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Classical trajectories of molecules exposed to few-optical-cycle light pulses
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It is shown that, in the framework of classical electrodynamics and in some peculiar cases, an exhaustive
description of rotational evolution of molecules driven by intense few-optical-cycle laser pulses should con-
sider the electric field of the pulse rather than its intesity envelope. We show that, at moderate pulse intensities,
nonlinear effects driven by the molecular hyperpolarizability play a significant role. These findings are illus-
trated by numerical simulations concerning the classical motion of several molecules exposed to few-cycle

light pulses.
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I. INTRODUCTION

Classical theories concerning the motion of microscopic
polarizable bodies in electric fields have been developed a
long time ago, as proven by the pioneering work of Debye
about the orientation of polar molecules in a static field [1,2].
Beyond the academic interest, the classical description of
molecular dynamics driven by electromagnetic waves is a
helpful tool in the understanding of many physical phenom-
ena; among many examples, we could recall the classical
interpretation of the slow nonlinear optical responce in gases
[3] and liquids [4] and the classical description of anisotropy
in molecular photodissociation [5,6].

As a matter of fact, a complete and exhaustive description
of molecular rotational motion can be achieved only in the
framework of a quantum theory [7]. Nevertheless, owing to
the clear insight that a classical description provides and to
the larger computational costs required by quantum models,
the comparative study of classical against quantum molecu-
lar dynamics has acquired strong importance in the past [8]
and it is nowadays still active today [9,10]. The fundamental
reason for the strong interest in this topic is that laser-
induced molecular alignment [11,12] is nowadays an impor-
tant investigation tool in molecular physics [13]. This effect
has been exploited in the study [14] and the applications
[15,16] of impulsive rotational Raman scattering; it can be
used for the implementation of molecular trapping [17]; it
allows the investigation of high-order harmonic generation
as a function of molecular alignment [ 18-20]; it can provide
useful insight into the physics of chemical reactions [21] and
in chemical bond dissociation of molecules [22-24].

A large number of theoretical models, describing nonreso-
nant laser-molecule interaction, are based on the general as-
sumption that the molecular response time is very large in
comparison to the optical period; it is worth noting that, in
the literature, such assumption is shared by quantum and
classical models. In this approximation the laser pulse enve-
lope acts as the driving term and the rapid oscillations of the
electric field are neglected. Moreover, in the case of polar
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molecules, the presence of a permanent dipole moment has
negligible effects on the final state of the molecule. A further
common assumption is that the nonlinear contributions to the
induced molecular dipole moment do not play any role in the
molecular dynamics. Hereafter, the ensemble of these as-
sumptions will be called linear envelope approximation
(LEA).

In a broad range of interaction conditions, the LEA allows
one to correctly describe the rotational evolution of mol-
ecules exposed to laser pulses. Nevertheless this approach
could not be satifactory when very short and intense light
pulses are considered. Indeed, the present technology [25]
allows one to generate near-single-cycle intense light pulses
[26]. Two new aspects appear simultaneously when such
pulses are considered, namely, the larger peak intensity to
which the molecule can be exposed without significant ion-
ization and the rapid changes of the pulse envelope on the
optical cycle scale. A large field peak is responsible for non-
linear distortion of the induced dipole moment, thus influ-
encing the laser-molecule interaction. On the other hand the
envelope approximation, based on the averaging of electric
field oscillations during the interaction, could not describe
effects related to fast changes of the pulse envelope on an
optical cycle scale. Although these two aspects could have
different weights, depending on the considered molecule and
on the interaction parameters, they are inherent to the laser-
molecule interaction in the regime of ultrashort pulse dura-
tion.

The aim of this work is to show that, in some peculiar
cases and in the framework of classical electrodynamics, the
interaction between an intense, ultrashort laser pulse and a
molecule should be described including both the actual shape
of the electric field of the pulse and the role of molecular
hyperpolarizability. As a noticeable consequence, we will
show that the inclusion of these terms implies the presence
of carrier-envelope-phase effects in the classical dynamics of
polar molecules driven by near-single-cycle light pulses.

The paper is organized as follows: in Sec. II a model for
the classical description of molecular dynamics under the
influence of an intense, few-optical-cycle laser pulse will be
presented; the model will be developed in the regime of the
nonresonant laser-molecule interaction. In Sec. III we will
discuss the regimes in which the LEA deviates from the ac-
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tual molecular dynamics when the interaction with single
ultrashort laser pulse is considered. Section IV will be de-
voted to the effects of hyperpolarizabilities on the classical
molecular response induced by two-color laser pulses.

II. THEORETICAL MODEL

In this section a classical theoretical model for the laser-
molecule interaction will be developed and compared to the
linear envelope approximation. We will assume that the mo-
lecular response to an electric field is instantaneous and that
the laser pulse frequency is far from resonances. In order to
simplify our discussion, the molecules will be modeled as
rigid rotors, thus assuming that molecular vibrations give
negligible contribution to the rotational dynamics.

A. Laser-molecule interaction

Let us consider a molecule exposed to the electric field
E(7) of an ultrashort laser pulse. In order to develop a general
model, let us assume that the molecule has a dipole moment
d=d?+d, 4(E), where d” is a permanent contribution and
d;,q is the contribution induced by the external field. Let us
now consider the molecular equation of motion projected
onto a Cartesian system Oxyz; fixed with respect to the mol-
ecule. Upon exposure to the laser pulse, the molecule expe-
riences a torque 7=d X E, which is related to the molecular
angular momentum L by the relation,

dL
T=—+w XL, (1)
dt

where @ is the molecular angular velocity. In Eq. (1) we
intentionally omit any dissipative term related to radiation
emission and molecular collisions. Equation (1) can be writ-
ten in terms of Cartesian components on the axes of Oxyz,

k. ik ol
7=l o+ € oo, (2)

where the Einstein convention for index summation is used
and I¥ is the molecular tensor of inertia, € is the permuta-
tion symbol, w;=dw,/dt; all the indices can assume the val-
ues {x,y,z}. Expanding the molecular dipole moment as a
function of the driving electric field components E(f), one
obtains

di=d + dEj+ BEE, + Y"EE,E,+ -+, (3)

where o /; is the polarizability tensor of the molecule, ,8 and
)/’”" are the second and third-order hyperpolarlzablllty ten-
sors, respectively. From Egs. (3) and (2), we obtain

G{k(d§0 + ajEl + ﬁijlEm
+'}/jmnElEmEn 4 e )Ek - Ii{wk + G{kwjlfcwl’ (4)

It is worth noting that the components of all the tensors are
constant in the chosen Cartesian system, whereas the electric
field and the angular velocity are functions of time. Introduc-
ing a fixed Cartesian system OXYZ, the motion of the mol-
ecule can be described in terms of the motion of the molecu-
lar frame Oxyz; this can be done using the three Euler angles
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FIG. 1. (Color online) Euler angles 6, t, and ¢, addressing the
molecular frame Oxyz with respect to the fixed frame OXYZ; N is
the nodal axis obtained from the intersection between the XY and
the xy planes.

0,1, ¢, as shown in Fig. 1. With the help of these new pa-
rameters, Eq. (4) can be rewritten as

ef“(d + dAJE; + BI"ATESAT E,

m—q

YN EATE N E; + -+ ) ALE;

=Faop+ G{kwjlkwl, (35)
where Ej(r) are the electric field components in the fixed

system OXYZ and A" +(¢) are functions relating the compo-
nents in the fixed frame to those in the molecular frame Oxyz
[27]. Since the relation between @ and the motion of the
molecular frame is known [27], we obtain from Eq. (5) three
equations describing the response of the molecule as a func-
tion of the applied electric field. The expressions for the

quantities AZ and for the angular velocity w are reported in
Appendix A.

B. Linear envelope approximation

The general model we have presented has been compared
to the linear envelope approximation. In order to derive the
equations for molecular evolution in the framework of the
LEA, let us consider a polychromatic electric field written in
a general form, as

E{n)=2 €\ {H)cos(Qyt— 7,7, (6)
X

where (), are the optical pulsations of the various spectral
components of the pulse, &, ;(r) are the corresponding pulse
envelope components projected onto the Cartesian axes XYZ
and 7, ; are the carrier-envelope phases corresponding to
each axis. Inserting Eq. (6) into Eq. (5), neglecting the non-
linear contributions and performing a temporal average over
an optical cycle, one obtains the LEA for the dynamical
equations,

Nk I A A
2 cos(Amy j.n) €l ajAl AL EC\
A

=2(Lay + €' wlw), (7)

where Ay ;== ;— Tz in the derivation of Eq. (7), it was
assumed that each component of the polychromatic pulse is
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far from the others in the spectral domain and that the posi-
tion of the molecule does not change during an optical cycle.
It is worth noting that the phase difference A, j, 7 is related
to the polarization state of each spectral component of the
optical pulse. According to the previous equation, permanent
dipoles give no contribution to the molecular motion in the
LEA. In the limit of very short driving pulses, the LEA can
be further simplified to the so called &-kick approximation
[10,12]; in this case the final dynamical state of the molecule
depends only on the pulse fluence and polarization, whereas
it does not depend on the actual pulse duration (see Appen-
dix B for details).

III. INTERACTION WITH A SINGLE LASER PULSE

In this section we will consider the interaction of mol-
ecules with an intense, ultrashort laser pulse. The theoretical
model is illustrated through examples concerning the classi-
cal modelling of existing molecules. For the sake of simplic-
ity, we omit details about the dynamics during the interaction
and we limit the discussion to the final dynamical state of the
molecule. The results will be represented by the acquired
angular momentum, which is a conserved quantity after the
interaction.

Moments of inertia, dipole moment, polarizability, and the
first nonvanishing hyperpolarizability of the considered mol-
ecules were acquired from the literature [28-35]. The nu-
merical solution of the dynamical equations was achieved
using a standard Runge-Kutta algorithm. In the simulations it
was assumed that the laser beam propagates in the fixed
frame along the Y axis; the investigation was limited to mol-
ecules initially at rest. In order to perform realistic calcula-
tions, the driving pulse intensity was kept below the ioniza-
tion threshold (which was fixed at the 5% of the overall
population), according to the Ammosov-Delone-Krainov
(ADK) model [36,37]. As a matter of fact, the ADK model
must be considered only as a guideline for the choice of the
maximum intensity, because it could work improperly for
molecular species.

A. Analysis of linear rotor dynamics

We have first considered the case of a linear rotor exposed
to an intense few-optical-cycle laser pulse, whose electric
field is directed along the Z axis. In this case the rotor posi-
tion is described by the angle # with respect to Z; the angle
i is constant during the interaction, whereas the evolution of
¢ can be neglected. We will neglect the role of hyperpolar-
izabilities, even though they can give a contribution to the
rotor dynamics. In this case, Eq. (5) can be written as fol-
lows:

210+ 2d,E,(t)sin 6(r) + AaEL(1)sin 26(1) =0,  (8)

where I is the moment of inertia, Aa=a,,—a,, is the polar-

izability anisotropy of the rotor, and dz=d50) is the permanent
dipole moment. In order to write an analyﬁcal expression for
the angular momentum acquired by the molecule after the
interaction with the laser pulse, we approximate the sine
functions in Eq. (8) with a Taylor expansion around the ini-
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tial position 6,; this approximation holds as far as the rotor
undergoes small angular displacements during the laser
pulse. Solving Eq. (8) at the zero-order of the Taylor expan-
sion, plugging the result into the expansion up to the first
order and integrating, one obtains the approximated angular
momentum L, acquired by the rotor after the interaction with
the pulse,

Ly=Ly+ Lgip + Lpot + Linix 9)
where
Aasin26, [~
Ly=- % f EX(1)dt (10)

is the angular momentum calculated assuming the rotor at
rest during the interaction;

d sin 26,

o t 1
Ld"P_Tf_ dtE,(1) dt'f Ej(n)d7 (11)

is the contribution related to the molecular dipole moment,

Ad?sin46, [~ ! a
LPO]: Tof dl‘E%(l) dl'f E%(T)dT (12)

is the additional contribution related to the polarizability and

Aad.| cos 6,sin26, [~ ! t
Ly = “{ 0 S 2% f dtE,(1) f dr’ f EXDdr

1 2

o’} t I’
+c0s 26, sin Gof th%(t)f dt’f EZ(T)dT] (13)

is the contribution related to the interplay between perma-
nent dipole moment and polarizability. A negative angular
momentum indicates that the rotor approaches the Z axis
after the interaction.

In the framework of the envelope approximation, Eq. (8)
is replaced by

Aal(7)

2010+ sin 26(1) =0, (14)

where €,(1) is the envelope of the electric field E (7). Ac-
cording to the LEA, the angular momentum acquired by the
molecule is

Aasin26, [~ AaFZ, sin26

(15)

JLEA _ _

where Z,=\uy/g, is the vacuum impedance and F
=f°_cocE§(t)/Zvdt2%fcfwefé(t)/zv dt is the pulse fluence; in
the previous equation we assumed the molecule at rest dur-
ing the interaction (S8-kick approximation). It is worth noting
that L'FA is equal to the term L; thus the three remaining
terms in Eq. (9) represent the discrepacy between the linear
envelope approximation and the complete description of the
rotor dynamics. We will focus the analysis on the two terms
related to the dipole moment, because they are more inter-
esting for the aim of this work. The results previously re-
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ported can be easily interpreted in the spectral domain; in the
following the Fourier transform of E () will be indicated as

E(Q).

1. Dipole term

According to the properties of the Fourier transformation,
the dipole term Lg;, can be written as

(16)

d*sin 26, [* |E(Q)]>dQ
Lgip=— Py

21 . O 2x

In the case of a pulse with a spectral bandwidth A{) much
smaller than the central frequency €, (AQ <), Eq. (16)
can be written as follows:

d’FZ,sin 26,

b ==""0 s

where the Parseval theorem was used. The dipole correction
to the angular momentum turns out to be proportional to the
pulse fluences and to the dipole moment (thus, it is vanishing
for nonpolar rotors) and it has the same sign of L; at con-
stant fluence, the larger is the wavelength of the laser pulse,
the larger is Lg,. Moreover, the dipole correction is smaller
for heavier molecules. It is worth pointing out that the dipole
correction holds also for multicycle laser pulses and can be
very important for molecules with very large dipole moment.
In order to show the relevance of this correction term, we
considered the dynamics of a lithium hydride (HLi) mol-
ecule, initially at rest in the position 6y,=m/4, exposed to
intense Gaussian laser pulses of different central frequencies;
such a molecule was chosen owing to the very large dipole
moment (5.88 D) and low inertia moment. Figure 2 shows
the angular momentum correction factor, defined as

LA - L5
AL= f|LL—EA| (18)

AL is shown as a function of the pulse central frequency (),
(filled dots). The pulse duration was #,=5T, where T is the
optical period (T=27/€);). The calculated AL values are in
excellent agreement with Eq. (17) (solid line in Fig. 2). As
clearly shown in the figure, the correction factor increases
upon decreasing the pulse central frequency, ranging from
few percent in the visible up to 80% in the near infrared
(Qp=5X10" rad/s).

For ultrabroadband laser pulses, Eq. (17) does not hold
any more and Eq. (16) must be considered; one can show
with simple argumentation that, for a fixed fluence and cen-
tral frequency, a laser pulse with a larger bandwidth AQ
induces a larger dipole term. Such finding is supported by
numerical simulations, as reported in Fig. 3; the quantity AL
was calculated for the same molecule at the pulse wave-
length A=1.6 um as a function of the normalized pulse spec-
tral bandwidth AQ/€), reported on the upper abscissa axis.
The lower axis shows the corresponding pulse duration (only
transform-limited pulses were considered). The results are
shown as filled dots and are compared with the prediction of
Eq. (16), shown as a solid line; values obtained using the
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FIG. 2. Angular momentum correction factor for a HLi mol-
ecule exposed to an ultrashort laser pulse as a function of the central
frequency of the pulse. Solid dots: calculation by full numerical
simulations assuming a pulse fluence F=2.1X 103 J/m? and a du-
ration #,=5T; solid line: results predicted by the analytical approxi-
mation (17).

approximated relation (17) are also shown as dashed line for
comparison. One can see that the dipole correction increases
with the pulse bandwidth (i.e., increases for shorter dura-
tions, if transform-limited pulses are considered); an increase
of more than 2% in the acquired angular momentum is ob-
tained for single-cycle driving pulses. As a matter of fact, the
spectral extension of the pulse is the only key factor; indeed,
Eq. (16) does not depend on the spectral phase of the pulse.

AQ/QO
0403 0.2 g.1
15-03-[““1'-- T T T T T T

HLI, 8, = /4

13.0
1

FIG. 3. Angular momentum correction factor for a HLi mol-
ecule as a function of the normalized bandwidth of the driving
pulse. Filled dots: calculation by full numerical simulations assum-
ing a pulse fluence F=1.1X10° J/m? and a central wavelength \
=1.6 um; solid line: results predicted by the analytical approxima-
tion (16); dashed line: prediction obtained according to Eq. (17).
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FIG. 4. Symbols: angular momentum correction factor for a HF
molecule, calculated by full numerical simulations as a function of
the CEP of the driving pulse, assuming a fluence F=1.9
X 10* J/m? and a wavelength \=2.4 um (filled triangles: two-
cycles Gaussian pulse; filled dots: one-cycle Gaussian pulse; empty
squares: ultrabroadband pulse). Solid line: results predicted by the
analytical approximations (16) and (19).

Thus a similar result can be obtained inducing spectral
broadening in multicycle driving pulses.

2. Mixed term

The term L,;,, that will be called mixed term hereafter,
can be approximated by the following relation:

_ Aad(35sin36,-sin 6) [ E'(Q)A(Q) dQ
mix 41 0 2
(19)

where A(Q)=E*E is the autoconvolution of the pulse spec-

trum and E” is the conjugate of E. It must be noted that, if
the laser pulse has significant spectral components around
0, A(Q)) is not vanishing around =0 and Q=2€),. Thus,
as far as the spectrum of the laser pulse is narrow, the mixed
contribution will be negligible, because there will be negli-
gible overlap between the two terms inside the integral in Eq.
(19).

For ultrabroadband pulses (at least spanning one octave of
the frequency range), a significant overlap could be ob-
served; in such a case it can be shown that L ;, depends on
the carrier-envelope phase (CEP) 7 of the driving laser pulse.
Indeed, if the laser pulse is transform-limited, the function
A(Q) will show a vanishing phase around the spectral origin
and a phase 27 around 2(); thus the overlap integral in Eq.
(19) will depend on 7.

In order to test such conclusion, we considered the dy-
namics of a HF molecule in the initial position 6y,=3/20,
exposed to ultrashort pulses with central wavelength A
=2.4 pum and fluence F=1.9 X 10* J/m?; the corresponding
results are shown in Fig. 4. We choose this molecule because
the higher ionization potenzial of HF (16.09 eV) with re-
spect to HLi (7.9 eV) allows to expose the former to larger
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fluences, with larger CEP effects. The quantity AL was cal-
culated as a function of the pulse CEP for three different
cases, namely, for single-cycle (filled dots) and two-cycles
(filled triangles) Gaussian pulses and for an ultrabroadband
transform-limited pulse (empty squares); in the latter case
the pulse power spectrum, with super-Gaussian shape, has a
normalized bandwidth AQ/€Q;=0.75. One can see that the
correction factor shows a negligible dependence on the CEP
for two-cycle pulses, whereas a noticeable phase effect is
present for shorter pulses; variations as large as 1% are ob-
served for single-cycle pulses; an effect amounting to 2% is
obtained for an ultrabroadband driving pulse. These findings
confirm the presence of a CEP effect for pulses having a
large spectral extension.

The numerical results were also compared to those ob-
tained by the analytical approximations in the case of the
ultrabroadband pulse (solid line in Fig. 4). The agreement
between the two simulations is also very good in this case.

B. Ensemble of linear rotors

We have considered up to here the dynamics of a single
rotor. Nevertheless it is useful to demonstrate that there is
also a significant departure between the LEA and the actual
molecular dynamics when a rotor ensemble is considered.
Let us assume that an isotropic distribution of linear polar
rotors, initially at rest, interacts with a laser pulse polarized
along the Z axis. In order to represent the behavior of the
ensemble, one can determine the so called classical align-
ment factor A(f)=(cos? 6(t)), which measures the degree of
alignment of the rotor ensemble along the Z axis. For an
isotropic distribution of initial positions 6, this quantity is
given by

f cos? 6(t, 6y)sin Gyd 6,
0
A(r) = 2 ; (20)

the integration is performed between O and 7 in order to
consider all the possible orientation of the polar rotors. Fig-
ure 5 shows the alignment factor of an ensamble of HF mol-
ecules, initially at rest, interacting with a 5-optical-cycle
pulse. A(f) is constant and equal to 1/3 before the interac-
tion; after the interaction, the alignment factor increases up
to about 0.8 and then shows a damped oscillation around 0.5.
It is worth noting that the prediction obtained according to
the LEA (dashed line) differs from that obtained in the
framework of the complete dynamical model (solid line). We
ascribe this difference to the different angular distribution
expected by the two models after the interaction.

C. Dynamics of nonlinear rotors

The study of the molecular dynamics of nonlinear rotors
cannot be easily reduced to analytical treatment, because si-
multaneous variation of all three Euler angles during the in-
teraction is expected; in such cases numerical simulations are
required. As a typical example, we consider the interaction of
a water molecule at rest (in the initial position 6y=y= ¢,
=1r/4) with a laser pulse, linearly polarized along the Z axis.
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T T

HF,24pm, t=5T

<cos’(0)>

Time {ps)

FIG. 5. Alignment factor of an ensemble of HF molecules in-
teracting with a 5-optical-cycles pulse, with central wavelength \
=2.4 pm, and fluence F=7.5X10* J/m? calculated according to
the complete model (solid line) and to the envelope approximation
(dashed line).

Owing to the complexity of the molecule dynamics, we cal-
culated both the modulus and the Cartesian components of
the angular momentum correction factor AL=(L;,
—LYEA)/|LLEA|. The results are shown in Fig. 6 as a function
of the central frequency (), for a 5-optical-cycle pulse.

The dynamics of the H,O molecule is more complex with
respect to a linear rotor; indeed not only the modulus, but
also the direction of the final angular momentum changes
with respect to that predicted by the envelope approximation.
This effect is clearly shown by the changes in the Cartesian
components of AL in the laboratory frame. Indeed the angles
¢ and v formed by L, with the X and Y axes, respectively
(symbols in the inset of Fig. 6) change with (), whereas the

Wavelength (um)

15 1 0.5
20— T T T T
® |AL|
10—.0. H20,60=\|10=¢0=1rl4
*e0
b °
0 - ®®%e0c000004d
g
3 10}

Angle (x rad)

L ALy 1/4%%ee
.30 : < , 15 20 25 30 35

15 20 25 30 35
Q, (10" rad/s)

FIG. 6. (Color online) Angular momentum correction factor for
a H,O molecule calculated by full numerical simulations assuming
a 5-optical-cycle pulse with a fluence F=7 X 10> J/m?. Filled dots:
modulus of AL; solid lines: Cartesian components. Inset: angles
formed by L (symbols) and L4 (lines) with respect to the Car-
tesian axes.
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angles formed by L4 stay constant. It is worth noting that

the angular momentum acquired by the molecule belongs to
the XY plane irrespective to the pulse frequency; indeed the
angle { formed by L, with the Z axis is always equal to 7/2.

In conclusion, the classical LEA for polar molecule dy-
namics does not satisfactorily describe a few important ef-
fects related to the permanent dipole of the molecule. Such
effects are more important for longer wavelength, lighter
molecules and for large values of the permanent dipole.
Moreover carrier-envelope phase effects, which have to be
considered in the case of ultrabroadband pulses, are envis-
aged in the complete model, but are not present in the enve-
lope approximation.

IV. MOLECULES INTERACTING WITH TWO-COLOR
ULTRASHORT LASER PULSES

In this section we will consider the interaction of mol-
ecules with two-color ultrashort laser pulses. The discrep-
ancy between the LEA and the complete model is related to
the role of the molecular hyperpolarizabilities; such effect
will be analyzed in detail for linear rotors and illustrated with
the help of numerical simulations.

A. Analysis of linear rotor dynamics

We will limit the analytical treatment to the role of the
second-order hyperpolarizability 8 in the dynamics of linear
rotors; higher-order effects can be analyzed in a similar way.
Let us assume that the only significant components of the
hyperpolarizability are 53,.., B, Bu:=PBx.x and the compo-
nents obtained replacing x with y. Let us consider the inter-
action of the molecule with two simultaneous laser pulses
with orthogonal polarization and central frequencies (), and
0,=2Q,, respectively; the overall electric field can be writ-
ten as E()=F(t)uy cos(Qr+ 7,)+S(H)ux cos(2Q 1+ 1,),
where u; and uy are the unity vectors along the Z and the X
axes, respectively. In order to simplify the analysis, we will
assume that the molecule lies in the XZ plane and it is at rest
during the interaction. The contribution of the molecular hy-
perpolarizability to the final angular momentum is given by

©

F2(1)S(t)cos*>(Q,1 + 7,)cos(2Q 1 + p,)dt,

-0

L? =g(B, b))
(21)
where

g(ﬁ’ 00) = (IBZZZ - 2Bxxz)(cos3 00 -2 sin2 00 Cos 00)
+ 3., sin? 6 cos 6. (22)

Such contribution, which has to be summed to the angular
momentum terms related to the linear polarizability and to
the permanent dipole, is clearly due to a second-order non-
linear effect, which is completely neglected by the linear
envelope approximation. Assuming that the envelope of the
electric field varies slowly with respect to the optical carrier,
we can simplify Eq. (21) as follows:
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31 CO, 6,=y, = /4

FIG. 7. Angular momentum correction factor for a CO molecule
interacting with two-color laser pulses (see text); symbols: results
of full numerical simulations as a function of the CEP 7; solid line:
prediction obtained according to Eq. (23).

(B 8(B.6y)

L@ = cos(27, — ) J FX0)S(ndt.  (23)

Equation (23) shows a clear dependence on the CEP differ-
ence Anp=2m,—7,. In order to confirm such analytical result,
we have performed numerical simulations for a CO molecule
exposed to a bichromatic ultrashort laser pulse containing
two components: the former (at 800 nm, with time duration
of 5 optical cycles), is polarized along the Z axis; the latter,
(at 400 nm, with time duration of 10 optical cycles) is polar-
ized along the X axis. The two pulses impinge on the mol-
ecule simultaneously; each pulse has a fluence F=7
X 10° J/m?; the initial position of the molecule, assumed at
rest, was set to fy=m/4. The angular momentum correction
factor AL=(|L|-[L"4])/|L"4| obtained by simulations is
reported in Fig. 7 as a function of the phase n; of the 800-nm
pulse; the phase of the second harmonic pulse was set to the
constant value 7,=0. As clearly shown by the figure, the
nonlinear contribution to the final angular momentum is
phase-dependent; it is worth noting that the prediction ob-
tained according to Eq. (23) (solid line in Fig. 7), is in very
good agreement with the numerical simulations (filled dots).
Indeed, the correction terms of Egs. (11) and (13) have neg-
ligible role in this case, owing to the large inerta and low
dipole moment of CO. Thus the main correction term is re-
lated to the second-order hyperpolarizability.

B. Dynamics of nonlinear rotors

In the framework of an analytical treatment, it is difficult
to predict the nonlinear effects induced on the dynamics of
nonlinear rotors. In the case of second-order effects, one
could assume that a phase dependence, similar to that previ-
ously seen, also holds for nonlinear molecules. Nevertheless
more complicated effects can also be envisaged. In order to
provide an example of such effects, let us consider the CH,
molecule. The methane molecule shows a tetrahedral group
symmetry, corresponding to isotropic polarizability and iner-
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FIG. 8. Symbols: angular momentum of a CH, molecule calcu-
lated by full numerical simulations as a function of the CEP 7, in
the case of a two-color excitation (see text); solid line: fitting ac-
cording to the |cos A7| function; dashed line: prediction obtained
according to the linear envelope approximation.

tia moment tensors [33]. It can be shown that, in a reference
system Oxyz whose axes are directed along the sides of a
cube containing the methane tetrahedron, the significant
components of the second-order hyperpolarizability are
given by [38] ﬁlmn=ﬁ(iljmkn+ilillkm+iinjlk11+imji1kl+injlkm
+i,j.k;), where i, j, and k are the unit vectors along the
X, y, z axes. We would like to investigate whether, in the
framework of classical electrodynamics, the methane mol-
ecule could be rotationally excited by few-cycle laser pulses.
If we limit our analysis to the linear envelope approximation,
the answer is negative; owing to the isotropic nature of «;),
the induced dipole in methane is always parallel to the pulse
electric field; thus the torque induced in the molecule is al-
ways vanishing. A different result is obtained when the
second-order hyperpolarizability is taken into account. We
performed the numerical calculations using the same bichro-
matic laser pulse considered in the previous simulation. The
methane molecule was assumed at rest, with the three Euler
angles initially set to 77/4. Figure 8 shows the quantity |L|
as a function of #;, assuming 7,=0. In the linear envelope
approximation, the induced dipole should stay parallel to the
field. Thus a molecule initially at rest would stay in the same
position after the interaction with the laser pulses and the
corresponding angular momentum would be vanishing. In-
deed, this is the prediction obtained by simulations according
to the LEA (dashed line in Fig. 8). The results obtained with
the complete numerical model (shown as symbols) are dif-
ferent; the molecule can be rotationally excited by the
bichromatic laser pulse. Moreover the acquired angular mo-
mentum depends on the quantity Anp=2n,—n,. It is worth
noting that the result can be satisfactorily fitted by the rela-
tion |L| <|cos Az| (shown as a solid line in the figure). This
unespected behavior is entirely ascribed to the interaction
between the field at 400 nm and the second-harmonic non-
linear dipole induced in the molecule by the field at 800 nm.
In order to prove this assumption, we repeated the same
simulation “switching off” the nonlinear term in the com-
plete numerical model. The results (not shown) agree com-
pletely with those obtained by the LEA.
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V. CONCLUSIONS

The classical rotational dynamics of molecules interacting
with laser pulses is very often satisfactorily described by the
linear envelope approximation (LEA). In this work we have
shown that, in the framework of classical electrodynamics,
the LEA sometimes fails in the prediction of the molecular
state after the interaction. We demonstrated that, in those
cases, the interaction between an intense, few-optical-cycle
laser pulse and a molecule should be described including the
actual shape of the pulse electric field and the role of mo-
lecular hyperpolarizability. In particular, we proved that it is
not always possible to neglect the oscillating nature of light
when the classical interaction of a polar molecule with a
laser pulse is taken into account; we also observed a failure
of the LEA in the modelling of rotational dynamics when the
molecule interacts with bichromatic fields, owing to the con-
tribution of the molecular hyperpolarizability.

We point out that an exhaustive description of laser-
molecule interaction can be obtained only in the framework
of quantum mechanics. Nevertheless many quantum models
available in the literature are based on Hamiltonians with an
interaction term determined in the framework of the LEA.
The failure of this approximation in the classical description,
though limited to some cases, calls for further investigations
in the framework of quantum theories.
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APPENDIX A: EULER ANGLES AND COORDINATE
TRANSFORMATION

The molecolar frame Oxyz can be addressed with respect
to the fixed frame OXYZ through the Euler angles (6, ¢, ¢)
[27], as shown in Fig. 1. The angle 6 is also called nutation
of the axis z; the angle i is the precession of z, whereas ¢ is
the rotation about z. The components v;, with respect to the
molecular frame, of a given vector v can be written as fol-
lows:

(A1)

h. _
v;=Ajvj,

where v;, are the components of v in the fixed frame. The

transformation matrix obeys the relation Af’:ﬁ,} u;, where uj,
are the unity vectors of the XYZ axes and u; those of the xyz

axes. A" can be expressed as a function of the Euler angles
according to the following relation [27]:

—sin ¢ cos @sin ¢+ cos ¢ cos i cos Y sin ¢ cos B+ cos ¢ sin i sin Gsin P

A?: —cos ¢ cos fsin y—cos sin ¢ cos ¢ cos cos @—sin ¢ sin ¢ sin Gcose |.

sin € sin ¢

The angular speed of the molecule can be projected onto the
axes of the molecular frame and expressed again in terms of
the Euler angles [27],

w, = 0cos ¢+ rsin Osin ¢,

wy =~ 6'sin ¢+ rsin 6 cos ¢, (A3)

wz=<i>+ ¢cos 0.

Thus, all the quantities appearing in Eq. (5) are functions of
the Euler angles and of their temporal derivatives.

APPENDIX B: 6-KICK APPROXIMATION

Let us assume that the envelope of the laser pulse can be
written as

E\u(t) =A, j01),

where 8(7) is the Dirac delta function; it is worth noting that,
in the framework of this approximation, the pulse fluence is

(B1)

(A2)

—sin € cos ¥ cos 6

fixed by the values of the quantities A, j, whichever the ac-
tual pulse duration is. Substituting Eq. (B1) in Eq. (7) and
performing an integration over a very short time interval
containing the driving pulse, one obtains

Nk IAhpdig
2 cos(Any j,q) € %AIAZnAx,hAx,m
)

=21Nw} - wy), (B2)

where o and w; are the components of the angular velocity
before and after the pulse. For a fixed polarization state and
fluence of the laser pulse and for a given initial position of
the molecule, the left-hand side of Eq. (B2) is a constant
vector. We can thus conclude that, as far as the pulse duration
is very short, the dynamical state of the molecule expected
by the o&-kick approximation at the end of the interaction
depends only on the pulse fluence and polarization, whereas
it does not depend on the actual pulse duration.
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