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We derive an expression for the total photodissociation cross section of a molecule incorporating both
direct and indirect processes that proceed through excited resonances, and show that it exhibits generalized
Beutler-Fano line shapes. Assuming that the closed system can be modeled by random-matrix theory, we
derive the statistical properties of the photodissociation cross section and find that they are significantly
affected by the direct processes. In the limit of isolated resonances, we find that direct processes suppress the
correlation hole of the cross-section autocorrelation function and lead to a maximum in the cross-section
distribution.
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Spectral correlations of closed quantum systems, whose
associated classical dynamics are chaotic, are known to be
nearly universal and can be modeled by the Gaussian invari-
ant ensembles of random-matrix theory �1–3�. When such
systems become open through their coupling to continuum
channels, their bound states acquire decay widths and be-
come resonances, but they are still expected to exhibit uni-
versal statistics �4�. Examples are the conductance fluctua-
tions in quantum dots �5� and the statistics of the indirect
molecular photodissociation cross section �6,7�. If the cou-
pling is weak, the corresponding resonances are isolated and
are often characterized by a Lorentzian line shape. For a
classically chaotic system, the statistics of these resonances
can be derived from random-matrix theory. In recent years,
such a random-matrix approach has been successfully used
to model the statistics of resonances �4� and cross-section
fluctuations in the photodissociation of classically chaotic
molecules �8�. A semiclassical treatment was discussed in
Refs. �9,10�.

However, as first observed by Beutler �11� and later inter-
preted by Fano �12�, the line shape of an individual reso-
nance may differ substantially from a Lorentzian: interfer-
ence between the indirect decay via the quasibound state and
direct �fast� decay to the continuum gives rise to a so-called
Beutler-Fano line shape. For real bound-state wave func-
tions, the line shape �versus energy E� is proportional to
�qn+�n�2 / �1+�n

2�, where �n=2�E−En� /�n. Here, En and �n

are, respectively, the energy and width of the nth resonance,
while qn is the Fano parameter characterizing the line
shape. Beutler-Fano profiles have been observed in molecu-
lar photodissociation �13�, autoionization �14�, conductance
through quantum wells �15� and quantum dots �16�, scanning
tunneling microscope spectroscopy of surface states �17�,
semiconductor superlattices �18�, Aharonov-Bohm rings
�19�, and neutron scattering from nuclei �see, for example,
Ref. �20��.

In systems that are classically chaotic, the Fano parameter
qn is expected to fluctuate from one resonance to another.
Distributions of qn have been calculated for transmission

through a quantum dot �21� and for the photodissociation of
molecules �22� in the one-channel case.

Here we derive an expression �2� for the total photodisso-
ciation cross section for any number of open channels in
the presence of direct decay processes �see Figs. 1 and 2�.
In the limit of isolated resonances, we show that their
line shapes have the form of generalized Beutler-Fano
profiles �qn+�n�2 / �1+�n

2� with a complex Fano parameter
�21� qn.

Given that direct photodissociation processes affect the
line shapes so dramatically, it is interesting to find out how
they affect the statistics of the photodissociation cross sec-
tion when the closed system is classically chaotic. We derive
a closed expression for the cross-section autocorrelation
function �in energy� and find that it is universal provided that
the excitation process and the continuum coupling are spa-

FIG. 1. �Color online� Indirect molecular photodissociation.
Shown are three electronic surfaces: the ground-state surface e0 �in
which the ground state �g� resides�, a binding surface e1, and a
repulsive surface e2. The surfaces e1 and e2 give rise to an effective
electronic surface with a barrier near their crossing �not shown�,
and the bound vibrational states �n� in e1 become resonances. Indi-
rect photodissociation proceeds through these resonances with a
total cross section ��E� �shown on the left� that is a sum of Lorent-
zian line shapes.
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tially well-separated. System-specific information enters
only in the values of the direct and indirect coupling con-
stants and the transmission coefficients describing the cou-
pling of the resonances to the continuum. We find that the
direct processes suppress the correlation hole �see Fig. 3�,
which is a characteristic feature of the spectral autocorrela-
tion function for a closed chaotic system �23�. We also cal-
culate the cross-section distribution, and find that the direct
decay gives rise to a characteristic maximum in the distribu-
tion �see Fig. 4� in the regime of isolated resonances, in
contrast to the monotonically decreasing behavior of the dis-
tribution in the absence of direct coupling. Our results also
apply to atomic autoionization �14,22�.

A molecule can dissociate into several channels c by ab-
sorbing a photon. In the dipole approximation, the total pho-
todissociation cross section at energy E is given by

��E� = �0�E��
c=1

�

�	�c
�−��E���̂�g��2, �1�

where �̂= �̂ ·e is the component of the dipole moment �̂ of
the molecule along the polarization e of the absorbed light
and �0�E�� �E−Eg�. Here �g� is the ground state with energy
Eg, and ��c

�−��E�� �c=1, . . . ,�� is a dissociation solution at

energy E defined by an outgoing wave in channel c and
incoming waves in all other channels. We consider a model
�4,6,7� in which the Hilbert space is divided into two parts:
an internal “interacting” region, and an external “channel”
region �cf. Fig. 2�. The internal region is described by the

Hamiltonian Ĥ0 represented by an N�N matrix H0 with
eigenstates �n� �n=1, . . . ,N�. The external region is spanned
by the � open dissociation channels �c�. The two regions

are coupled by an operator Ŵ that can be represented by an

N�� matrix W with matrix elements 	c�Ŵ�n�=	nc. In gen-
eral, the dipole operator �̂ can couple the ground state to
both the internal states �n� and the external channels �c�. We
define �
�= �̂�g�, and introduce two vectors �in and �ch. The
first has N components 
n

in
	n �
�, describing the dipole
coupling to the internal states, and the second has � compo-
nents 
c

ch
	c �
�, describing the dipole coupling to the con-
tinuum channels.

An explicit expression for the photodissociation cross sec-
tion can be derived from Eq. �1� by separating the channel
and internal components of the Green function �24�. Ignoring
the energy dependence of 
c

ch and 	nc, we obtain

��E�/�0�E� = ��ch�2 −
1

�
Im���in + i�W�ch�† 1

E − Heff

��in − i�W�ch�
 . �2�

Here Heff=H0−i�WW† is an effective �non-Hermitian�
N�N Hamiltonian in the internal space. In the absence of
direct photodissociation, �ch=0, and Eq. �2� reduces to the
result of Refs. �6,7�.

FIG. 2. �Color online� Top: states and transition matrix elements
in the random-matrix model discussed in the text. Bottom: the pho-
todissociation cross section ��E� �arb. units� for one time-reversal
invariant realization of H0 �circles�, with N=128 and �=1. The
solid lines describe fitted Beutler-Fano line shapes.

FIG. 3. �Color online� Cross-section autocorrelation functions
for GOE �left panel� and GUE �right panel�. The symbols are from
simulations of random matrices �N=128� at the center of the band
�E=0� and for �=10 and �c=10−2 for all channels c. The autocor-
relation functions without direct coupling �
=0, open squares� and
with direct coupling �
=1.26, open circles� are compared to Eq.
�12� �solid lines�.

FIG. 4. �Color online� Cross-section distributions. �a� Cross
section vs energy E in the absence of direct coupling �
=0� and
for one random-matrix realization with H0 from the GOE. Here
N=64, �=10, and �c=5�10−2 for all c. �b� Same as in �a� but in
the presence of direct processes �
=0.125�. �c� Cross-section distri-
butions at E=0 for 
=0 �squares� and 
=0.125 �circles�. �d� as in
�c� but for GUE. The solid lines in �c� and �d� are inverse Fourier
transforms of F��s�, obtained by computing the average in Eq. �13�
numerically.
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Fano resonances with complex q. In general, the operator
Heff is characterized by bi-orthonormal right and left eigen-
vectors �Rn� and �Ln� with complex eigenvalues En. However,
in the regime of isolated resonances, �Rn���Ln���n� and
Im En=−�n /2�−��c�	nc�2. The cross section �2� can then
be written as a sum over resonances. In the presence of direct
photodissociation, the contribution from each of these reso-
nances has a generalized Fano line shape �qn+�n�2 / �1+�n

2�
with a complex parameter qn whose real part and modulus
are given by

Re qn =
Re�
n

in*�c=1

�

c

ch	nc�

��c=1

�
�
c

ch�2�c=1

�
�	nc�2

,

�qn�2 = 1 +
�
n

in�2 − �2��c=1

�

c

ch	nc�2

�2�c=1

�
�
c

ch�2�c=1

�
�	nc�2

. �3�

In general, Im qn�0, and there is no energy for which the
cross section vanishes. In the special case of time-reversal
symmetric H0 and �=1, Eq. �3� simplifies to Fano’s expres-
sion Re qn=
n

in / ��
c
ch	nc� and Im qn=0 �assuming that all

matrix elements are real�.
Statistical model. Assuming the dynamics in the closed

interaction region are fully chaotic, we model the matrix H0
by an N�N random matrix �1�, which belongs to the Gauss-
ian orthogonal ensemble �GOE� or to the Gaussian unitary
ensemble �GUE�. To fix the energy scale, we require the
mean level density to be equal to 1/� in the center of the
spectrum in the limit of large N. In the same limit, the quan-
tities 
n

in and 	nc �c=1, . . . ,�� are uncorrelated Gaussian ran-
dom variables for different values of n, and, for each n �5�,

P�
n
in,	n� � exp�−

�

2
�
n

in*
,	n

†�M−1�
n
in

	n
�
 , �4�

where �=1,2 for the GOE and the GUE, respectively. Here
	n

†= �	n1
* , . . . ,	n�

* �, and

M = N−1V†V with V = �
in,W� �5�

is an ��+1�� ��+1� matrix. In the following, we assume
the channel vectors �columns of W� to be mutually orthogo-
nal. This can always be achieved by a suitable orthogonal
�unitary� transformation in channel space.

Average cross section. In the center of the band �E=0�,
we find for the average cross section

	�� = �ind + �
c=1

�

�c
dir − �

c=1

�

�c
dir�c/�1 + �c� , �6�

where �ind=�0��in�2 /� and �c
dir=�0�
c

ch�2 are the average
cross sections in the limiting cases of purely indirect and
purely direct dissociation, respectively, and �1 , . . . ,�� are
the eigenvalues of the matrix �W†W. The coupling to the
continuum is often parametrized by transmission coefficients
Tc=4�c / �1+�c�2. The last term on the right-hand side of Eq.
�6� describes the effect of “backscattering” from the con-
tinuum states into the quasibound states, and it exists even

when the photoexcited state has no overlap with the quasi-
bound states.

Cross-section autocorrelation function. We define a di-
mensionless cross-section autocorrelation function �6,7�

S�E,�� =
1

�ind
2 �	��E − �/2���E + �/2�� − 	��2� . �7�

In the Breit-Wigner approximation, this correlation is most
conveniently calculated in the time domain �25�. Defining
C�E , t�=�−�

� d�ei�tS�E ,��, and using Eq. �4�, we find

C�E,t� =
1

4�2 �A��t� − B�
2�t�b2,��t�� , �8�

where b2,��t� is the two-level form factor �1�, and
A��t� ,B��t� are functions that depend in general on the ma-
trix M in Eq. �5� and the dipole coupling coefficients to the
continuum 
c

ch.
The expressions for A��t� and B��t� simplify when the

dipole “channel” is orthogonal to all channel vectors, i.e.,
W†�in=0. This is the case when the excitation process and
the continuum coupling are spatially well separated. We in-
troduce the parameters �c=Tc�c

dir /�ind, which characterize
the relative strength of the direct dissociation channels. Us-
ing the so-called rescaled Breit-Wigner approximation
�7,26�, we find

A1�t� = �
c=1

�

�1 + 2Tct�−1/2�3 +
1

2�
c

�c�1 + 2Tct�−1

+
3

16��c

�c�1 + 2Tct�−1�2
 ,

B1�t� = �
c=1

�

�1 + Tct�−1/2�1 −
1

4�
c

�c�1 + Tct�−1
 �9�

for �=1. A similar result is obtained for �=2,

A2�t� = �
c=1

�

�1 + Tct�−1�2 +
1

8��c

�c�1 + Tct�−1�2
 ,

B2�t� = �
c=1

�

�1 + Tct/2�−1�1 −
1

4�
c

�c�1 + Tct/2�−1
 .

�10�

The results �9� and �10� describe universal correlations;
they depend on the coefficients Tc and on the parameters �c,
but they are independent of the microscopic details of the
system such as the ground state or the nature of the excita-
tion mechanism. Two special cases are of interest. First, in
the limit of �c=0 �no direct coupling to the continuum�, the
results of Ref. �7� are recovered. Second, consider the case of
� equivalent open channels Tc=T and �c=� �i.e., �c

dir=�dir�.
In the limit �→� ,T→0 with �T
� const, the expressions
�9� and �10� simplify to
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A��t� = A�e−��t�, B��t� = Be−��t�/2 �11�

with A1=3+
 /2+3
2, A2=2�1+
 /16�, B= �1−
 /4�, and 
 is
defined by 
=��=��dir /�ind. We obtain

S�E,�� =
1

4�2�A�f��� − B2� d��

�
f�� − ���Y2,�����
 ,

�12�

where Y2,���� is the two-level cluster function �1�, and
f���= �� /2� / ��2+�2 /4�. Figure 3 shows the autocorrelation
function �12� �solid lines� together with results from random-
matrix simulations �symbols�. In the absence of direct decay
�
=0�, we observe a “correlation hole” �i.e., a minimum in
the autocorrelation�, which originates in level repulsion and
is described by the term containing Y2,� in Eq. �12�. In the
presence of direct decay �
�0�, the coefficient B decreases
while A� increases, and the correlation hole is suppressed.
This suppression is stronger for �=1 �A1�A2�, and in the
case shown in Fig. 3, the correlation hole has completely
disappeared for �=1.

Cross-section distribution. The distribution P�� /�ind� is
calculated from its Fourier transform F��s�= 	e−is�/�ind�
within the Breit-Wigner approximation. We have determined
F��s� for � equivalent open channels in the limit of �→�
with �T
� kept constant. In this case, �n��=2�� /N, and
using Eq. �4� we obtain

F��s� = eis
/�2�N��� det��E − H0�2 + �2/4�

det��E − H0�2 + �̃�
2/4�

��/2� �13�

with �̃�
2 = ��+4�is / �N�����−2�is
 / �N���. Equation �13�

can be evaluated further using the results of Refs. �27,28�.

For �=1, the result is given in �27�. Figures 4�c� and 4�d�
show inverse Fourier transforms of F��s�, which were ob-
tained by numerically averaging the ratio of determinants in
Eq. �13� �solid lines�. Also shown are histograms of the total
cross section obtained from random-matrix simulations
�symbols�. In the presence of direct coupling, the cross-
section distribution exhibits a maximum. In the limit of iso-
lated resonances, this maximum is a clear signature of the
direct processes.

In summary, we have derived an expression for the total
molecular photodissociation cross section in the presence of
direct processes interfering with indirect dissociation. In the
case of isolated resonances, this interference gives rise to
generalized Fano line shapes. Within a random-matrix
model, we have studied the fluctuations of the photodissocia-
tion cross section in cases where the associated classical mo-
lecular dynamics is fully chaotic. Our results are derived
within the rescaled Breit-Wigner approximation. In particu-
lar, we have studied the case of many weakly coupled chan-
nels �allowing for overlapping resonances�.

We have identified statistical signatures of the interference
between direct and indirect processes: the suppression of the
correlation hole in the cross-section autocorrelation function,
and—for isolated resonances—the existence of a maximum
in the cross-section distribution. We have also found that the
contribution of the direct processes to the average cross sec-
tion is reduced by a backscattering effect.
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