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We employ the lowest-order radially polarized axicon fields of a Gaussian laser beam to demonstrate that
electrons may be accelerated from rest in vacuum to a few GeV. Petawatt power laser beams focused onto
micron-size focal spots result in multi-TeV/m electron energy gradients.
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I. INTRODUCTION

For electrons to be accelerated and reach a net maximum
energy gain from interaction with the fields of a laser beam,
in any of the schemes discussed thus far, the beam must be
focused onto small spatial dimensions �1�. Focusing, in turn,
causes all mutually perpendicular E and B field components
to appear in the focal region �2–8�. Besides the v�B force,
the forward electric field component—say, Ez—plays a
dominant role in accelerating the electron �9,10�. This has
been demonstrated in theoretical simulations �1,5–8,11–20�
as well as in experiments, in vacuum �21�, and in plasma-
based �22–25� schemes. Linearly polarized laser beams have
predominantly been used in these investigations.

More promising configurations for electron-laser accel-
eration could be ones that employ radially polarized beams.
Since one way to generate radially polarized light �26,27�
involves using axicon optical elements, the associated fields
will often be referred to here as axicon fields �28�. The
lowest-order axicon fields �11,28,29� possess nonzero radial
and axial electric field components Er and Ez, respectively, in
addition to an azimuthal magnetic field component B�. In a
setup to accelerate electrons, the axial electric field compo-
nent serves the purpose of acceleration directly quite well,
while the remaining field components help to trap the elec-
trons and may result in a high-quality accelerated electron
beam �29,30�.

Recent experiments �31,32� have demonstrated that a ra-
dially polarized laser beam may be focused onto a spot sig-
nificantly smaller than would be the case for a linearly po-
larized beam. Under the conditions of their experiment, Dorn
and co-workers �32� have shown that as much as 72.8% of
the total beam power could be concentrated in the longitudi-
nal field. In this paper, we demonstrate that an electron may
gain as much as 3 GeV from interaction with that power
derived from a highly intense ��1022 W/cm2� beam, fo-
cused down to a waist radius of �1 �m. This will be done
by numerically solving the equations of motion of a single
electron in the lowest-order fields of the radially polarized
laser beam.

The axicon modes of a Gaussian beam will be employed.
In their description, the well-known parameters of a Gauss-
ian beam will be utilized. Single-electron calculations will be

made assuming the electron is born at rest �perhaps from
some ionization process� at the origin of a Cartesian coordi-
nate system. The origin will serve as a stationary focus and
the z axis as the direction of propagation.

In an attempt at making this paper independently readable
the axicon fields will be derived and briefly discussed in Sec.
II. The discussion involves the power and intensity relation-
ships of relevance to the subsequent calculations. In Sec. III
the equations of motion of a single electron in the axicon
fields will be given and the method of their numerical solu-
tion leading to the energy gain and actual trajectories, among
other dynamical aspects, will be outlined. This will be fol-
lowed by Sec. IV presenting and discussing electron accel-
eration and the roles played in the process by various laser
parameters and initial conditions. Our conclusions will be
given in Sec. V.

II. THE FIELDS

Derivation of the lowest-order axicon Gaussian fields will
follow the work of McDonald �28�, almost step by step, apart
from a slight change of notation, the use of SI units through-
out, and the assumption that the fields �of wavelength ��
have a time dependence of the form ei�t, where � is the
frequency. This is done here merely in order to make the
paper self-contained. Recall that, in addition to the frequency
�, two parameters determine the fields of a Gaussian beam:
namely, its waist radius at focus, w0, and its Rayleigh range
zr=�w0

2 /� �and, hence, the diffraction angle ��w0 /zr�
�1–4�. The same parameters will be employed in describing
the axicon fields, hence the designation axicon Gaussian.
Propagation along the z axis and a stationary focus at the
origin O will be assumed. According to McDonald �28�, the
axicon modes of a Gaussian laser beam, having a wave num-
ber k=� /c, with c the speed of light in vacuum, may be
derived from a longitudinally polarized vector potential A
and the corresponding scalar potential 	. To begin with, the
vector potential satisfies the wave equation

�2A =
1

c2

�2A

�t2 �1�

and is related to the scalar potential 	 by the Lorenz condi-
tion �SI units will be used throughout�*Electronic address: ysalamin@aus.edu
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� · A +
1

c2

�	

�t
= 0. �2�

The electric and magnetic fields then follow from the poten-
tials, as usual, by differentiation:

E = − �	 −
�A

�t
, B = � � A . �3�

Employing cylindrical coordinates �r ,� ,z�, where the z axis
is aligned with the laser beam propagation direction, the de-
sired fields may be obtained from

A�r,�,z,t� = ẑ
�r,z�g���ei�. �4�

Here g��� is a pulse-shape function depending upon the
plane-wave phase �=�t−kz and ẑ is a unit vector along the
positive z axis. With the assumed time dependence of the
fields, direct substitution of this trial solution into the wave
equation yields

�2
 − 2ik
�


�z
�1 − i

g�

g
� = 0, �5�

where g��dg /d�. For a pulsed laser beam, one must have
g��g, a condition we will use repeatedly in our derivations
leading to the fields �28�. Eventually, since we are interested
in the fields of a continuous beam, we will set g=1. When
the term g� /g is dropped from Eq. �5� and after the scaled
coordinates

 =
r

w0
, � =

z

zr
�6�

have been employed in it, it transforms into

��
2 
 − 4i

�


��
+ �2�2


��2 = 0, ��
2 �

1



�

�
�

�

�
� , �7�

with the diffraction angle defined by �=w0 /zr. Note that �2 is
a small quantity and may thus be used as an expansion pa-
rameter for 
. So, let us write


 = 
0 + �2
2 + �4
4 + ¯ . �8�

Next this is inserted into Eq. �7�. When terms of order �n,
where n=0,2 ,4 , . . ., are collected, there results

��
2 
0 − 4i

�
0

��
= 0, �9�

��
2 
2 − 4i

�
2

��
+

�2
0

��2 = 0, �10�

��
2 
4 − 4i

�
4

��
+

�2
2

��2 = 0, �11�

	

For our purposes in this paper, only the lowest-order fields
will be sought. Those may be obtained from the paraxial
approximation, Eq. �9�. The well-known paraxial solution is


0 = fe−f2
, with f =

i

� + i
=

eitan−1�


1 + �2
. �12�

Thus, in the paraxial approximation, the vector potential will
be given by �setting g=1�

A = ẑA0fe−f2
ei�, A0 = const. �13�

Next we employ an ansatz for the scalar potential similar to
that of the vector potential: namely, 	=g�����r ,� ,z�ei�.
This gives �	 /�t= i�	�1− ig� /g�� i�	. Hence, the Lorenz
condition yields

	 =
ic

k
� · A . �14�

Finally, Eqs. �3� give, for the electric and magnetic fields,

E = − i�A −
ic

k
��� · A�, B = � � A . �15�

The following, hitherto complex, lowest-order electric field
components follow from some tedious algebra which we
omit here in order to save space:

Er = E0�f2e−f2
ei� + O��3�, E0 = �A0, �16�

E� = 0, �17�

Ez = − iE0�2�1 − f2�f2e−f2
ei� + O��4� . �18�

Likewise, the complex magnetic field components turn out to
be Br=0,B�=Er /c, and Bz=0. Finally, the real axicon fields
may be written down from Eqs. �16�–�18� as

Er = �E0�w0

w
�2� r

w0
�e−r2/w2

cos �, E� = 0, �19�

Ez = �2E0�w0

w
�2

e−r2/w2

���1 −
r2

w2�sin � − � z

zr
�� r

w
�2

cos � , �20�

Br = 0, B� =
Er

c
, Bz = 0. �21�

In Eqs. �19� and �20�, w=w0
1+ �z /zr�2 and the trigonomet-
ric functions have the same argument

� = �0 + �t − kz − � z

zr
�� r

w
�2

+ 2 tan−1 � , �22�

where �0 is a constant �initial� phase. Note that Er vanishes
at all points on the z axis, r=0. Thus, charged particles ini-
tially injected axially do not feel the effect of the radial elec-
tric field component and continue to move, without deflec-
tion, along the z axis. On the other hand, the radial field
component peaks at r=w0 /
2, with a peak value there given
by
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Er0 =
�E0


2e
, e � 2.7183. �23�

Furthermore, Ez is most pronounced for points on the z axis
where it is needed for particle acceleration. As a matter of
fact, the axial electric field attains a maximum

Ez0 = �2E0, �24�

right at the beam focus, r=0=z. Thus an electron, for ex-
ample, born at rest at the origin of coordinates would be
immediately subjected to the maximum axial electric field
component and may, thus, be maximally accelerated pro-
vided action of the field on it commences at the right mo-
ment �when the field has the right initial phase �0�. Note
further that

Ez0 = �
2eEr0 � 0.7422� �

w0
�Er0. �25�

For the purpose of electron acceleration it is desirable to
make the axial field as large as possible. According to Eq.
�25� it would be possible for the maximum axial field ampli-
tude to exceed that of the radial field, provided the laser
beam may be focused to a waist radius w0 less than 0.7422�.

Now with E= r̂Er+ ẑEz and B= �̂B�, where r̂ and �̂ are
unit vectors in the directions of increasing cylindrical coor-
dinates r and �, respectively, the Poynting vector takes the
form

S =
1

c�0
�ẑEr

2 − r̂ErEz� , �26�

with �0 the permeability of free space. An expression for the
total power of the laser system may be obtained by integrat-
ing the z component of the Poynting vector over the beam
cross section through its focus and then taking the time av-
erage of the result. This process gives

P � �
0

�

�S · ẑ�2�rdr = � �2

8�c�0
�E0

2, �27�

where �¯� stands for time averaging. In terms of P, the peak
intensity may be written as

I0 � �S · ẑ�r=w0/
2,z=0 =
2P

�ew0
2 . �28�

This gives a peak intensity

I0 �W/cm2� � 2.342 � 1022 P �PW�/�w0 ��m��2. �29�

According to Eq. �29�, a petawatt �P=1� laser beam fo-
cused onto w0=1 �m waist radius has a peak intensity of
I0�2.342�1022 W/cm2.

It is interesting to compare the relative strength of the
electric field components. In Figs. 1�a� and 1�b� we show
��Er /Er0�2� and ��Ez /Er0�2�, respectively, as functions of r /w0

in the transverse plane �z=0� through the origin of coordi-
nates. As expected, the peak in �a� occurs at r /w0=1/
2, and
in �b� the main peak occurs at r /w0=0 in addition to a much
less pronounced peak at r /w0=
2, as may easily be shown
analytically. It should also be clear that the secondary peak in

�b� occurs due to an axial field whose direction is the oppo-
site of that corresponding to the main peak. In between the
two peaks an intensity minimum of zero occurs �at r /w0=1�,
which corresponds to the point at which the field changes
direction between oscillations. In Fig. 1�c�, ��Ez /Ez0�2� is
shown along the propagation direction �r=0� as a function of
z /zr. Notice that the axial field amplitude, scaled by Er0, is
proportional to �=2/kw0 and, hence, the axial field intensity
in Fig. 1�b� is inversely proportional to w0

2. By contrast, the
radial and axial field intensities shown in Figs. 1�a� and 1�c�
are independent of w0.

III. DYNAMICS AND ENERGY GAIN CALCULATIONS

Only single-electron dynamics in the fields of Sec. II will
be pursued in the remainder of this paper, and for that pur-
pose we resort to the fully relativistic equations of motion of
a single electron �of mass m and charge −e� in the axicon
fields of Eqs. �19�–�21�. The equations of motion read

FIG. 1. �Color online� �a� The radial field intensity and �b� the
axial field intensity in the transverse plane through the focus as
functions of the radial distance r in units of w0. �c� The axial field
intensity along the propagation direction.
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dp

dt
= − e�E + c� � B�,

dE
dt

= − ec� · E , �30�

where the electron’s momentum and total energy are given
by p=�mc� and E=�mc2, respectively. In these expressions,
�= �1−�2�−1/2 is the Lorentz factor of the electron. Unfortu-
nately, analytic work based on Eqs. �30� is hard to come by,
apart from very specialized situations involving plane-wave
fields. For tightly focused fields, however, numerical integra-
tion of these equations is inevitable. Equations �30� may be
coupled into a single equation for the scaled velocity:
namely,

d�

dt
=

e

�mc
���� · E� − �E + c� � B�� , �31�

whose three scalar components may then easily qualify for
simultaneous solution using a Runge-Kutta routine. In gen-
eral, the initial conditions �holding at t=0� involve an
injection-scaled velocity �0 and an injection point in space
�x0 ,y0 ,z0�. The value of �0 follows from the injection energy
�0mc2, with �0= �1−�0

2�−1/2. In a typical calculation, integra-
tion of the equations of motion will be carried out over the
time interval �0,NT�, where T=� /c is one laser field period
and N is a large integer. To ensure stability of the integra-
tions, �=�t−kz will be used as an integration variable in-
stead of the time t. In all our calculations, we take �max
=4�, which corresponds to N=2+zmax /�, where zmax is the
maximum forward excursion of the electron. Typically, N is
of the order of 107–108. From the integration one gets the
scaled velocity � and, hence, the Lorentz factor � of the
ejected electron. Finally, one calculates the energy gain from

�Gain� = �� − �0�mc2. �32�

Other dynamical aspects of the electron motion may be cal-
culated as well. Further numerical integrations give the elec-
tron trajectory equations in terms of the time as a parameter,
from injection to ejection. One may also monitor the mo-
mentum components of the electron and components of the
force acting on it along its trajectory, which can shed valu-
able light on the mechanism of acceleration.

IV. ACCELERATION FROM REST

We consider now the important special case of accelera-
tion of an electron born at rest, perhaps from ionization of an
atom, at the center of coordinates. For such a case, the initial
conditions are �0=0 and x0=y0=z0=0. The vanishing of Er
on axis leaves Ez to accelerate the electron axially. Note that
B� acts also to confine the electron and keep it on the z axis.
Our numerical calculations confirm that the electron trajec-
tory is straight along z, as may also be verified by inspection
of the first of Eqs. �30�.

The �initial� phase constant �0 plays a crucial role, as
always, in determining the subsequent electron motion and
associated energy gain. Simply put, if the electron initially
�at t=0� encounters a positive �forward� axial electric field
component, the force on it would be repulsive and it would
start moving backwards. So in order to reach a maximum

energy gain, the laser-electron interaction should commence
at some optimal initial phase value, which we seek first. To
that end, we calculate the gain corresponding to the entire
range of �0 from 0 to 2�. The results are displayed in Fig. 2.

Conclusions drawn from Fig. 2 include the following.
First, the gain peaks for �0�� which corresponds to syn-
chronized injection and, therefore, minimum slippage. To see
this clearly, note that the �accelerating� axial field component
Ez is zero at the origin �for �0=�� and is negative �and
increasing in magnitude� during a full half cycle. Riding with
the field �synchronization� during that half cycle, the electron
gains maximum energy compared to situations in which �0
��. Second, in those cases, the maximum gain exceeds
3 GeV, compared to the maximum of about 2 GeV obtained
in similar calculations when typically MeV electrons are in-
jected into the focal region of a linearly polarized Gaussian
beam �1,5–8�. Our results also agree with the �plane-wave�
estimate of a maximum interaction energy equal to mc2q2 /4,
where q2 is a dimensionless intensity parameter �q2=1 cor-
responds to I�1018 W/cm2�. Finally, we state the obvious
conclusion that achieving maximum gain requires employing
tightly focused laser systems of the highest peak power
achievable. Superiority of the axicon fields over those of the
linearly polarized ones stems from the fact that the radial
axicon field component vanishes on the z axis. In the linearly
polarized case, the transverse field components deflect the
electron slightly transversely and cause it to lose some of the
gained energy back to the field.

Dependence of the electron energy gain on the laser out-
put power is next considered. With multipetawatt laser sys-

FIG. 2. �Color online� Electron energy gain as a function of the
�initial� constant phase �0. Parameters not shown include: wave-
length �=1 �m, x0=y0=z0=0, �0=1, and integration is over
107–108 field cycles. Note that the legends in �b� apply to �a� as
well.
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tems in mind, we have calculated variation of the gain as a
function of the peak power in petawatt. The most promising
scenario, as far as maximum gain is concerned, has been
taken: namely, the one corresponding to �0�� and w0
=1 �m. Our results are shown in Fig. 3. The conclusion that
the gain increases monotonically with increasing power is
hardly surprising. In fact, earlier order-of-magnitude esti-
mates �11�, based on a picture in which interaction of the
electron with the laser field is limited to one Rayleigh range,
have shown that the gain �in MeV� goes as C0


P, where C0
is a constant of the order of 20–30 and P is the power in
terawatt �TW�. Those estimates agree with the results of our
accurate calculations shown in Fig. 3.

It has been shown, in earlier careful studies of electron
acceleration by linearly polarized Gaussian laser beams
�1,5–8�, that the most significant energy gain actually takes
place over a small region of space centered on the beam
focus. In order to investigate this issue in the present scheme,
we have calculated variation of the gain with the forward
distance of travel of the electron. The results are displayed in
Fig. 4�a� for system parameters similar to what has been used
in Fig. 2. Note first that the rise in gain is quite sharp from 0
to a maximum �that depends upon the laser power� over a
short distance. Evident also in Fig. 4�a� is an increase of the
maximum distance of travel with increasing power. With in-
creasing power, the electron gains more energy and travels
faster and farther. The energy gained in this way is retained
by the electron, as it continues moving forward at a speed
close to c.

This description of the electron dynamics may be sup-
ported further by looking at the instantaneous energy gradi-
ent

�Energy gradient� �
dE
dz

= − e�� · E

�z
� , �33�

which may be easily arrived at from the second of Eqs. �30�.
This quantity is shown in Fig. 4�b� for the cases considered
in �a�. Note that the maxima in the energy gradients are
reached at points corresponding to z�zr. Furthermore, zr
=� �m for the parameters of Fig. 4. According to Fig. 4, all

acceleration takes place below a value of ln�z /zr� roughly
less than 4. This corresponds to z�55 zr�170 �m. Let us
adopt a definition for an average energy gradient given by
the ratio of the total gain to the total distance over which that
gain occurs. Then Fig. 4 gives average gradients of about 6,
18, and 26 TeV/m for the three cases considered there.
Compared to a maximum energy gradient of 100 MeV/m in
conventional microwave-based accelerators, the average gra-
dients in this scheme are roughly 5–6 orders of magnitude
higher.

V. CONCLUSIONS AND OUTLOOK

We have shown that lowest-order axicon fields of a
petawatt-power laser beam, focused down to a micron-size
focal spot, can accelerate electrons from rest to GeV ener-
gies. Acceleration results primarily from interaction with the
axial electric field component, while the remaining nonzero
field components help mainly to confine the electron to a
straight-line trajectory along the laser propagation direction.
This picture already hints at the possibility of getting a well-
collimated accelerated electron beam in a laboratory setup.
More practically useful conclusions about electron accelera-
tion may be arrived at from simulations involving an electron
bunch, rather than just a single electron.

Our calculations considered only electrons born at rest,
maybe from ionization. To employ the scheme as a booster,
electron axial injection, perhaps through a hole in the axicon,
or injection at an angle to the beam axis, ought to be studied.

Unfortunately, there is much more to laser acceleration
than presented by the idealistic calculations of the present

FIG. 3. �Color online� Energy gain of the electron as a function
of the laser output power in petawatt �PW�. The initial conditions
and other parameters are the same as in Fig. 2.

FIG. 4. �a� Energy gain of the electron and �b� its ejection en-
ergy gradient, as functions of the logarithm of the forward distance
of travel, z, scaled by the Rayleigh length zr. Scheme parameters
not shown are the same as in Fig. 2, and the legends in �a� apply to
�b� as well.
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paper. The initial conditions assumed in the scheme are ei-
ther not plausible or they represent a huge leap into the fu-
ture at best �33�. A petawatt laser system consumes much
more power than the entire electrical generating capacity of
the United States �34� and a continuous petawatt beam is not
a reality yet. An atom subjected to petawatt power fields gets
ionized �and its electrons scatter in all directions� quickly
and long before the peak intensity is reached. Thus meeting
the initial conditions of the scheme is not presently plausible.
These are but a few of the technical issues that make a
vacuum laser accelerator scheme quite difficult to realize

soon. Finally, we make the remark that the lowest-order
fields may not model the tightly focused beam accurately.
Proper description of the fields in the regime of tight focus-
ing requires inclusion of terms of higher order in the diffrac-
tion angle �.
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