rydberg atoms, since they
meet the necessary condition that the photon energy must
match or exceed the electronic binding energies. However,
with the advent of free electron lasers [2] observation of
stabilization of electrons in the atomic ground state is ex-
pected to become feasible soon. Two-electron effects in ex-
citation and nonsequential double ionization have already
been investigated for weak laser fields, and nondipole effects
in general have been explored experimentally as well [5].
While two-electron stabilization has not been investigated
experimentally yet, we believe this to be feasible in the fu-
ture.

One instructive way to understand ground state stabiliza-
tion of atoms is to switch into the eigensystem of the electron
by applying the Kramers-Henneberger (KH) transformation
[33,34]. In this frame, the electronic wave function is sub-
jected to a time-varying effective potential consisting of the
ionic potential superimposed by the laser field. In the limit of
high laser frequencies, averaging over one period of the field
for linearly polarized light results in an effective double-well
potential supporting bound states. Therefore, given the wave
function of the unperturbed atom may evolve into the ground
state of the time-averaged KH potential, the atom may stabi-
lize against ionization. For one-electron atoms, both analyti-
cal [35] as well as numerical calculations [36] have con-
firmed this view. Analytical calculations carried out in the
Kramers-Henneberger frame have shown that stabilization
may also occur in the case of two-electron atoms [37], such
that each electron may occupy one of the potential wells.
One-dimensional numerical calculations employing laser
pulses of finite duration validated the existence of stabiliza-
tion in two-electron systems [22], while two-dimensional
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calculations beyond the dipole approximation have shown
that this effect is still present even when the effect of the
Lorentz force on the electrons is taken into account [38].

In this paper, we present calculations giving insight into
the ionization dynamics of two-electron atoms and ions in
highly intense, high-frequency laser pulses. We employ a
two-dimensional model system which allows us to study the
time-dependent interaction between two-electron systems
and electromagnetic fields beyond the dipole approximation.
It is shown that stabilization indeed occurs for laser frequen-
cies high compared to the Kepler frequencies of the elec-
trons. The dynamic Coulomb repulsion between both elec-
trons leads to an enhancement of the ionization probabilities
of the respective two-electron systems. Stabilization, which
is clearly present in the calculations performed within the
dipole approximation, is diminished in the cases where the
retardation of the laser pulse has been taken into account.
The role of the duration of the laser pulse is examined, and it
is discussed how its length and shape influences the ioniza-
tion probabilities of both electrons.

II. THE MODEL ATOM

In our model, we avoid the dipole approximation by ex-
plicitly taking into account the retardation of the laser pulse.
The vector potential A which describes the classical electro-
magnetic field then does not only depend on time ¢ but also
on the spatial coordinate r, such that it reads A(r, ). We have
chosen the geometry of our system in such a way that the
laser pulse propagates along the y axis while the polarization
direction, and therefore also the electric field, coincides with
the x axis. The magnetic field then is oriented perpendicular
to this plane, along the z axis. In analogy to the motion of a
classical free electron in a laser field, we restrict the elec-
tronic wave functions to the plane spanned by the laser po-
larization and propagation direction [39,40]. The third spatial
dimension is neglected in our calculations, since no notable
drift into the magnetic field direction is induced due to the
coupling of the electron spin to the laser field [41].

With these considerations, the vector potential can be
written as A(r,7)=(A,(y,1),0,0). It is constructed to gener-
ate oscillating electric and magnetic fields with a trapezoidal
envelope function, such that the field amplitudes are linearly
increased, then show a “flat-top,” after which they are lin-
early turned off again. By choosing integer numbers of opti-
cal cycles for all the three stages of the laser pulse, no net
displacement along the polarization axis as well as no mo-
mentum transfer to the electron is induced, which is a nec-
essary condition to validate the appearance of laser-induced
stabilization [42].

In our calculations, we restrict the laser parameters to the
regime where nondipole and at most weakly relativistic ef-
fects may occur, while fully relativistic effects are still neg-
ligible. In its initial state, we assume the model atom to be
excited, such that both electrons occupy different orbitals.
This particular choice enables us to distinguish between an
“inner,” more strongly bound electron, and an “outer,”
weakly bound electron. The binding energies have been cho-
sen to match the ionization potentials of ground state He and
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He*, respectively. It has been shown in numerical calcula-
tions [23] that differences arise in the ionization dynamics of
two-electron atoms due to the symmetry of the wave func-
tion. Within this approximation we nevertheless avoid the
necessity to employ an antisymmetrized electronic wave
function, since in the field-free ground state the correlation
between both electrons is negligible. On the other hand,
when the atom is interacting with the laser pulse, the driving
electric field and the Coulomb interactions between the elec-
trons and the ion by far exceed exchange or correlation ef-
fects. In order to obtain a higher accuracy, an antisymme-
trized two-electron wave function must be employed when
an initial state was considered where both electrons occupy
the same orbital. As mentioned above, with an electron ex-
cited this complication does not occur, and correlation and
exchange effects will be neglected in what follows. It is be-
yond the scope of this paper to treat exchange and correla-
tion effects in the parameter regime beyond the dipole ap-
proximation. However, we conjecture that our results hold
also for this situation qualitatively, as the dynamics is domi-
nated by the very intense laser fields considered here.

For the two-electron wave function ¥ we therefore chose
a product ansatz [43]:

W(ry,ry,1) = ¢y (r,0) dhy(rp,1). (1)

Here, ¢, and ¢, denote the distinct one-electron wave func-
tions of the inner and outer electron given at the respective
positions r; and r, and time t.

In our model atom, both electrons dynamically interact
with the laser field and each other, therefore it is an extension
to the “Inner Sees Outer” [22] or “Crapola” [44] scheme. A
similar model has been employed to compute the harmonic
spectrum generated by the inner electron of lithium initially
prepared in a Rydberg state [26].

The Hamiltonian describing the dynamics of both elec-
trons interacting with the ionic potential V;,, and the laser
field reads, in atomic units, with ¢ denoting the speed of
light:

1 1 2
S\P1— ZA(I'M) + Vign(ry)

H(r,,r,,1t) =
(ry,ra,1) 5

1 1 2
+ E(pZ - _A(l'z,l‘)) + Vion(rz)
c
+ Vie(rl,t) + er(rz,t), (2)

where p; and p, denote the canonical momenta of the re-
spective electrons, while the Coulomb repulsion on each
electron is mediated by the potential Vie, i=1,2. In addition,
to account for weakly relativistic effects, the mass shift term
[45] has been incorporated in some cases into the Hamil-
tonian (2). It has turned out, however, that in the considered
laser frequency and intensity regime this term has no notable
influence on the electron dynamics, such that relativistic ef-
fects can be neglected completely in our calculations.

The interaction V,,, between both electrons is described by
a mean-field ansatz, where the repulsion on each electronic
wave function ¢;(r;,?) is modeled by the term
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i (. _<¢j(rj’t)|vee(ri_rj)|¢j(rf’t)>
Velrl) = )

here, the brackets indicate an integration over r;, while
V,.(r) denotes the interaction potential between both elec-
trons. Thus, each electronic wave function ¢;(r;,t) is sub-
jected to the influence of the laser pulse and an effective,
time-dependent Coulomb potential which consists of the sum
of both the attractive nuclear potential and the repulsion due
to the other electron.

In our two-dimensional model atom, the interactions be-
tween the electrons and the nucleus would be overempha-
sized if the bare Coulomb potential was employed. That is,
the electrons would be subjected to the singularity at the
origin of the ionic potential, while in a real atom they would
evade the nucleus due to the higher dimensionality of the
system. The effect of reduced phase space is accounted for
by replacing the real three-dimensional Coulomb potentials
with effective mean-field potentials, averaged over the direc-
tion perpendicular to the two-dimensional plane of motion.
The interaction potentials then can be described by the so-
called Rochester or softcore potential [46]:

i#j 3)

k
Vion(r) == ’/zlLa Vee(r) = ,’2L : (4)
\I™ + dion \Nr-+a,,

By the proper choice of parameters, one can tune the poten-
tials (4) to reproduce the binding energies of the desired
electronic configuration. For the case of helium, the param-
eters ki,,=3.28, a;,,=1.0 and k,,=1.15, a,,=0.1 lead to bind-
ing energies of 0.832 a.u. for the outer and 2 a.u. for the
inner electron, corresponding to the ionization potentials of
He and He*.

III. NUMERICAL ASPECTS
A. Propagation of the wave function

To propagate the solution W(r;,r,,r) of the time-
dependent Schrodinger equation associated with the Hamil-
tonian (2) with respect to time 7, we employ the split-
operator method [47]. By decomposing and rearranging the
Hamiltonian (2), we arrive at

H(ry,ry,t) = H(r,1) + Hy(ry,1), (5)

where the respective one-electron Hamiltonians H,(r;,7) in
the Coulomb gauge are given by

2
: 1 .
&mﬁ=%+%Jm+5?Vmﬁ+%ﬂﬁ)
C

2

P A@n p+ B ©6)

c 4

Both the first and the last term of Eq. (6) are diagonal in the
momentum representation of the according wave function ¢,
while the second, third, and fourth terms are linear operators
in position space. Thus, we Fourier transform the wave func-
tions between momentum and position space, such that the
application of these operators become mere multiplications.
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These transformations are performed using FFT routines,
which work quite fast even for numerical grids with a large
number of grid points. Special care is needed for the term

1 1
ZA(ri’t) ‘Pi= ;Ax(y’t)pi,m (7)

since here operators both dependent of position and momen-
tum couple. One way to carry out the application of this
operator on the wave functions ¢; is to employ a combina-
tion of Fourier transformations and Crank-Nicholson
schemes [39]. Yet, a more elegant way to approach this prob-
lem is to transform the x component of ¢;(r;,#) into momen-
tum space while retaining the position space representation
of its y component [48]. The operator (7) then is diagonal,
such that its application on the wave function also is a mul-
tiplication. A subsequent one-dimensional Fourier transfor-
mation of ¢; with respect to the y component will finally
result in the momentum space representation of the wave
function. Employing this method to evaluate (7) has the ad-
vantage of keeping the numerical errors during the calcula-
tions consistent. No further error apart from those given by
the grid partitioning and the discretization in time are intro-
duced, which would not be the case with a mixing of differ-
ent integration schemes.

One additional term which must be taken care of in the
wave function propagation scheme is the repulsion between
both electrons. We incorporate it in our model by taking into
account the potential V,,(r;—r)), Eq. (3), for each electronic
wave function ¢;. One fast and efficient way to evaluate this
term is by convolving the respective electronic wave func-
tions. At the beginning of the numerical integration, the in-
teraction potential V,, is stored on a numerical grid and
transformed to momentum space. If the momentum represen-
tation of one of the electrons is multiplied by this function
and transformed back to position space, we receive an effec-
tive potential representing the repulsive force acting on the
other electron at this particular time step of the calculations.

The single-electron wave functions are then propagated in
time by successively applying the short-time propagator

Uit,1 + Ar) = ¢ HilrinAr (8)
on each ¢(r;,1), such that these are promoted according to
Gi(rp,t+ Ar) = U(t,t + A1) - i(r;,1). 9)

With the nearly symmetric splitting of the one-electron
Hamiltonians H,(r;,f) with respect to operators which are
evaluated in position and momentum space in Eq. (6), the
error introduced in this propagation scheme due to the non-
commutativity of the operators is of third order with respect
to the discrete time step Az [49].

To avoid reflections of the wave functions from the bor-
ders of the numerical grids which would cause unphysical
interferences of the wave functions, we employ absorbing
boundary conditions during our calculations. At each time
step, the wave functions ¢; are multiplied by the radially
symmetric damping function [50]
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1 if r<r,

D(r) = (10)

22 .
e~ r=r) Ly if > .

The parameters r, and L,; must be chosen large enough that
the relevant electronic dynamics which takes place in the
vicinity of the nucleus is not affected by the absorbing
boundary. Typical values employed during our computations
were ro=130 a.u. and L;=20 a.u., ensuring both a large
enough unperturbed interaction area of atom and laser and a
smooth damping of the electronic wave packets when mov-
ing towards the edges of the numerical grid.

The range of the absolute sizes of the grids employed in
our calculations has been from 150 a.u. through 200 a.u. in
each spatial direction, while equidistant grid spacings be-
tween 0.15 a.u. and 0.2 a.u. have been chosen for the parti-
tioning. By this we have ensured that the numerical grids are
large enough to allow a proper evolution of the electrons in
time devoid of effects introduced by the wave function
damping. Also, the grid spacing is small enough to suffi-
ciently resolve the wave packets and allow for the adequate
representation of the momenta of both electrons. By adapting
these crucial parameters of the numerical grids as well as the
time step Az we have ensured that convergence of the results
has been achieved in our calculations.

B. Determination of the ionization probability

One important quantity we want to determine in our com-
putations is the ionization probability of the electrons. Cal-
culating it by projecting the wave functions onto the field-
free bound states of the atom is not appropriate for our
system, since the computation of all two-electron states nec-
essary to gain good enough convergence of this method
would be far too complex to handle. On the other hand, due
to the finite grid size and therefore the limited momentum
spectrum, projecting onto the field-free continuum states of
the ionic potential would surely also not reproduce the cor-
rect ionization probabilities of the system.

One established method of calculating the ionization
probabilities in numerical calculations is to determine the
amount of the electronic wave packets remaining in a defined
region around the nucleus after the interaction with the laser
pulse [22,27,38,51]. However, this method has the drawback
that the number of continuum states is artificially enlarged,
with the result that depending on the size of this region some
highly excited bound states are also considered being ion-
ized.

In our calculations, we employ an alternative approach to
define the ionization probability P; for each electron by con-
sidering those parts of the wave function ¢,; being ionized
that have positive total energy. In close analogy to classical
mechanics we expect all portions of the wave functions
whose kinetic energy exceeds their negative potential energy
to leave the parent ion and become ionized. By defining P;
through

0
pi=1 —f |(E)dE, (1

—o0

where (Ab,-(E) denotes the representation of the wave function
in energy domain, we additionally account for those parts of
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¢; which have been damped by the absorbing boundary of
the numerical grid during the interaction with the laser pulse.
The local potential and kinetic energy densities are calcu-
lated in position space. The potential energy then can be
determined exactly at every grid point, while the kinetic en-
ergy is calculated using a two-dimensional five-point for-
mula for the second derivative [52]. The latter has been
found to be sufficiently accurate for the grid partitioning em-
ployed in our calculations.

Our method of determining the ionization probability has
been tested for different configurations of the numerical grid,
and is virtually independent of both the total grid size as well
as of the distance between the consecutive grid points. The
consistency of this approach has been furthermore validated
by performing calculations where the wave functions have
been propagated for an additional number of optical cycles
after the laser pulse has been ramped down. During this time,
most of the ionizing fractions of the wave packets move
towards the edges of the numerical grid where they are
damped by the absorbing boundary. The resulting ionization
probabilities calculated via Eq. (11) have been found to co-
incide with those which have been calculated directly after
the laser pulse has been turned off. Furthermore, for single-
active electron calculations we have verified this method by
projecting out up to eight bound states of the wave function
before determining the ionization probabilities, which quan-

titatively yielded the same results.

Although the definition of the ionization probability via
Eq. (11) may not be strict in a quantum-mechanical sense, it
is nevertheless more appropriate than defining an arbitrary
border separating bound and ionized electronic states. No-
tice, however, that in general both methods qualitatively

yield similar results.

IV. RESULTS AND DISCUSSION

In this section, we discuss the ionization dynamics of the
model atom subjected to highly intense, high-frequency laser
pulses. The laser parameters are chosen such that stabiliza-
tion of the two-electron system may occur. First, results for
helium are presented, and the influence of the repulsion be-
tween both electrons on the ionization probabilities is ana-
lyzed. In Sec. IV B, we investigate the role of the retardation
of the laser pulse on the wave packet dynamics and the ion-
ization probabilities in the stabilization regime. In the subse-
quent section, the influence of the laser pulse shape on the
atomic dynamics is discussed. Finally, in Sec. IV D we ex-
tend our model system to the case of lowly charged two-
electron ions, where we study their interaction with laser
pulses of such intensity and frequency that these systems
may stabilize against ionization as well.

A. Ionization of helium at high frequencies

In this section we present the ionization probabilities of
helium in the high-frequency regime, at a laser frequency
where stabilization of the atom is likely to occur. A general
yet quite conservative condition for the appearance of stabi-
lization is that the energy of a single laser photon field must
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FIG. 1. Ionization probabilities of the inner and the outer elec-
tron as a function of the peak electric field strength E. The fre-
quency of the laser is w=3 a.u., while the pulse consists of each
four optical cycles linear turn-on and turn-off, and eight optical
cycles at fixed amplitude. In (a), the ionization probabilities are
displayed for the case where the repulsion between the two elec-
trons has been taken into account, while it has been neglected in (b).

exceed the ionization potential of the bound electron. For
helium in the ionic or atomic ground state, this implies laser
frequencies w higher than 2 a.u. or 2.9 a.u., respectively.
Displayed in Fig. 1 are the ionization probabilities of the
inner and the outer electron subjected to a laser pulse of
angular frequency w=3 a.u., which clearly fulfills the condi-
tion mentioned above. The pulse shape consists of four op-
tical cycles linear ramping-up, followed by eight cycles at
constant peak electric field strength E(, and four cycles linear
turn-off. The choice of four cycles for the turn-on of the laser
pulse is short enough to inhibit significant ionization before
the atom is exposed to the maximum intensity of the laser
pulse [53]. Its duration is nevertheless long enough to sup-
press shake-up and shake-off processes which would occur if
the increase in field strength was too rapid. Speaking in
terms of the quasistationary Kramers-Henneberger frame, a
sudden turn-on of the laser leads to a population transfer to
excited states of the KH potential due to the finite bandwidth
of the pulse, while in the case of a smooth turn-on the elec-
tronic wave function may evolve into its ground and low-
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lying states and therefore become stabilized against ioniza-
tion.

As can be seen from Fig. 1(a), both the electrons at this
high frequency indeed exhibit the stabilization effect. After a
steady increase in ionization probability with laser intensity,
beyond a certain threshold intensity the atom becomes stable
in the laser field, where both electrons show different ioniza-
tion signals. Due to its stronger interaction with the nucleus,
for smaller field strengths the inner electron shows a higher
probability to be found ionized after the interaction with the
laser pulse than the outer. At a field strength E,=8.8 a.u., at
the onset of stabilization, the ionization probability P; of the
inner electron is 2.5 times as large as that of the outer. When
the field strengths are further increased, the atomic ionization
behavior starts to become highly nonperturbative, and stabi-
lization sets in, which is most prominent for a field strength
of about Ey=37 a.u. At even higher intensities, the stabiliza-
tion effect breaks down, and the ionization probability again
increases with the laser field strength. For the outer electron,
we also observe in the region from Ej=11 a.u.to E,
=27.5 a.u. that the ionization probability P, ceases to in-
crease with laser intensity, yet the stabilization effect is not
clearly pronounced. As in the case of the inner electron, P,
rises again steadily at higher laser intensities (E;>30 a.u.).

To study the influence of the repulsion between both elec-
trons on the stabilization of the helium model atom, calcula-
tions have been carried out where the interaction between
both the electrons has been discarded. The calculations then
effectively become single-active-electron computations,
where the ionization potentials are chosen to match those of
the inner and the outer electron of the product wave function
Eq. (1). The results of these calculations are displayed in Fig.
1(b). For the inner electron, the ionization probabilities vir-
tually coincide with those of the interacting case for small
peak electric field strengths. Increasing these to values higher
than Ey=25 a.u., both notably start to differ, where the ion-
ization probabilities in the interaction case exceed those cal-
culated without repulsion. For the latter, the breakdown of
the stabilization effect sets in at a higher peak field strength
Ey=41 a.u., while at the highest field strength depicted in
Fig. 1, Ey=45 a.u., the ionization probability P, is 15%
smaller than in the calculations where the repulsion has been
taken into account. The role of the electronic repulsion on
the ionization of the two-electron atom is more pronounced
for the outer electron. Here, in contrast to Fig. 1(a), a distinct
maximum in ionization is visible at a field strength E,
=12 a.u. before the stabilization effect sets in. The stabiliza-
tion begins to break down at Ey=28 a.u., where the increase
in P, sets in rather smoothly. For the largest field strength
calculated, the ionization probability is by 20% smaller than
in the interacting case. Thus, we find that even though the
electronic repulsion does not inhibit the stabilization of the
helium atom, it leads to modifications in contrast to single-
active electron calculations. Most notably, in the region of
high intensities an increase in the ionization probabilities can
be observed.

B. Influence of nondipole effects

As discussed earlier, the retardation of the laser field leads
to a displacement of the electrons in the laser propagation
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direction, modifying the overall ionization dynamics of the
two-electron atom. As a consequence, the stabilization effect
may be suppressed at higher laser intensities [40,54], since
with the inclusion of the laser retardation the periodicity of
the Kramers-Henneberger potential with respect to time is
abolished. Signatures of nondipole effects can be clearly ob-
served from the structures of both electronic wave functions
¢;(r;,t) during the interaction with the laser field. In Figs.
2(a) and 2(b), the probability densities of the respective wave
functions of the inner and outer electron are displayed, after
the helium atom has been exposed to a laser pulse consisting
of four optical cycles turn-on and six cycles at peak electric
field strength Ey=45 a.u. and frequency w=3 a.u.

One can observe an asymmetric distribution of the wave
functions with respect to the laser polarization direction. No-
table amounts of the wave packets are transferred into the
laser propagation direction, along the positive y axis, which
is due to the retardation of the laser pulse. The laser electric
field depends on the position in the propagation direction,
therefore parts of the electronic wave packets at different
positions are subjected to different electric field strengths.
This leads to a net force driving the electronic wave packets
in the laser propagation direction. In a classical sense, this
drift motion can be understood to be caused by the momen-
tum transfer of the photon field to the electron [39]. This
finding is in clear contrast to the results which are obtained
when employing the dipole approximation. As can be seen
from Figs. 2(c) and 2(d), when the dipole approximation is
carried out the respective wave functions of both electrons
are distributed symmetrically along the laser polarization
axis. One further, interesting feature is the localization of
significant parts of the wave function near the nucleus along
the polarization axis, which is best visible for the inner elec-
tron, Figs. 2(a) and 2(c). These structures arise due to the
dichotomous structure of the effective potential the electrons
sense during their interaction with the high-frequency laser
pulse at constant field strength. The wave functions tend to
redistribute to occupy the ground state of the according KH
potential, which exhibits two maxima separated from each
other by twice the quiver amplitude ay=FE,/w?* This di-
chotomy, however, does not clearly show up in the electron
densities displayed in Fig. 2, since at the moderate value
ap=5 a.u. at these laser parameters the maxima of the soft-
core potential in the time-averaged KH frame are not well
separated. The wave functions are therefore merely smeared
out along the x axis. Only for larger values of «, as has been
shown in Ref. [38], the wave function densities exhibit dis-
tinct maxima at the extremal points x==*q,. This effect,
however, is diminished by the rising and falling edges of the
laser pulse and its finite duration, resulting in the appearance
of additional structures between these two points [55].

To get an intuitive understanding of the underlying atomic
dynamics, one may identify the electronic wave packets with
classical pointlike charged particles. In this sense, we asso-
ciate the wave packets by their respective position expecta-
tion values

(r(n));= f r|¢(r,1)|*dr. (12)
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FIG. 2. Contour plots of the inner (a) and outer (b) electron probability density after 10 cycles interaction with the same laser pulse as
in Fig. 1, at peak field strength Ey=45 a.u. The x axis is the polarization direction of the laser field, while the laser propagates along the y
axis. Here, the dipole approximation has not been carried out in the computations, such that the retardation of the laser pulse has been taken
into account. In the lower row, subfigures (c) and (d), the electron densities are displayed for calculations which have been performed within
the dipole approximation. For better visibility, 15 contour lines are shown for a density range between 0 and 1 X 1073,

Displayed in Fig. 3 are the center-of-mass positions of
both electrons as a function of time, while interacting with a
laser pulse of peak electric field strength Ey=45 a.u. and
frequency w=3 a.u. In Fig. 3(a), the motion of both electrons
in the polarization direction is depicted. One can clearly ob-
serve the close analogy to the motion of a classical particle.
After the turn-on stage, both electrons oscillate with an ex-
cursion amplitude equal to the quiver radius @y=5 a.u. An
additional effect occurring here is the overall motion of the
inner electron’s mass center in the positive polarization di-
rection, while the wiggling of the outer electron is almost
symmetric with respect to the laser polarization axis. This
displacement is caused by the combined effect of the nucleus
and the laser field on the evolution of the wave packets dur-
ing the turn-on of the pulse [25]. At a certain phase of the
laser pulse, the strength of the electric field surpasses the
force of the nucleus acting on the electrons, such that they
are ejected with a net drift along the polarization axis. Due to
the difference in binding energies, this phase, and therefore
also the drift motion of both electrons differ. This overall
motion along the polarization axis is in contrast to that of a
free electron in the laser field, which is symmetric with re-
spect to its initial point at rest. Notice that this effect be-
comes important especially in the intensity domain in which
the stabilization effect breaks down, where it suppresses the

population of bound states of the static Kramers-
Henneberger potential in combination with nondipole effects.
The influence of the retardation of the laser pulse becomes
apparent when the drift of the electrons in the laser propaga-
tion direction is considered, which is visualized in Fig. 3(b).
For comparison, the projection of the motion of a free elec-
tron subjected to the same laser pulse onto the laser propa-
gation axis is also displayed as a function of time. As already
concluded from Figs. 2(a) and 2(b), notable amounts of the
wave packets are transferred in the laser propagation direc-
tion. The total displacement of the outer electron is 6 a.u. in
the laser propagation direction, which even exceeds the
maximum excursion amplitude «,=5 a.u. in the laser polar-
ization direction. The extent of the excursion in the laser
propagation direction of the outer electron becomes compa-
rable to that of the free electron of 9.2 a.u., which can be
attributed to the weaker attraction of the nucleus. The role of
the latter becomes best visible during the turn-off phase of
the laser pulse, in the range between 12 and 16 optical
cycles, where the mass center (r(z)), of the outer electron is
clearly accelerated back towards the parent ion. The inner
electron is due to its tighter binding to the nucleus not as
much affected by the retardation of the laser pulse as the
outer electron, yet in analogy to Fig. 2(a) a transfer of the
mean of the wave packet in the laser propagation direction
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FIG. 3. Displacement of the center of masses of the electrons
along the laser polarization axis (a), and in the propagation direc-
tion (b) as a function of time. As in Fig. 1, the pulse consists of each
four optical cycles linear turn-on and turn-off, and eight cycles at
maximal field strength E,=45 a.u. and frequency w=3 a.u. For
comparison, the displacement of a classical electron subjected to the
same laser pulse in the propagation direction is also shown in (b).

can be observed. However, its value of 0.8 a.u. at the end of
the laser pulse is small compared to both that of the outer
electron and the quiver amplitude, such that no notable non-
dipole effects are expected to arise in the ionization prob-
abilities of the inner electron.

To quantify these effects showing up in the overall wave
packet dynamics, we have carried out calculations in which
the dipole approximation has been assumed by explicitly re-
moving the spatial dependence of the vector potential A(r,7).
As expected, in the case of the inner electron the influence of
the retardation of the laser pulse on the ionization probability
is almost negligible, with the results gained from the nondi-
pole computations exceeding those calculated within the di-
pole approximation only slightly in the intensity regime
where the stabilization effect breaks down. The situation be-
comes quite different for the outer electron, which can be
seen in Fig. 4, where we compare the ionization probabilities
taken from Fig. 1 with calculations, where the dipole ap-
proximation has been carried out.

For peak field strengths up to E,=20 a.u., both sets of
calculations virtually yield the same result. At this field
strength, the velocity of the electron is roughly 5% of the
speed of light, and as expected in this regime, weakly rela-
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FIG. 4. Ionization probabilities of the outer electron as a func-
tion of the peak electric field strength E(, where either the retarda-
tion of the laser pulse has been taken into account or has been
neglected (dipole approximation). The laser pulses have been cho-
sen to be the same as in Fig. 1, while for better visibility the scale
has been changed.

tivistic effects start to occur. The Lorentz force then pro-
motes the ionization, such that for higher field strengths the
results start to differ. For the largest field strength E,
=45 a.u. calculated, the nondipole result shows an ionization
probability which is about 14% higher than that which has
been obtained within the dipole approximation.

C. Pulse-length dependence of ionization

In this section, we investigate the role of the length of the
laser pulse on the ionization of the helium model atom in the
high-frequency regime. We do this by altering the shape of
the laser pulse by varying the length of the turn-on and turn-
off and the intermediate stages of the field. For convenience,
we choose a pulse profile where the number of turn-on cycles
equals those of the turn-off, such that the pulse envelope
becomes symmetric with respect to time. By altering the
number of turn-on and turn-off cycles of the trapezoidal
pulse, we are able to identify effects caused by the electron
dynamics during the stages of change in peak intensity, while
by changing the number of cycles in the center part of the
pulse one may observe ionization of the electronic popula-
tion which has already been trapped in the quasistationary
Kramers-Henneberger potential.

In the first step, we reduce the adiabacity of the laser
pulse by decreasing the number of turn-on and turn-off
cycles of the pulse. In Fig. 5, the ionization probabilities of
the inner and outer electron are displayed, where the elec-
tronic repulsion has either been taken into account in the
calculations (a) or neglected (b). Notice that this is a similar
pulse as that employed in the previous calculations, but with
the length of turn-on and turn-off stages reduced to two op-
tical cycles each. Even though the overall ionization prob-
abilities of both electrons resemble those displayed in Fig. 1,
a lot of subtle differences can be observed. While in the
calculations employing shorter pulses, Fig. 5(a), the stabili-
zation effect of the inner electron and its subsequent break-
down at higher field strengths is more distinct when sub-
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FIG. 5. Ionization probabilities of the inner and the outer elec-
tron as a function of the peak electric field strength E,. The fre-
quency of the laser is w=3 a.u., while the pulse consists of each
two optical cycles linear turn-on and turn-off, and eight optical
cycles at fixed amplitude. In (a), the ionization probabilities are
displayed for the case where the repulsion between the two elec-
trons has been taken into account, while it has been neglected in (b).

jected to the laser pulse of shorter duration, stabilization of
the outer electron merely vanishes. For the latter, ionization
rather saturates for field strengths ranging between E,
=9.5 a.u. and Ey=17 a.u., before a further increase sets in.
The stabilization effect of the outer electron is more pro-
nounced when the repulsion between both electrons is ne-
glected, Fig. 5(b). Here, a steady decrease of the ionization
probability in the range from Ey=12 a.u. to Ey=23 a.u. is
clearly visible. Apart from this feature, the overall ionization
probabilities of the inner and outer electron for field
strengths up to Ey=20 a.u. are quite insensitive to their mu-
tual interaction, while at higher intensities the Coulomb re-
pulsion between both electrons promotes the ionization.

A remarkable effect sets in for field strengths exceeding
Ey=34 a.u. The curve of the outer electron exhibits a notable
drop, while the inner electron’s ionization probabilities at
these intensities are slightly increased, compared to the re-
sults shown in Fig. 1. Additional calculations at peak field
strengths E, exceeding those for which results have been
shown in Fig. 1 reveal that this ionization suppression of the
outer electron vanishes at higher intensities. This effect, al-
beit not as prominent as in Fig. 5(a), also occurs for the outer
electron when the electronic repulsion has been discarded, at
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peak field strengths about Ey=32 a.u., Fig. 5(b).

The additional ionization suppression becomes even more
prominent when the duration of the turn-on and turn-off
stages are further reduced, i.e., when pulses of 10 optical
cycles total duration with each one cycle turn-on and turn-off
are employed. On the other hand, by increasing the length of
the laser pulse turn-on and turn-off stages to three cycles this
change in the slope of the curves for both electrons merely
vanishes.

To gain further insight into the pulse-shape dependence of
the ionization probabilities, we have in a second step per-
formed calculations in which the length of the center part of
the pulse envelope, and therefore the number of laser cycles
at constant peak intensity has been varied. While keeping the
turn-on and turn-off stages of the pulse fixed at four optical
cycles each, center parts with lengths ranging from four to
12 cycles have been employed. In contrast to variations of
the turn-on and turn-off stages, we observe mostly quantita-
tive changes in the ionization probabilities of the inner elec-
tron, Fig. 6(a). The most prominent changes occur in the
maxima of the curves at low intensities, which mark the
onset of nonperturbative atomic dynamics. The ionization
probability P, at this point increases linearly with the num-
ber of optical cycles at peak intensity. Concomitantly, the
peak field strength E, at which stabilization sets in is pro-
gressively slightly shifted to smaller values. This is a similar
behavior to that found in the stabilization of hydrogen in
ultrashort laser pulses [56]. However, the ionization prob-
ability at the point of maximum stabilization is barely af-
fected by the change of pulse length, leading to the overall
result that the stabilization effect of the inner electron be-
comes more prominent when the number of optical cycles at
constant peak intensity is increased.

For the outer electron, Fig. 6(b), the evolution of the ion-
ization curves with increasing pulse length is more complex.
The maxima in the curves P, at the onset of stabilization are
centered at field strength Ey=10.5 a.u., with the ionization
probabilities progressively increasing with the total duration

of the pulse. The maximum and the point of optimal stabili-
zation of the outer electron become more and more pro-
nounced, the longer the laser pulse. When the number of
optical cycles at constant peak field strength exceeds nine,
the ionization suppression effect already noted in Fig. 5 sets
in, while its position is shifted to lower peak intensities. Test
calculations employing pulse lengths with intermediate
stages of 20 cycles duration confirm the persistence of this
ionization suppression regime of the outer electron for even
longer pulse durations.

We have found that the existence of this effect is due to
the specific preparation of the initial state of the model atom,
where the outer electron is placed in the excited 2s state.
When subjected to laser pulses of long durations compared
to the length of the turn-on and turn-off stages, population
may be dynamically transferred from the excited state to the
ground state of the atom, which leads to a notable ionization
suppression. A thorough discussion of this effect for one-
electron atoms is given elsewhere [57].

D. Ionization of heliumlike ions

We now discuss the general applicability of our model
atom scheme to the case of two-electron ions. This is of
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FIG. 6. Ionization probabilities of the inner and the outer elec-
tron of helium for varying pulse lengths. The frequency of the laser
is w=3 a.u., with the pulse consisting of each four optical cycles
linear turn-on and turn-off, and a center part of constant amplitude
E, with a length of 4, 6, 10, and 12 cycles, respectively. In (a), the
ionization probabilities are displayed for the inner electron, while in
(b) those of the outer electron are shown. The numbers in the cap-
tion refer to the length (in optical cycles) of the turn-off, interme-
diate, and turn-off stages of the laser pulses employed throughout
the respective calculations.

particular interest, for in contrast to the ionization and espe-
cially stabilization behavior of hydrogenlike ions [58] the
relevant parameters governing the atomic dynamics do not
trivially scale with the charge state Z [59]. This is due to the
variations of interaction strength between both active elec-
trons for different two-electron systems. Consequently, we
expect the ionization rates for two-electron ions to differ
qualitatively as well as quantitatively from those of helium.

Since a nonrelativistic description of the atomic or ionic
dynamics is employed, the model scheme is restricted to the
case of He-like ions of low charge state Z. Otherwise, the
high space charge in the vicinity of the nucleus would force
us to incorporate higher-order correction terms such as the
electron spin or the relativistic mass-shift into the Hamil-
tonian (2) to take account of first-order relativistic effects
[45].

A second restriction in the applicability of our model
scheme to two-electron ions arises from the choice of soft-
core parameters for reproducing the correct ionization poten-
tials of the electrons. With increasing Z, the binding energies
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of the inner and outer electron tend to differ more from each
other, an effect which can only be compensated for by in-
creasing the parameters a;,, and a,, in Eq. (4). However, the
larger these parameters, the more the softcore potentials de-
viate from the real Coulomb potential, such that the approxi-
mation of reduced dimensionality becomes questionable.
One way to circumvent this problem would be to place the
outer electron initially into a highly excited state, which may
cause undesired physical features due to the intermediate
atomic levels.

Therefore, in the following we will consider the two ions
with lowest charge Z, which are Li* and Be?*. As in the case
of the helium atom, we employ an excited initial state with
both electrons occupying different orbitals, while their re-
spective binding energies are chosen to match the ionization
potentials of the corresponding two-electron ions with elec-
trons in the same (1s) state. The choice of the softcore pa-
rameters k;,,=8.676, a;,,=2.2 and k,=1.855, a,,=0.17 in
Eq. (4) reproduces the ionization energies for Li*, which are
4.5 a.u. for the inner and 2.7 a.u. for the outer electron. For
Be?*, we have found the parameters k;,,=15.23, a;,,=2.45
and k,,=2.48, a,,=0.193 to generate the binding energies of
8 a.u. and 5.4 a.u. for the inner and outer electron, respec-
tively.

As has been shown in Sec. IV C, interesting features show
up in the ionization yields when laser pulses with short rising
and falling edges are employed [60]. Therefore, as in Fig. 5
we will consider pulses with each two optical cycles turn-on
and turn-off and eight cycles at constant intensity. In Fig.
7(a), the ionization probabilities of both electrons are shown
for the lithium ion, where the laser frequency w=35 a.u. has
been employed in the calculations. At this frequency, the
energy of a single photon surpasses the ionization potential
of each of the electrons, yet the absorption of at least two
photons is necessary to allow for double ionization. Similar
to the case of helium, Fig. 5, we also find stabilization to
occur in this system. Due to the higher laser frequency and
stronger binding of the electrons, higher field strengths are
necessary to transfer the ion into a physical regime where
nonperturbative ionization behavior occurs. In contrast to he-
lium, the ionization probabilities behave similar up to a field
strength E(y=50 a.u., where the stabilization effect of the
outer electron breaks down, while for the inner electron the
breakdown of stabilization sets in at a higher field strength
E0:7O a.u.

The role of the repulsion between the two electrons is
revealed by comparing the ionization probabilities to those
that have obtained from calculations where the interaction
potential V,, has been neglected, displayed in Fig. 7(b).
Here, the overall ionization probabilities of both electrons
are smaller than in the interacting case, especially those of
the outer electron. At the highest peak field strength E
=100 a.u. employed in our calculations, for both electrons
the ionization probability in the interacting case is about 60%
higher than in the noninteracting case. When the repulsion is
taken into account, the maxima in the ionization curves are
shifted to lower intensities, which is a clear indication for the
energy transfer between both electrons. While the onset of
nonperturbative behavior for the outer electron is at a higher
field strength than that of the inner, the stabilization effect
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FIG. 7. Ionization probabilities of the inner and the outer elec-
tron of Li* as a function of the peak electric field strength E,. The
frequency of the laser is w=5 a.u., while the pulse consists of each
two optical cycles linear turn-on and turn-off, and eight optical
cycles at constant amplitude. In (a), the ionization probabilities are
depicted with the repulsion between both electrons being taken into
account, while it has been neglected in (b).

breaks down at smaller peak field strengths, that is, at E,
=80 a.u. as opposed to Ey=85 a.u. As in helium, the energy-
sharing between both electrons in Li* thus enhances ioniza-
tion and also promotes the breakdown of stabilization in the
high-intensity regime. By comparing the results displayed in
Figs. 1 and 5, we find that the electron repulsion has a higher
impact on the ionization probabilities than in the case of the
helium atom. For the latter, the maximal increase in the ion-
ization probabilities of each electron is about 20%, compared
to about 60% for each electron in the case of Li* for the
highest peak field strengths considered here. Our calculations
have also shown that for the lithium ion in the high-
frequency regime laser retardation effects play an important
role, leading to an overall increase of the ionization prob-
abilities of about a half compared to the results calculated
within the dipole approximation. In addition, we observe a
small feature at Ey=74 a.u. in the ionization probabilities of
the inner electron. This can be attributed to a resonant tran-
sition caused by the small duration of the turn-on and turn-
off stages of the laser pulse, which is confirmed by the ab-
sence of this structure when the pulse is ramped up and down
more slowly.

We now focus our interest on doubly charged beryllium,
the other two-electron ion we have carried out calculations
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FIG. 8. Ionization probabilities of the inner and the outer elec-
tron of the doubly charged beryllium ion. The frequency of the
pulse is w=7.5 a.u., while its shape consists of each two optical
cycles linear turn-on and turn-off, and eight optical cycles at con-
stant peak electric field strength E,. Depicted in (a) are the ioniza-
tion probabilities when the repulsion between both electrons is
taken into account, while it has been neglected in (b).

for employing our model atom. In Fig. 8 we display the
probabilities of the inner and outer electron of Be®* to be
found ionized after the ion has been exposed to the laser
pulse of frequency w=7.5 a.u. Notice that while laser pulses
of the same shape as in the calculations for Li* have been
employed, the situation is different, since now the energy of
one photon is smaller than the binding energy of the inner
electron. At least two photons must be absorbed to energeti-
cally allow for double ionization. As in the case of Li* sta-
bilization occurs in this system as well. Both electrons show
a maximum in ionization at a field strength E,=48 a.u., fol-
lowed by a steady decrease. Only for field strengths exceed-
ing Ey= 130 a.u., a breakdown of the stabilization effect sets
in. The importance of mutual energy sharing between both
electrons is stressed by analyzing the ionization probabilities
in the case when the repulsion is neglected, as depicted in
Fig. 8(b). Here, the ionization behavior of both electrons
drastically changes. In the noninteracting case, the ionization
probabilities P, of the outer electron are higher than in the
case where the electronic repulsion has been taken into ac-
count, while they are smaller for the inner electron. The
maximum of ionization of the latter also is shifted to a higher
field strength E,=64 a.u. This discrepancy between the ion-
ization probabilities in Figs. 8(a) and 8(b) is a strong indica-
tion for the importance of the electronic interaction for the
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FIG. 9. Same as Fig. 8(a), but here the dipole approximation has
been employed throughout the calculations.

ionization and stabilization process. For both electrons, for
the highest field strengths displayed in Fig. 8 the ionization
probabilities are increased at about 65% as compared to the
calculations where the electronic interaction term V,, has
been neglected. Overall, the increase in ionization due to the
electronic interaction is more distinct than for the lithium
ion, showing that in the stabilization regime the mutual en-
ergy sharing between both electrons becomes more impor-
tant with increasing nuclear charge Z.

To emphasize the importance of the retardation of the
laser pulse we present in Fig. 9 results for the ionization of
Be?* at a frequency w=7.5 a.u. within the dipole approxima-
tion. The nondipole effects in the beryllium ion at these pa-
rameters are even more prominent than in helium (see Fig. 4)
and Li*. Comparing to the curves in Fig. 8(a), where the
retardation of the laser pulse has been taken into account,
one clearly observes the breakdown of the dipole approxima-
tion in the intensity regime where the stabilization effect
breaks down. The Lorentz force induced drift of the elec-
tronic wave packets visibly promotes the ionization of the
two-electron system. For the largest peak field strengths con-
sidered in our calculations, at Ey=180 a.u., the ionization
probabilities are nearly twice as high when the retardation of
the laser pulse is taken account of compared to the calcula-
tions within the dipole approximation.

Principal differences in the ionization dynamics of the
three two-electron systems considered here arise from the
different nuclear charges and electronic interaction strengths.
With increasing charge Z the absolute differences in the
binding energies between inner and outer electron tend to
increase; therefore, the outer electron is expected to ionize
more rapidly which effectively leads to a decrease in the
electronic interaction. In addition, to overcome the increas-
ing binding energies also higher peak field strengths must be
employed to allow for the observation of stabilization and its
breakdown, such that the forces due to the driving laser field
acting on the electrons becomes stronger in the ionic case
than with helium.

However, the main influence on the differences in the
ionization dynamics result from the tighter binding of the
electrons in the initial state, which becomes more important
with increasing ionic charge. This is due to the fact that with
larger Z the electronic wave functions tend to be more

3
E,/Z

FIG. 10. Ratio of double to single ionization probabilities for the
three two-electron systems after interaction with a laser pulse of
12 cycles total duration, where in each case the frequency w has
been chosen to slightly exceed the binding energy of the respective
inner electron. To allow for comparison of the curves, the peak field
strength E,, has been scaled with 1/Z3.

closely confined to the nucleus, resulting in a stronger inter-
action between both electrons in the initial state. Conse-
quently, during the rising edges of the laser pulses the elec-
tron repulsion has a greater impact on the ionization of the
two-electron system, which accounts for our finding that in
Li* and more clearly in Be?* the electronic interaction nota-
bly enhances ionization in contrast to the helium atom.

To elaborate on the impact of the different electronic cou-
pling strengths on the ionization probabilities we have per-
formed calculations for each two-electron system where the
laser frequency w slightly exceeds the binding energy of the
respective inner electron. That is, with w=2.25 a.u. for he-
lium, w=5 a.u. for Li* and w=9 a.u. for the beryllium ion
we have ensured similar conditions for the ionization in each
system, where absorption of two photons allows for double
ionization. Depicted in Fig. 10 are the ratios of double to
single ionization of the three two-electron systems as a func-
tion of peak field strength E, which has been divided by the
cube of the ionic charge Z. This quantity is proportional to
the inverse Keldysh parameter v, therefore being indepen-
dent of the respective atomic and ionic scales. The ratio be-
tween double and single ionization as well as between the
according ionization cross sections may be employed to sen-
sitively probe the electron interaction in one-photon break-up
processes [61]. However, since exchange and correlation
terms are not included in our model, we would rather take it
as a measure to discriminate binding effects between the
atomic and ionic systems considered here. We have calcu-
lated the ratio from the respective ionization probabilities P,
and P, of the inner and outer electron after interaction with a
laser pulse of 12 cycles total duration via

PP,
Pi(1-Py)+Py(1-P))

Pdouble/Psingle = (13)

As can be seen in Fig. 10, this quantity shows different
behavior in all three systems considered here. According to
Eq. (13) the absolute values of the ratio decreases with in-
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creasing charge state Z, which is in compliance with the
overall decrease of the respective ionization probabilities P;
and P, of the inner and outer electron in the high-frequency
regime. This decrease of both the P; with the nuclear charge
Z is in contrast to the results of classical Monte Carlo calcu-
lations [58], where the ionization probabilities of hydrogen-
like ions have been found to show similar behavior when the
laser field frequencies and peak strengths are scaled with Z?
and Z°, respectively. This difference is due to the fact that the
results of our two-dimensional model calculation show a
somewhat different scaling behavior with respect to E, and w
compared to the three-dimensional Coulomb potential, there-
fore the absolute values of the ionization probabilities are not
invariant with respect to an increase in Z. To circumvent this
deficiency, we expect the role of the interaction between the
two electrons to be revealed rather by contrasting the slopes
of the ratios between double and single ionization. After a
steep increase with field strength E, they exhibit a broad
maximum, followed by a reduction to about a third its peak
value. For both the ions Li* and Be?* again an increase of
this ratio for EO/Z3>2.5 can be observed, which in He is
only present at the highest peak field strengths considered
here. For the latter, an additional increase at about EO/Z3
=2.3 is present, which is a signature of the ionization sup-
pression effect of the outer electron which has been dis-
cussed in Sec. IV C. Comparison between the three systems
shows that the width of the maximum at E,/Z>~0.75
slightly broadens with increasing charge Z, while its position
is shifted to higher peak field strengths. This shows that in
the case of ions double ionization rises more rapidly than in
helium, such that the electronic interaction becomes more
significant with larger nuclear charge. We conclude that these
differences in the ratios displayed in Fig. 10 arise due to the
different coupling strengths of outer and inner electron in the
two-electron systems considered here. This is most apparent
for higher field strengths (E,/Z>>2.5), where the increase in
the ratios becomes steeper with Z. This is in line with Fig. 7
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and Fig. 8, where the electronic interaction was shown to
have a greater impact on heliumlike ions with rising nuclear
charge. Therefore, with increasing nuclear charge single ion-
ization is progressively suppressed in favor of double ioniza-
tion. As an explanation, we believe this to arise from the fact
that the electrons are bound closer to the nucleus for higher
charge such that repulsion plays a larger role.

V. CONCLUSIONS

In this paper, we have numerically investigated the stabi-
lization of two-electron atoms and ions in intense laser
pulses beyond the dipole approximation. Employing a two-
dimensional model atom, we were able to include the retar-
dation of the laser pulse in our calculations. The Lorentz
force does not only lead to a displacement of the electrons in
the laser propagation direction, it also promotes the ioniza-
tion of the electrons, most notably for laser intensities where
the stabilization effect breaks down again. Despite this ef-
fect, it has been shown that stabilization occurs for helium as
well as for Li* and Be?*. The repulsive interaction between
both electrons leads to strong modifications of the ionization
dynamics, but does not destroy the stabilization effect. Em-
ploying trapezoidal laser pulses in our calculations, we were
able to separate pulse-length dependent effects in the stabili-
zation of helium. Depending on the specific number of opti-
cal cycles at each stage of the laser pulse, we observe the
existence of a regime of ionization suppression of the outer
electron.
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