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We address the problem of calculating electromagnetic transition matrix elements between states of a
particle in spherically symmetrical potentials with no assumed boundary conditions at finite distance �free-
boundary-condition method�. For this, the Schrödinger equation is solved in a finite box of radius R and bound
and continuum states, appropriately normalized, are numerically represented, through a variational finite-basis-
set �B-spline� approach. The equivalence between the three transition operator forms �length, velocity, accel-
eration�, within this approach, is discussed, and bound-continuum and continuum-continuum matrix elements
are calculated in all three gauges. Results for the strong electromagnetic radiation of hydrogen are presented
through the calculation of two-photon ionization cross sections and photoelectron angular distributions. It is
demonstrated that the present approach is well suited for the calculation of multiphoton transitions when
ionization in the continuum is allowed �above-threshold ionization�. With the free-boundary-condition method
complete control over the density of scattering states is feasible and, as the result of that, the degeneracy in the
continuum between partial waves is preserved.
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I. INTRODUCTION

A primary task in any theory of the interaction of electro-
magnetic �EM� radiation with atomic systems is an accurate
and reliable description of the atomic or ionic structure, ac-
complished by solution of the corresponding Schrödinger
equation �SE�. Through the years a wide variety of methods
have been developed and applied, each of them having its
limitations which are context dependent. To refer to two of
them, used most frequently for many years, we have the
well-known Numerov method �1�, consisting of direct inte-
gration of the radial SE on a grid, or the use of a finite basis
set to expand the atomic states, with the most representative
examples so far being the Gaussian or Slater functions. Both
of these methods have been used mostly for a numerical
representation of states belonging to the bound spectrum of
the atomic or molecular Hamiltonians. On the other hand,
scattering states �continuum spectrum� have been the subject
of many theoretical or experimental studies over the past
years, in both the context of atomic scattering and electro-
magnetic radiation theories. With the advent of high-power
lasers, scattering states are commonly accessible. Indeed, use
of the Numerov method �or variances of it� and methods
based on Gaussian or Slater functions appear to be inappro-
priate since nonlinear phenomena involving continuum
atomic states are necessary for their interpretation. At this
point, we assume that it is neither necessary nor particularly
useful to belabor here the significance of analyzing the scat-
tering states in quantum physics. One of the most successful
methods in atomic scattering theory has been proven to be
the use of a finite basis set in conjunction with variational
methods for representing the atomic states, belonging to ei-
ther the bound or continuum spectrum �2–4�. By expanding
the radial states on a set of known basis functions, with un-
known coefficients to be determined, the differential equa-
tion is transformed into a matrix equation, solved by stan-
dard numerical techniques. The solutions corresponding to
bound eigenstates, easily represented with high accuracy in a

restricted part of the radial space, are normalized to unity.
For solutions corresponding to scattering states, nonvanish-
ing at infinity, arises the problem of the numerical represen-
tation together with the appropriate boundary conditions
�BC’s�. While at the origin the BC’s are set to zero, this is
not the case at the other boundary of the radial space �r
→��.

One approach, hereafter called fixed BC, is to impose ho-
mogeneous artificial boundary conditions to a finite distance
R of the form �P�R�+�P��R�=0, with P�r� and P��r� being
the radial eigenfunction and the derivative, respectively, re-
sulting in an approximate finite representation of the true
Hamiltonian inside this spherical box �5�. Those artificial
boundary conditions provide the necessary link between the
“interior” and “exterior” region set by the value R. For spe-
cific values of � and � the boundary constraint selects from
the total spectrum of the allowed wave functions �bound and
continuum� only those that this constraint fulfills. For bound
states ���0�, the constraint forces a change in the function
shape �prominent near the boundaries� together with an en-
ergy shift. For scattering states ���0�, the continuous spec-
trum becomes a denumerable infinite subset of the physical
one, since certain continuum discrete states are obtained. In
other words the continuous spectrum has been discretized. In
practice, however, a sufficiently dense discrete spectrum of
positive solutions can be obtained which either does not pose
any serious obstacle in the calculations or can be circum-
vented through certain methods �i.e., by repeating the calcu-
lations for slightly different box radii, interpolation within
the energy spectrum, etc.� �2,3,6–9�.

Turning now to the calculation of the electromagnetic
transitions between the atomic states the most intriguing case
is the transition between states that both belong to the con-
tinuum spectrum. The latter case has been studied under dif-
ferent contexts by many authors—to refer a few: within the
R-matrix approach �10–13�, multiphoton-ionization cross-
section calculations �14,15�, and time-dependent SE ap-
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proaches �2,16,17�. The same problem has also been ad-
dressed by Nicolaides and co-workers when applying a state-
specific approach to the solution of the time-dependent
Schrödinger equation �TDSE� for a hydrogen atom under
strong laser radiation �18,19�. The singularity occurring in
the dipole matrix elements of continuum-continuum �cc�
transitions as well as the contribution of the outer region
�R�r��� to the total matrix element, in a fixed BC ap-
proach, was also discussed by van Enk et al. �17�. van Enk et
al. argue that, in the context of the TDSE, there is no need
for the calculation of the “outer” contribution to the cc dipole
matrix element provided that the duration of the pulse is such
that the fastest electron, which is ionized, does not reach the
boundaries during the interaction, meaning that the time-
dependent wave function has negligible values out of the
box.

In the context of lowest-order perturbation theory, for the
calculation of the multiphoton transition amplitude, there is a
need to perform intermediate summations over the bound
and continuum spectra. These summations involve matrix
elements between bound-continuum and cc states. It is the
latter to which special attention should be shown, given the
infinite extension of the continuum states. In fixed-BC ap-
proaches the system is strictly confined in a restricted space
�spherical box or radius R�. For instance, Tang and Chang �6�
assume an infinite-height potential at the boundaries by sim-
ply choosing only the wave functions that relax at the box
boundaries �P�R�=0�. This confinement in the box leads to
an uncontrollable discretization of the continuum spectrum.
This is crucial in a number of cases such as the following: �a�
when a very fine resolution of the scattering spectrum is
necessary since the density of the continuum states is basi-
cally determined by the size of the box �R�—a fine energy
spectrum is obtained either by enlarging the box radius or by
repeating the calculations for several slightly different
radii—�b� when above-threshold ionization �ATI� takes
place—namely, when photon absorption occurs in the con-
tinuum spectrum, thus leading to a pole at the multiphoton
transition amplitude. The difficulty here arises from the fact
that, for a given box radius, the discrete energies does not
necessarily match the continuum energies at the poles �3�.
Again, one overcomes this difficulty by varying the box size
until an eigenenergy coincides with the required pole or by
adding an imaginary part to the pole �20�. In addition, the
presence of the pole gives an imaginary part to the transition
amplitude which involves an isolated cc matrix element,
whose calculation necessitates the contribution from the
outer region of the box �3,21�. �c� Finally, when angular
distributions for the ejected electron are calculated, in a
partial-wave approach, there is the need for the summation of
the multiphoton transition amplitudes to the various partial
waves l=0,1 ,2 , . . . at the same final photoelectron energy.
This cannot be fulfilled in the fixed-BC methods since given
the centrifugal potential l�l+1� /r2 the discretization of the
continua is different for different angular numbers. All the
above difficulties can be avoided within the present method,
mainly because we have the freedom to calculate the eigen-
states at particular energies.

In this paper we present a method for the calculation of
atomic states with no assumed boundary conditions �free

BC’s� on a finite polynomial basis �B-splines� as well as the
calculation of transition matrix elements, between such free-
boundary eigenstates. Similar work has already reported by
Fischer and Idrees �22� which applies the Galerkin method
for the calculation of continuum states for the hydrogen scat-
tering problem as well as to photoionization of two-electron
systems such as He and H− �23�. Compared with these works
we have extended the use of the method in the calculation of
the cc transition matrix elements and applied to multiphoton
processes in atomic systems. In a recent work, the present
formulation of the cc dipole matrix elements has been ap-
plied successfully to multichannel quantum defect theory
wave functions in calculating two-photon ATI cross sections
of Xe and Ar �24�. The main properties of the B-spline poly-
nomial basis and their use in atomic and molecular physics
have reviewed in Ref. �3� where an extensive reference list
of the related theoretical works can be found.

The organization of the paper is as follows: In Sec. II we
discuss in detail the theoretical background for the calcula-
tion of bound and continuum eigenstates states of a particle
in spherically symmetrical potentials. This includes the use
of the B-spline basis set for the numerical description of the
free-boundary states as well as the discussion for the appro-
priate normalization of the scattering states. In Sec. III the
theory of electromagnetic transitions matrix elements, within
the dipole approximation, is formulated for the three transi-
tion gauges: namely, the length, velocity, and acceleration
gauges. In the last section, we calculate the two-photon ion-
ization cross section, including ATI, from the hydrogen
ground state and photoelectron angular distributions are pre-
sented for two kinetic energies of the ejected electron. These
calculations involve matrix elements between continuum
states, thus being a decisive test for the accuracy of the re-
sults. Atomic units are used throughout the text unless stated.

II. FREE-BOUNDARY-CONDITION METHOD

In the case of a particle subject to spherically symmetric
potential the solution of the stationary Schrödinger equation
can proceed as follows: Exploiting the spherical symmetry of
the potential, the SE for the radial wave function is expressed
as �hl�r�−��P�l�r�=0 with �25�

hl�r� = −
1

2

d2

dr2 +
l�l + 1�

2r2 + V�r� , �1�

where V�r� is a local potential obeying the asymptotic con-
dition limr→�(rV�r�)=qe, with qe being the charge of the
atomic system “felt” by the particle at large distances. In
addition, the above equation is supplemented with vanishing
BC’s at the origin for the radial wave functions: namely,
P�l�0�=0.

For the numerical solution of the atomic equations we
introduce a parameter distance R �0�R���, thus effec-
tively replacing infinity ��� for a practical investigation of
the problem. The most reasonable choice for the value of this
boundary R is so large that its finite value introduces negli-
gible error for all practical purposes with respect to the spe-
cific problem under consideration. The matrix representation
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of the Hamiltonian results in a surface term evaluated at the
point R. More specifically, the radial wave functions are ex-
panded on the basis of B-spline polynomials as

P�l�r� = �
i=2

ns

Ci
��l�Bi�r� , �2�

where ns is the number of polynomials Bi�r�. The B-spline
polynomials Bi�r�, i=1,2 , . . . ,ns, of order ks, are defined in
an interval �0,R� on a sequence of knot points t�i�� t�i+1�,
i=0,1 , . . . ,ns+ks, where t�0�= t�1�= . . . = t�ks�=0 and t�ns

+1�= t�ns+2�= ¯ = t�ns+ks�=R �26�. In the above expansion
�Eq. �2�� the first B-spline polynomial �B1� is excluded in
order to ensure that P�l�0�=0.

Substituting this expansion into the SE for the radial func-
tion P�l�r� and taking the variational condition, with respect
to the coefficients Ci

��l�, ��Bj�r���hl�r�−����i
nsCi

��l�Bi�r��=0,
leads to the following matrix equation for the unknown co-
efficient vector C�l= �c2

��l� ,c3
��l� , . . . ,cns

��l��:

�h�l� + S − �B� · C�l = 0, �3�

with h�l� being the symmetric part of the radial Hamiltonian
�Eq. �1��, B the B-spline overlap matrix, and S the surface
term, given by

hij
�l� =

1

2
	

0

R

dr
1

2
Bi�Bj� + Bi� l�l + 1�

2r2 + V�r��Bj
 ,

Sij = −
1

2
Bi�R�Bj��R� ,

Bij = 	
0

R

drBi�r�Bj�r� .

Due to Bi�R�=0, i�ns, and Bns
�R�=1, the surface term is

reduced only to terms with i=ns. Finally from the properties
of B-splines, we obtain the relation Bns

� �R�=−Bns−1� �R�= �ks

−1� / ts, with ts� t�ns+1�− t�ns�=R− t�ns�. Then the only non-
vanishing elements of the surface matrix S are the following
two:

Snsns
= − Snsns−1 =

1 − ks

2ts
. �4�

This is a clearly unsymmetric matrix since Snsns−1�Sns−1ne
=0. The degree of this nonsymmetricity can be controlled by
varying certain parameters of the basis �ns ,ks� and the knot
sequence. This unsymmetric surface term and the overlap
properties of B-spline polynomials ��Bi �Bj�=�ij , �i− j��ks�
makes the matrix h�l�+S−B on the left-hand side of Eq. �3�
an �ns−1�	 �ns−1� unsymmetric banded matrix of width
equal to 2ks+1. For the solution of this matrix equation we
follow two different approaches depending on the part of the
spectrum we wish to calculate: namely, the bound and con-
tinuum ones.

A. Continuum spectrum

1. Calculation of the continuum eigenstates

By moving the surface term in the right-hand side �RHS�
of Eq. �3� and making the transformation C�l
→C�l / �Cns−1S�, with S=−Snsns−1, we obtain the following
system �23�:

�h�l� − �B� · C�l = C0, �5�

where C0��0,0 , . . . ,0 ,1�. Therefore, we have rewritten the
matrix equations keeping only the symmetric part of the
Hamiltonian, thus making the system of linear equations
nonhomogeneous. The non-Hermitian part of the Hamil-
tonian has moved to the RHS of the matrix equation, which
in principle is unknown. Dividing both sides of equations by
the arbitrary number S ·Cns−1 we fix the RHS as given by C0.
This way we have eliminated the problem of non-Hermiticity
of the box Hamiltonian at the cost that we are only able to
determine a solution vector of arbitrary normalization. Math-
ematically, the problem is an initial-value problem, leading
to a family of solution vectors. By assuming a particular
energy � we solve the SE matrix equation as a linear system
and obtain the solution, formally as C�l= �h�l�−�B�−1C0.
Physically, by assuming no boundary conditions for the
wave functions at the outer boundary, the atomic system is
not confined in a box �as in fixed-BC methods� but extended
to infinity, with the introduction of this “effective boundary”
for numerical purposes. As already noted the obtained scat-
tering states are known up to a multiplication factor. This
factor will be determined through the conditions that the
scattering states should satisfy at infinity.

2. Energy normalization and the scattering phase shifts

While for the bound states the normalization causes no
problem, since they are orthonormal to unity, special care
should be taken in the case of continuum states. By use of
the asymptotic conditions satisfied by a particle in a Cou-
lombing potential field we are able to renormalize the con-
tinuum states on the energy scale. For a radial SE in a central
potential V�r�, the normalized solutions P�r� asymptotically
behave as �27�

Pkl�r� =� 2


z�r�
sin���r� + �l�k��

= Fkl�r�cos �l�k� + Gkl�r�sin �l�k� , �6�

with Fkl�r� and Gkl�r� defined by inspection of Eq. �6�. The
“local” wave vector z�r� satisfies the following differential
equation:

z2�r� = z0�r� + z1/2 d

dr
�z−1/2� , �7�

with z0�r�=k2 /2− l�l+1� /2r2−V�r�. The phase ��r� of the
wave function is given as a solution of the first-order differ-
ential equation ���r�=z, supplemented with the asymptotic
condition ��r→��→kr− l
 /2−qeln�2kr� /k+�l�k�, where
�l�k�=arg
�l+1+ iqe /k� is the, analytically known, long-
range Coulomb phase shift. We evaluate all the above equa-
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tions in the region around r�R. The numerical calculation
of z�r� is performed through a second-order analytical itera-
tive expansion �27�.

Being able to calculate the function z�r� and the phase
��r�, we assume that the physical solution Pkl�r� differs from

the calculated one P̄kl�r� by a constant in space factor,

Pkl�r� = AklP̄kl�r� . �8�

Evaluating Fkl�r� and Gkl�r� from Eq. �6� and using the cal-

culated values P̄kl at the points r1 ,r2�R, from Eq. �8� we
obtain, for the short-range phase shift,

tan �l�k� =
P̄kl�r2�Fkl�r1� − P̄kl�r1�Fkl�r2�

P̄kl�r1�Gkl�r2� − P̄kl�r2�Gkl�r1�
. �9�

Having calculated the short-range phase shift �l�k�, we de-
termine the renormalization factor as

Akl �
1

P̄kl�R�
� 2


z�R�
sin���R� + �l�k�� . �10�

At this point two important quantities have been determined:
�a� the renormalization factor Akl that transforms the calcu-
lated continuum wave functions into energy-normalized
wave functions and �b� the short-range scattering phase shift
�l�k�.

B. Bound spectrum

The bound-state spectrum is obtained by setting P�R�=0.
Physically, the above condition for the bound states is easily
justified since their asymptotic behavior is as P�l�r→��
�exp�−�2�r� �25�. Thus, given the value of the box radius
R, there are a number of bound states that are accurately
represented by the requirement P�R�=0. This is achieved by
excluding from the B-spline expansion �Eq. �2�� the last
B-spline Bns

, since Bns
�R�=1 and Bi�R�=0, n�ns, thus

eliminating the surface term. Mathematically, this BC for the
bound states defines a two-point boundary-value problem,
whose solution give discrete eigenfunctions and eigenener-
gies. The matrix equation �Eq. �3�� is transformed into a
banded generalized eigenvalue matrix problem of the follow-
ing type:

h�l� · C�nl = �nlB · C�nl. �11�

The solution vector for each partial wave l=0,1 ,2 , . . . is ob-
tained with standard matrix techniques, being very stable ef-
ficient, and accurate. The resulting radial functions satisfy
the usual orthonormal relation �P�nl � P�n�l

�=��n�n�
. The

present approach is nothing else than the one we have called
the fixed-BC method �6�. The main difference here is that we
employ fixed BC’s only for the bound spectrum. Note that a
procedure, similar to the one followed for the continuum
states, can also be applied to the bound spectrum by an in-
verse iteration algorithm.

III. ELECTROMAGNETIC TRANSITION OPERATORS

In this section we present the dipole transition operators
as they transformed when we impose no BC’s at the bound-

ary R. The formulas D̂L=r, D̂P=�, and D̂A=�V�r� represent
the transition operators in the dipole �long-wavelength� ap-
proximation, for the length, velocity, and acceleration
gauges, respectively. Assuming two eigenstates �a�r� and
�b�r� of the Hamiltonian operator �h=−�2 /2+V�r��, it can
be the following relation can be shown �28�:

DA = �ba
2 DL = �baDP, �12�

with �ba=�b−�a, h�i�=�i�i�, i=a ,b, and DG= �a�D̂G�b�, G
=L , P ,A. The above equations are valid under the assump-
tion that the Hamiltonian is Hermitian. In the present case
where the Hamiltonian operator is non-Hermitian it is ex-
pected that the relationship between the gauges changes ac-
cordingly. From a practical point of view the problem of the
calculation of the transition integrals can be expressed as
follows: We only have a representation of the wave functions
in a limited space 0�r�R. How can we calculate integrals
that, in principle, extend to infinity? One solution is to ne-
glect the region from R to �, assuming that the correspond-
ing contribution is small compared with the “inner”-region
contribution to the transition amplitude. That might be cor-
rect when one of the states belongs to the bound spectrum of
the atomic system, since its wave function vanishes exponen-
tially. However, in the case that both states belong to the
continuum spectrum this is no longer necessarily true: since
these states oscillate asymptotically the relevant integrals, for
the length and velocity forms, extending up to infinity, can
give a significant contribution to the total matrix element.
The magnitude of this “outer” contribution, compared to the
inner contribution, is dependent on the value R and the dif-
ference in energy between the scattering states. This problem
becomes especially important when the energies of the con-
tinuum states approach each other: namely, when �a→�b,
since the relevant integral diverges. A procedure for calculat-
ing the outer-region contribution of the dipole transition in-
tegrals is presented below and based on related work by
Peach �10� as well as by Seaton within the R-matrix frame-
work �12,13�. Due to the spherical symmetry of the Hamil-
tonian, the eigenstates can be written as ��r�
= �P�r� /r�Ylm�� ,��, and assuming linearly polarized light
along the z axis the transition matrix elements DG are de-
composed to a product of two quantities: namely
K�la ,ma ; lb ,mb� and TG�a ,b�, where K�la ,ma ; lb ,mb�
= �Ylama

�cos��Ylbmb
�=�mamb

��l�
2 −ma

2� / �4l�
2 −1� with l�

=max�la , lb� carrying common angular factors for all gauges
and TG�a ,b� being dependent on the radial wave functions
alone �28,29�. The quantity Ylm�� ,�� is the standard spheri-
cal harmonic function. The radial matrix element is given by

TG�a,b� = 	
0

�

drPa�r�T̂G�r�Pb�r� , �13�

with T̂G the corresponding radial operator of each gauge. The
radial operators for the velocity and acceleration gauges are
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defined through the commutation relations TP= �a��T̂Lhlb

−hla
T̂L��b� and TA= �a��T̂Phlb

−hla
T̂P��b�, given that T̂L=r, re-

sulting in �10,18�

T̂P = 
 �

�r
+ �lb − la�

l�

r

 , �14�

T̂A =
dA

dr
. �15�

The radial integral �Eq. �13�� is separated into the inner TG
I

and outer TG
O parts �TG�a ,b�=TG

I +TG
O�, defined by the bound-

ary R:

TG
I = 	

0

R

drPa�r�T̂G�r�Pb�r� , �16�

TG
O = 	

R

�

drPa�r�T̂G�r�Pb�r� . �17�

For convenience, we will discuss separately the calculation
of the quantities TG

I and TG
O.

�a� Inner-region contribution: 0�r�R. Due to the finite
extension of the region of the integral, the calculation of the
quantity TG

I , with any standard integration technique is
straightforward and presents no special difficulties even in
the on-shell case �a=�b for all three gauges.

�b� Outer-region contribution: R�r��. It is the infinite
extension of this integral that presents numerically difficul-
ties which become especially severe when the eigenstates are
degenerate ��a=�b� and both belong to the continuum spec-
trum. The most common choices for the calculation of EM
transitions are the length and velocity gauge for a number of
reasons so far. Unfortunately, these are the gauges that the
outer radial integral might have a significant contribution to
the total matrix element, when extending the calculation up
to infinity. Indeed, in the most extreme case of equal energies
��a=�b� the corresponding integrals diverge. On the other
hand, in the acceleration gauge, the convergence is obtained
rather easily since the integral over the radial eigenstates
contains a term that vanishes at least as �1/r2 �hydrogenic
case�. From this, it is concluded that the outer part of the
dipole matrix element can be calculated in the acceleration
gauge with high accuracy and contains no singularities. To
obtain the total transition matrix element one should add the
outer part �calculated in the acceleration gauge� to the inner
part �calculated in the desired gauge� plus the surface contri-
bution. Therefore it is necessary to determine the relation of
the dipole matrix elements between the different gauges in
the specific case of the non-Hermitian Hamiltonian arising
from the use of free BC’s. Such relations are obtained
through the commutation relations between the different op-
erators.

We again start from the commutation relations for the
length, velocity, and acceleration gauges at the outer region

by considering the integrals TP
O=�R

�drPa�r��T̂Lhlb

−hla
T̂L�Pb�r� and TA

O=�R
�drPa�r��T̂Phlb

−hla
T̂P�Pb�r�, result-

ing in

TP
O = �baTL

O − SL, �18�

TA
O = �baTP

O + SP, �19�

with SL and SP being the surface contributions at the bound-
aries,

SL =
1

2
�rWab + PaPb�r=R, �20�

SP =
1

2
�Pa�Pb� + 2
�b −

lb�lb + 1�
2r2 − V
PaPb

+ �la − lb�
l�

r2 �rWab − PaPb��
r=R

, �21�

with Wab�r�� PaPb�− PbPa� being the Wronskian of Pa�r� and
Pb�r�. The contribution at infinity �r→�� vanishes since, if
one of the states is bound, then it goes to zero exponentially,
or if both states are in the continuum, then they oscillate as a
function of their energies and a strong cancellation occurs.
The expression for SP has simplified further by use of the
radial SE �Eq. �1��. From Eqs. �18� and �19� we obtain for
the length and velocity forms the total radial integral as

TL�a,b� = TL
I +

1

�ab
2 ��baSL − SP� +

TA
O

�ab
2 , �22�

TP�a,b� = TP
I −

1

�ba
SP +

TA
O

�ba
. �23�

Knowledge of the wave functions in the inner region 0�r
�� allows an evaluation of the quantities TL

I ,TP
I and the

surface terms SL ,SP. The outer-region integral TA
O is a rapidly

convergent integral since V�r� vanishes as 1/r or faster. For
instance, in the case of hydrogenic atomic system we have
V�r�=−Z /r and

TA
O = 	

R

�

Pa�r�
Z

r2 Pb�r� , �24�

with Z being the atomic number. This integral is a smooth
function of the energy difference �ba of the states Pa�r� and
Pb�r� and for its evaluation we use the expansion �Eq. �6��
for r�R. Finally, it can easily be shown that the surface
terms SL and SP vanish either when R→0,�, or when Pa�R�
and Pb�R� are set to zero. The latter case is the approach
followed from the method of fixed BC’s.

IV. RESULTS AND DISCUSSION

In this section we apply the method to the hydrogen atom
having a Coulomb-like potential ��−1/r�, resulting in van-
ishing short-range scattering phase shifts for all partial waves
l=0,1 ,2 , . . . and all energies. The total �Eqs. �22� and �23��,
inner �Eq. �16��, and surface �second term of Eqs. �22� and
�23�� radial matrix elements are calculated in the length
�Figs. 3–5� and velocity �Fig. 6� gauges. In the acceleration
gauge the total �Eq. �13�� and the outer radial matrix ele-
ments �Eq. �24�� are also calculated �Fig. 7�.
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A. Hydrogen radial wave functions

The hydrogen potential is given by V�r�=−1/r. We
mostly present calculations involving scattering states since
bound wave functions are easily calculated with high accu-
racy due to their finite extension. Initially in Fig. 1 we plot
the hydrogen continuum partial radial wave function P�s�r�
for �=0.045 a.u. �solid line�. The box radius is chosen to be
R=100 a.u. In this figure the calculated �unormalized� radial
wave function is plotted together with the Wentzel-
Krammers-Brillouin �WKB� radial wave function extended
in distance up to 200 a.u. The energy normalized radial wave
function is obtained applying the normalization procedure as
presented in the related section. Use of the calculated radial
wave function and WKB values at the box boundary R
=100 a.u. results in the determination of the normalization
factor �Eq. �10��. The WKB wave function is the one as
given by Eq. �6� with �l�k�=0 and qe=−1. One can notice
that for R=100 a.u. the wave function has reached well its
asymptotic limit, thus allowing an excellent matching of the
WKB wave function and the calculated one. Use of either the
numerical �energy-normalized� radial function or the WKB
analytical function leads to practically identical results.

Next, in Fig. 2, we plot the energy-normalized hydrogen
radial wave functions for the s, p, and d partial waves. The
difference in phase of the wave functions at the boundary
��l
 /2�, between the partial waves l=0,2 and l=1, is con-
sistent with the asymptotic form of the wave functions.

B. Hydrogen radial dipole matrix elements

In Fig. 3 we plot the inner-region contribution 0�r�R of
the bound-free radial dipole matrix element TL

I �length form�
from the P4s�r� hydrogen state to the final P�p continuum for
various box radii. As the box is enlarged the influence on the
matrix element is gradually decreased �the amplitude of the

oscillations as a function of the final energy� toward the
value obtained when R→�. It is also evident from the figure
that not only the amplitude of the oscillations decreases as a
function of the final energy, but in addition the “wavelength”
of the oscillations increases. In the same calculation we have
chosen R=60 a.u. to demonstrate the influence of the surface
terms ��baSL−SP� /�ba

2 on the total radial matrix element. This
is shown in Fig. 4 where the total, inner-region, and surface
dipole matrix elements are plotted. The outer-region contri-
bution TA

O /�ba
2 is about four orders of magnitude smaller than

the above contributions and is not shown.
Similar behavior appears when both states are belonging

to the continuum spectrum. Radial cc dipole matrix elements
in the length �Fig. 5� and velocity �Fig. 6� gauges, from the
�a=26.53 eV �s-wave� initial state to the final P�bP con-

FIG. 1. Energy-normalized hydrogen continuum radial wave
function for �k=0.045 a.u. �k=0.3 a.u.� and l=0. Box radius is R
=100 a.u. In the same plot the calculated radial wave function is
plotted as well as the WKB radial wave function extended in dis-
tance up to 200 a.u.

FIG. 2. Energy-normalized hydrogen radial wave functions at
the same continuum energy �k=0.045 a.u. for R=100 a.u. for the
s , p ,d partial waves.

FIG. 3. Inner-region contribution of the radial dipole matrix
element �length gauge� from the 4s hydrogen initial state ��a=
−0.03125 a.u.� to the final ��bp� continuum states for various values
of R.
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tinuum, are shown. In the figures the total, inner-region and
surface dipole matrix elements are plotted. The latter two
contributions compensate for each other such that the value
of the total matrix element results in a smooth decreasing
function of the energy difference between the states. The
outer-region contribution again is about four orders of mag-
nitude smaller and is not shown. Note the divergence for
transitions between degenerate states ��a=�b� in both forms.
As in the bound-free case, the inner-region and surface terms
oscillate with decreasing amplitude and increasing wave-
length as a function of the energy difference �ba. In Fig. 7�a�
we calculate the total radial matrix element in acceleration
form. The singularity has disappeared, and convergence of
the calculation is quickly reached due to the presence of the

1/r2 factor in the integral. In Fig. 7�b� the contribution of the
outer region R�r�� to the dipole matrix element �Eq.
�24�� is also plotted, being three orders of magnitude smaller.
The same quantities are also obtained with the use of the
nonrelativistic Green function method as presented by Koval
and Fritshze �30�. Agreement between the two approaches of
the order of 10−6 has been achieved.

C. Two-photon photoelectron angular distribution and
ionization cross section for hydrogen

An important test of the method is provided by the calcu-
lation of the two-photon ionization cross section. This quan-

FIG. 4. Radial bound-continuum dipole matrix element �length
gauge� from the 4s hydrogen initial state ��a

=−0.03125 a.u.� to the final ��bp� continuum states for R=60 a.u.
In the plot the total, inner-region, and surface part dipole matrix
elements are shown.

FIG. 5. Radial cc dipole matrix element �length gauge� from the
�as ��a=26.53 eV� hydrogen initial state to the final ��bp� con-
tinuum states for R=60 a.u. In the plot the total, inner-region, and
surface part dipole matrix elements are shown.

FIG. 6. Radial cc dipole matrix element �velocity gauge� from
the �as ��a=26.53 eV� hydrogen initial state to the final ��bp� con-
tinuum states for R=60 a.u. In the plot the total, inner-region, and
surface part dipole matrix elements are shown.

FIG. 7. �a� Total radial cc dipole matrix element in the accelera-
tion gauge from the �as ��a=26.53 eV� hydrogen initial state to the
final ��bp� continuum states for R=60 a.u. �b� The outer-region con-
tribution �TA

O�, being about two orders of magnitude smaller, is
shown. In the same plots, calculations with a Green function ap-
proach �30� are also shown. Except in the near-resonance region
��a��b� the agreement is within the thickness of the lines.
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tity involves matrix elements between scattering states �cc
transitions�, the accurate calculation of which is crucial for
the final value.

Within the lowest-order perturbation theory �2,8�, the
photoelectron angular distribution �PAD� of a two-photon
transition, by linearly polarized light along the z axis, from
an initial state with �i�= ��i , li ,mi� to a final continuum state
of energy � f =kf

2 /2, satisfying incoming-wave boundary con-
ditions �31�, is given by

d�if
�2�

d�kf

�� f,�kf
,�kf

� = C2�MG
�2��� f,�kf

,�kf
��2,

with G denoting the gauge used. Here C2=8
3a2�2, with a
being the fine structure constant and � the photon energy of
the EM field. The angle �kf

denotes the angle of ejection of
the photoelectron with respect to the polarization axis of the
EM field. By expanding the atomic states on a basis of
spherical waves �32�, we obtain

MG
�2��� f,�kf

,�kf
� = �

lf=0,2
MG

�2��� flf�Ylfmf

* ��kf
,�kf

� ,

MG
�2��� flf� = ilfe−i�lf

�kf�TG
�2��� flf�Klfmf

�2� .

The phase shift �lf
�kf� is the sum of the Coulomb and short-

range phase shifts: namely, �lf
�kf�=�lf

�kf�+�lf
�kf�. The an-

gular amplitudes are equal to Klfmf

�2� =K�li ,mi ; l ,m�
	K�l ,m ; lf ,mf� with l ,m and lf ,mf being the angular quan-
tum numbers of the partial-wave expansion of the interme-
diate and final wave functions, respectively. The quantities
TG

�2��� flf� are the two-photon radial matrix elements, involv-
ing a summation over the whole spectrum of the allowed
bound ��nlm� and continuum ��lm� intermediate states,

TG
�2��� flf� = �

�n�0

TG��ili,�nl�TG��nl,� flf�
�i + � − �n

+ 	
0

�

d�
TG��ili,�l�TG��l,� flf�

�i + � − �
, �25�

where TG��ili ,�nl�, TG��nl ,� flf�, TG��ili ,�l�, and TG��l ,� flf�
are the single-photon dipole matrix elements defined in Eq.
�13� and calculated by the use of Eqs. �22� and �23�, depend-
ing on the gauge used. The kinetic energy of the ejected
photoelectron is connected with the initial-state energy
through the photon energy as � f =�i+2�.

In the case of an initial state having li=0 and mi=0, as the
hydrogen ground state, we have K00

�2�= �1/3��mf0
and K20

�2�

= �2/�45��mf0
. By definition, integration over the wave vec-

tor angles �here only over the �kf
� of d�if

�2� /d�kf
results to the

two-photon ionization cross section

�if
�2��� f� = �

lf=0,2
�if

�2��� flf�

= C2
1

9
�TG

�2��� fs��2 +
4

45
�TG

�2��� fd��2
 ,

where �if
�2��� flf�, defined by inspection of the above formula,

is the two-photon partial ionization cross section to the lf
angular symmetry.

1. Numerical integration of the two-photon transition amplitude
TG
„2…

The summation is over the bound intermediate states
while the integral is performed over the continuum states of
the p symmetry of the hydrogen atom. Within the free-BC
method the continuum part of the two-photon transition am-
plitude can be evaluated with any numerical integration rule
we want. This because the discretization of the continuum
states can be chosen freely as has been described. In the
calculation of the two-photon transition amplitudes an extra
complication may arise when the photon energy of the EM
field allows single-photon ionization �ATI case�: namely,
when �i+�=�.

From the numerical point of view, a pole appears in the
integrand with the behavior of a �-function singularity.
Within the present method, this anomaly is easily cured by
choosing for the continuum intermediate states ��n�0� a dis-
cretization ¯��n��n+1� ¯ ��nf

�¯, with constant en-
ergy step equal to �E=�n+1−�n �see Fig. 8�. Then, the dis-
cretization of the final states is chosen with a constant step
2�E. Thus, in the ATI case, for any of the final states ��nf
=�i+2�� there is a corresponding intermediate state �n0

such
that �n0

=�i+�. The pole is extracted from the integral �Eq.
�25�� by use of the identity lim�→01 / �x− i��= P�1/x�
+ i
��x�, with P being the symbol of principal value. For
instance, starting from the hydrogen ground state we have

TG
�2��� flf� = X

�n��0

T�1s,�np�T��np,�nf
lf�

�1s + � − �n

+ i
T�1s,�n0p�T��n0p,�nf
lf� , �26�

with X denoting integration over the bound and continuum

FIG. 8. Schematic figure for the numerical calculation of the
two-photon ionization radial matrix elements in the ATI case.

L. A. A. NIKOLOPOULOS PHYSICAL REVIEW A 73, 043408 �2006�

043408-8



spectrum of the p symmetry and lf =0,2. Each of the con-
tinuum states is normalized by the use of Eq. �10� and each
of the dipole matrix elements has calculated by the use of
Eqs. �22� and �23� depending on the gauge used. In the
present case we have chosen a box radius of 60 a.u. and
constant energy step for a continuum discretization equal to
�E=0.005 a.u. The number of bound states ��n�0� was 7
and the number of the intermediate continuum states ��n

�0� 1200.
From related equations an accurate and reliable calcula-

tion of the angular distributions in the two-photon transition
involves both �a� the evaluation of partial-wave two-photon
matrix elements and �b� the determination of the partial-
wave phase shifts at the same photoelectron energy. Up to
now such a calculation, within the fixed-BC method, was
rather cumbersome, since the lack of degeneracy for differ-
ent angular symmetries is inherent in the calculational pro-
cedure. Different partial waves, due to the centrifugal term,
result in different discretizations of the corresponding radial
Hamiltonian. Interpolation procedures were applied to over-
come this inconvenience in the PAD calculation. Needless to
say, increasing the order of the ionization process �since the
number of final channels increases accordingly� the interpo-
lation procedure becomes even more difficult.

Results for the two-photon ionization partial cross sec-
tions for lf =0 �solid line� and lf =2 �dotted line� from the
hydrogen ground state, for the non-ATI case, are presented in
Fig. 9�a�. For comparison, calculations have also been per-
formed with the Green function method �30�. We find agree-
ment within the thickness of the lines; thus, we present only
results for the total two-photon cross section �Fig. 9�a�� ob-
tained with the Green function method �long-dashed line�. In
the ATI regime the total two-photon cross section has been

calculated for a range of photon energies and plotted in Fig.
9�b�.

Finally in Fig. 10 we have plotted the PAD for the kinetic
energy of the ejected electron �=8.857 eV and �=20 eV.
All basic features are present in this plot. For ��
�8.857 eV� where the lf =2 wave dominates, the electrons
are ejected not only along the polarization axis ��kf
=0° ,180° � but also in the perpendicular direction ��kf
=90° �, with smaller probability. For photon energy �
=20 eV, which corresponds to an ATI process, again the lf
=2 partial wave dominates and the behavior of the angular
distribution has similar behavior. The ejection to angles 60°
and 120° is close to zero but not completely vanishing due to
the presence of the s component of the wave function.

V. CONCLUSIONS

In conclusion, we have given the basic theory as well as
the corresponding formulas for calculating bound and scat-
tering states of systems subject to spherically symmetric po-
tentials with free BC’s. For this we have employed a varia-
tional finite basis �B-spline� method and transformed the
radial SE to a system of linear equations, allowing for effi-
cient and accurate computation, with standard techniques.
Use of B-splines results in matrices of banded structure of
width of the order of the B-spline basis. In addition a method
for the calculation of bound-continuum and continuum-
continuum transition matrix elements in length, velocity, and
acceleration gauges is formulated. The outer-region contribu-
tion of the matrix elements is calculated, invoking the accel-
eration form together with the surface term originating from
the finite representation of the operators. The main advan-
tages of the present method are the following: �a� it allows
complete control of the density of states in any energy range

FIG. 9. �a� Two-photon partial ionization cross section from the
hydrogen ground state for using the present free-BC method
�s-wave, solid line; d-wave, dotted line�. The total ionization cross
section is also calculated, for comparison, with the Green function
method as described in Ref. �30� �long-dashed line�. The agreement
of the present calculation of the total cross section with that of the
Green function method is within the thickness of the line. �b� The
two-photon total ionization cross section from the hydrogen ground
state in the ATI regime.

FIG. 10. Two-photon photoelectron angular distribution �arb.
units� from the hydrogen ground state, as a function of the ejection
angle �in deg� with respect to the polarization axis of the EM field,
using the present free-BC method for two-photon energies.
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of the scattering spectrum and, due to this, �b� preserves the
degenerate character of the scattering spectrum for various
partial waves. The latter two achievements were the main
drawbacks of methods based on introducing artificial BC’s as
has been explained in the text. Furthermore, the present
method allows a generalization of the B-spline method to
more complicated systems involving multichannel states

�33�. Such a multichannel method has been employed suc-
cessfully in a typical three-body atomic system: namely, the
helium atom �2,34�. In those works the single-electron orbit-
als were produced by a fixed-BC method, thus leading to
complications related with to the degeneracy between the
partial waves for each electron, a fact that we hope to solve
with employment of the present approach.
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