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Frequency shifts of the Ag I 4d105s 2S1/2�F=0,MF=0� to 4d95s2 2D5/2�F�=2,MF�=0� electric-quadrupole
transition at 330.6 nm due to external fields are calculated using multiconfigurational self-consistent field
methods. As this forbidden transition is free from first order Doppler and Zeeman effects, it is under investi-
gation for the realization of an atomic optical clock. The calculated perturbations are the light shift, the
blackbody frequency shift, and the quadratic Zeeman shift. Results show that a total uncertainty of 10−18 could
be reach without confining the atoms in a Lamb-Dicke regime in an optical lattice.
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I. INTRODUCTION

An accurate measurement of time and frequency is a pre-
requisite not only for fundamental science, concerning for
instance the changes in fundamental constants over time,
measuring gravitational redshifts, and timing pulsars, but
also for technologies that support broadband communication
networks and navigation with global positioning systems
�GPS or GALILEO�. The stability and accuracy of an atomic
clock is related to the quality factor Q of the reference tran-
sition on which it is based. The quest for atomic clocks with
higher levels of stability and reproducibility is therefore
prompting a move from the microwave to the optical region
of the spectrum. In practice, forbidden optical transitions
with natural linewidths around 1 Hz or less, offer potential Q
factors of order 1015 or even higher. When compared to the
Q factors ��1010� of the present caesium microwave stan-
dard as applied for the definition of the Systeme International
�SI� second, such improvement could lead to a redefinition of
the second in the future.

A number of different atoms are currently being investi-
gated in various laboratories, based on forbidden transitions
in cold trapped ions or neutral atoms, and over recent years
there has been significant progress in both areas �1�. For the
“ion” approach �2,3�, for example, its a commonly shared
opinion that it may lead to a better ultimate frequency accu-
racy while its stability will likely remain limited by the quan-
tum projection noise. In contrast, the “atomic” approach �4�
should lead to a better frequency stability thanks to the nu-
merous quantum absorbers contributing to the signal but

with an accuracy which will be limited by the Doppler shift.
Recently Katori �5� proposed and demonstrated a scheme
that combines the advantages of both approaches. The idea is
to trap Sr neutral atoms in the Lamb-Dicke regime in a three-
dimensional �3D� optical lattice operating at a “magic”
wavelength where the light shift of the clock transition van-
ishes. Thanks to this subwavelength confinement, the first-
order Doppler shift as well as the photon recoil shift disap-
pear. The Sr optical lattice clock demonstrated a linewidth
two orders of magnitude narrower than that observed for
neutral-atom optical clocks and a stability better than that of
single-ion clocks �6�.

Another strategy has been chosen by groups at Garching
�7� and at CNAM in Paris �8� in closed collaboration
with two of us, in that the quadrupolar transition
4d105s 2S1/2-4d95s2 2D5/2 in neutral Ag atoms is applied. The
use of neutral silver atoms as a candidates for a future optical
clock has been first proposed by Bender and Hall in 1976
�9�. This transition presents numerous advantages. Although
accurate calculation has never been published, the 5 2D5/2
metastable level has an estimated natural linewidth of about
1 Hz. This long-lived state is accessible from the ground
state 5 2S1/2 with a two-photon transition at 661.2 nm, pro-
viding a first-order Doppler-free interaction with atoms of all
velocities �9,10�. Furthermore, the nuclear spin I=1/2 of the
two stable isotopes 107,109Ag induces a hyperfine structure
which allows transitions between levels with MF=0 and thus
are insensitive to the first order Zeeman effect. This also
permits a sub-Doppler cooling mechanism that may lead to
low temperatures and narrow transverse velocity distribu-
tions. Finally, as an important technical aspect, the frequen-
cies needed to drive the clock transition and the cooling tran-
sition �4d105s 2S1/2-4d105p 2p3/2, �=328.126 nm� can be
provided by solid state lasers based on a Nd:YLF crystal
�11�.

While the clock transition has no linear Zeeman shift, it
does have a quadratic Zeeman shift and an ac Stark shift.
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Since none of these shifts have been measured yet, it is use-
ful to have calculated values. In this paper, we report accu-
rate calculations of the systematic shifts of the clock transi-
tion due to external fields as well as good estimates of the
lifetime of the 5 2D5/2 state. The oscillator strengths,
transition-matrix elements, lifetimes, and polarizabilities for
several low-lying levels have been calculated. It is pointed
out that this approach would allow one to reach an equiva-
lent level of total uncertainty as the scheme proposed by
Katori. All the calculations were carried out using two mul-
ticonfiguration self-consistent field �MCSCF� methods based
on the Hartree-Fock �HF� and Dirac-Fock �FD� equations
combined with a configuration-interaction �CI� for taking
into account the core-core and core-valence correlation ef-
fects. Unless specified otherwise, we use atomic units ��e�
=�=me�1� throughout the paper.

II. THEORY

A. Transition properties

Let D be the dipole-moment operator for the interaction
of the atomic electrons with the radiation field. Making use
of the Wigner-Eckart theorem, the line strength of an electric
dipole transition between a ground state ��J� and an excited
state ���J�� is linked to the reduced matrix element by

S��� = �	�J��D����J���2. �1�

Of special importance is the oscillator strength, the so-called
f value, which is linked to the line strength by

f��J,��J�� =
2

3�2J + 1�
����S��� �2�

where ����=E��J�-E�J is expressed in hartrees and S in
atomic units of e2a0

2.
The lifetime ���J� of the level ���J�� is

���J� =
1


�J
A���J�,�J�

, �3�

where A is the transition rate for emission given by

A���J�,�J� = −
4

3c3

����
3

2J� + 1
S���.

B. Computational details

In the MCHF method �12�, the wave function � of an LS
term labeled �LS, is expanded in terms of configuration state
functions �CSF� with the same LS term

���LS� = 

n

cn������n�LS� , �4�

where � represents all further quantum numbers necessary
for the unique specification of the quantum state. The CSFs
are antisymmetrized products of spinorbitals

	nlmlms
�r� =

1

r
Pnl�r�Ylml

�
,���ms
�
� . �5�

In the multiconfigurational self-consistent field �MCSF� cal-
culations, the radial functions Pnl�r� and the expansion coef-
ficients cn��� are simultaneously optimized to self-
consistency. Once the spinorbitals are known, relativistic
effects can be taken into account by performing CI calcula-
tions within the Breit-Pauli �BP� approximation. In this
framework, the atomic state functions �ASFs� are expanded
over CSFs which are now eigenfunctions of the total angular
momentum J2= �L+S�2,

���LSJM� = 

n

cn������n�LnSnJM� . �6�

The combination of the MCDF and relativistic CI meth-
ods allows a more accurate treatment of the relativistic many
body problem. In this context, the function of an atomic state
of parity P labeled �PJM is expanded in terms of j j-coupled
CSFs of the same parity and of same J and M quantum
numbers according to

���PJM� = 

n

cn������n�PJM� . �7�

The CSFs are built from antisymmetrized product of relativ-
istics spinorbitals

	n�m�r� =
1

r
� Pn��r���m�r̂�

iQn��r��−�m�r̂�
� . �8�

The quantity � is the relativistic angular quantum number:
�= ± �j+1/2� for l= j±1/2. Pn��r� and Qn��r� are called the
small and large component of the radial wave functions with
��m�r̂� being a spinor spherical harmonic in the lsj coupling
scheme

��m�r̂� = 

ml,ms


l
1

2
mlms�jm�Ylml

�
,���ms
�
� . �9�

In the MCDF approach, the Dirac-Coulomb Hamiltonian

HDC = 

i
�c�i · pi + ��i − 1�c2 −

Z

ri
� + 


i�j

1

rij
�10�

is used to perform the MCSCF calculations. The optimized
spinorbitals can be used then to carry out relativistic CI cal-
culations using a Hamiltonian that can include other interac-
tion operators which have been omitted in Eq. �10�. The most
important is the transverse photon interaction operator

Htrans = − 

i�j

��i · � j cos��ijrij�
rij

+ ��i · �i�

��� j · � j�
cos��ijrij� − 1

�ij
2 rij

� �11�

which, in the low-frequency limit �ij→0, is referred to as
the Breit operator. The lowest-order nuclear motional correc-
tions, the dominant quantum-electrodynamical corrections,
that is, the self-energy and the vacuum polarization, may be
included as well.
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Below, we used the ATSP program �13� for the MCHF and
the BP+CI calculations, while the GRASP92 program �14�
was applied for the MCDF computations. The subsequent CI
calculations were performed by means of the RELCI compo-
nent of the RATIP package �15�. In these computations, the
Breit interaction along with the vacuum polarization were
included in the CI calculations. We also used a semiempirical
relativistic Hartree-Fock �RHF� approach described by
Cowan �16�. Although, this method suffers from the draw-
back that the core-core and core-valence correlations are not
taken into account, it has the great advantage of being simple
to use and that it does not require high-performance comput-
ers.

It is difficult to say which method has the best accuracy
without having reliable experimental data available. How-
ever, it is commonly shared that the MCSCF methods give
better results than the RHF one. Furthermore, in this paper,
very large scale multiconfigurational calculations have been
performed only with the MCDF+CI. Hence, we expect that
the values obtained by this method are the most reliable
ones. The results of the two other methods are reported only
for purpose of comparison.

III. ENERGIES, LIFETIMES, AND SPECTROSCOPIC
PROPERTIES OF THE LOW-LYING LEVELS

For the RHF approach, the configuration interaction inte-
grals for all electron configurations were fixed at 0.85
of their HF values. The exchange integrals, spin-orbit
integrals as well as the averaged energy of the relevant
configurations were let to vary in the process of fitting
the state energies. For energy fitting, we use experimental
values of the excited state energies from Ref. �17�. The
MCHF calculations were carried out for the ground
4d105s 2S LS term and for the excited terms 4d105p 2P and
4d95s2 2D. They led to the orbital set consisting of the
�1s ,2s ,2p ,3s ,3p ,3d ,4s ,4p ,4d ,4f ,5s ,5d� orbitals which
was then used to perform the BP+CI calculations for char-
acterizing the 5 2S1/2 ground state and the four lowest-lying
excited states n=5 2P1/2, 2P3/2, 2D3/2, and 2D5/2. For both the
MCHF and the BP+CI calculations, tens of CSFs were ap-
propriately generated by single �S� and double �D� excita-
tions from the reference configuration 4d105s, 4d105p, and
4d95s2. The MCDF calculations allowed to obtain a final
orbital set which consists of the orbitals �1s1/2, 2s1/2, 2p1/2,
2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2
4d5/2, 4f5/2, 4f7/2, 5s1/2, 5p1/2, 5p3/2, 5d3/2, 5d5/2, 6p1/2, 6p3/2,
6d3/2, 6d5/2, 7s1/2, 7p1/2, and 7p3/2� orbitals. Using the ex-
tended optimal level EOL option of the GRASP92 code, these
orbitals were optimized by minimizing the energy functional
given by the average of the energies of the 2S1/2

e ground state
and the four lowest-lying excited states 2P1/2

o , 2P3/2
o , 2D3/2

e ,
and 2D5/2

e . The calculations were performed in several steps
wherein the CSFs were generated by SD excitations from
the relativistic reference configurations 4d3/2

4 4d5/2
6 5s1/2,

4d3/2
4 4d5/2

6 5p1/2, 4d3/2
3 4d5/2

6 5s2, and 4d3/2
4 4d5/2

5 5s2 J=1/2 ,
3 /2 , 5 /2. We considered first all orbitals up to the n=4 shell
excepted the 4f5/2 and 4f7/2 ones. Thereafter, we systemati-
cally increased the size of the orbital set while keeping the

n= �1–3� and 4s1/2, 4p1/2, and 4p3/2 orbitals fixed.
For most of the CI calculations following the MCDF

ones, the CSFs were generated from the same reference con-
figurations as for the MCDF calculations, by allowing SD
and also triple �T� excitations of the valence electrons into
the n=5, n=6, and n=7 shells. These excitation schemes
will be referred to by the nSD and nSDT notations, and the
sets of CSFs which they lead to by �nSD� and �nSDT�. In
these calculations, the core is defined by the filled n
= �1–3� and 4s1/2, 4p1/2, and 4p3/2 subshells. In the other CI
calculations that have been carried out, the core was defined
by the filled n= �1–3� shells in order to allow the polariza-
tion of the 4s1/2, 4p1/2, and 4p3/2 “semicore” electrons by the
valence electrons. In this case, the CSFs were obtained from
the same reference configurations by considering only SD
excitations into the n=7 shell; this excitation scheme will be
referred to as 7SD�. We estimated an accuracy of few percent
for the electric dipole matrix elements. The difference in the
calculated properties due to the mass shift between the two
isotopes 107Ag and 109Ag are less than the uncertainties. The
data used for the numerical evaluations are from the 109Ag
isotope.

Table I gives the energies of the ground state 2S1/2
e and the

calculated values of the energy �E of the lowest-lying ex-
cited states n=5 2p1/2

o , 2P3/2
o , 2D3/2

e , and 2D5/2
e with regard to

the energy of the ground state and as functions of the number
nc of CSFs involved in the MCDF+CI calculations. When
only valence correlations were considered, convergence of
the energy of the five states is achieved by combining the
�6SDT� and �7SD� CSF sets. No further improvement is
achieved if triple excitations into the n=7 shell are included
as seen from the results obtained for the �7SDT� set. In fact,
the incorporation of triple excitations by passing from the
�5SD� to the �5SDT� set or from a �nSDT�� ��n+1�SD� to a
��n+1�SDT� set �n=5,6�, tend to have less influence on the
energies than the inclusion of SD excitations into the upper
shell by passing from a �nSDT� to a �nSDT�� ��n+1�SD�
set. From the CI calculations performed with �7SD�� set, we
found a quite large decrease of the energies of the states
which shows that the polarization of the electrons from the
4s1/2, 4p1/2, and 4p3/2 semicore subshells by the valence elec-
trons must be taken into account. Further improvements are
achieved when one adds to this set, triple excitations from
the valence electrons into the n=6 shell. Experimental results
are also shown for purpose of comparison. One notes that the
results obtained are in satisfactory agreement with experi-
ment since the MCDF �E values differ from the experimen-
tal values by only −2379 cm−1 �−8.1% � and −2364 cm−1

�−7.8% �, respectively, for the 2P1/2
o and 2P3/2

o levels, and by
only +2022 cm−1 �6.7%� and +2133 cm−1 �6.1%� for the
2D5/2

e and 2D3/2
e , respectively. For the CI calculations that

includes Breit interaction and vacuum polarization, the re-
sults tend to be worse than the MCDF ones if one only deals
with valence correlation. The semicore-valence correlation
�using the �6SDT�� �7SD�� basis set� must be considered in
order to obtain results which are in very good agreement
with experiment. In this case, the calculated �E values differ
from the experimental values by only −2030 cm−1 �−6.9% �
and −2062 cm−1 �−6.8% � respectively for the 2P1/2

o and 2P3/2
o
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levels, and by only −399 cm−1 �−1.3% � and −421 cm−1

�−1.2% � for the 2D5/2
e and 2D3/2

e , respectively.
Table II gives the calculated values of the reduced matrix

elements between the ground state and the 4d10 np 2P1/2;3/2

states and between the upper state and the 4d10 np 2P3/2
states. Table III summarizes the values of the Einstein coef-
ficient, lifetime, and width of the clock transition obtained by
the different methods.

IV. LIGHT SHIFT, BLACKBODY RADIATION,
AND OTHER SYSTEMATIC ERRORS AFFECTING THE

CLOCK TRANSITION

A. Light shift of atomic hyperfine levels

Within a laser field ����L ,���, the transition frequency be-
tween the states ��JFMF� and ��J�F�MF�� is subjected to an
ac Stark shift given by

�obs = �0 − ����L,��������L,����2/4� + O���4� , �12�

where �0 the unperturbed atomic resonance frequency and
����L ,��� denotes the differential ac dipole polarizability. In
the case where the laser field is linearly polarized along the z
axis, the Stark Hamiltonian HEE is, in the second-order per-
turbation theory, given by �18,19�

HEE = −
1

4
��0���J����z��2 −

1

4
��2���J�

� 

FMFF�MF�

�FMF�	F�MF�� � ��z�2�1 2 1

0 0 0
�

� �15�J + 1��2J + 1��2J + 3�
2J�2J − 1� �1/2

� �− 1�I+J+F−F�−MF��2F + 1��2F� + 1�

� � F 2 F�

MF 0 − MF�
��F 2 F�

J I J
� . �13�

The scalar polarizability ��0� shifts all hyperfine and mag-
netic sublevels equally. The tensor polarizability ��2� mixes
the hyperfine and magnetic sublevels. The dynamic E1 scalar
polarizability and tensor polarizability of the level ��J� are
given by

��0���J� =
2/�

3�2J + 1� 

��J�

�	�J��D����J���2
����

����
2 − �L

2 �14�

and

��2���J� =
4

�
� 5J�2J − 1�

6�J + 1��2J + 1��2J + 3��1/2

� 

��J�

�− 1�J+J��J 1 J�

1 J 2
��	�J��Dq����J���2

�
����

����
2 − �L

2 . �15�

In these formulas, �L is assumed to be at least several line-
widths off resonance with the corresponding transition. This
condition is satisfied for the frequencies considered in this
work. We calculate the light shifts of the transitions from the
4d105s 2S1/2�F=0 MF=0� sublevel to the 4d95s2 2D5/2 �F�
=2 MF�=0� sublevel. The Stark energy of the 5 2D5/2 state is
produced by the scalar and tensor polarizabilities whereas
only scalar polarizability contribute to the Stark energy of
the ground state �this is due to J�1�. The calculations of the

TABLE I. Calculated values of the energy E �Hartree� of the ground state and the lowest-lying excited states as functions of the number
nc of CSFs involved in the CI calculations. Calculated values of the energy �E �cm−1� of the states with respect to the energy of the ground
state as functions of the number nc of CSFs involved in the MCDF and CI calculations. Experimental values from Ref. �17� are also reported.

Basis set

2S1/2
e 2P1/2

o 2P3/2
o 2D5/2

e 2D3/2
e

nc E nc �E nc �E nc �E nc �E

MCDF calculation

�7SD� 2161 0 2532 27173 4387 28109 4399 32265 3732 36847

CI calculation, valence correlation

�5SD� 521 −5311.659 555 23684 981 24695 1132 81759 923 86078

�5SDT� 7237 −5311.663 9090 23824 16558 24768 16789 36924 13142 41217

�5SDT�� �6SD� 7707 −5311.694 9600 27169 17439 28073 17728 33632 13948 37945

�6SDT� 16932 −5311.696 22239 27307 40090 28167 38128 33492 30406 37789

�6SDT�� �7SD� 17568 −5311.701 22954 27445 41313 28275 39372 33057 31491 37370

�7SDT� 33048 −5311.701 44663 27483 79881 28308 72816 33005 58869 37315

CI calculations, including valence and semicore-valence correlation

�7SD�� 8370 −5311.842 7064 27186 11866 28159 16053 29427 14137 33911

�6SDT�� �7SD�� 24309 −5311.847 28238 27522 50094 28411 52110 29844 42814 34293

Experiment 29552 30473 30243 34714
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ac polarizabilities of the 5 2S1/2 and 5 2D5/2 incorporate, re-
spectively, the coupling with the states states np 2P1/2,3/2 and
np 2P3/2. We perform a RHF calculation of the reduced ma-
trix elements for the states np 2P1/2,3/2 for n= �5–10�. Results
show that the �	5 2S1/2��D��5 2P1/2,3/2�� contribute for 95% of
the ground state polarizability and the �	5 2D5/2��D��5 2P3/2��
element contribute for 61% of the upper state polarizability.
Figure 1 represents the scalar polarizabilities of both levels
as functions of laser wavelength.

More accurate calculations have been performed for
n�7 using the MLTPOL program �20� with the wave
functions issue from MCHF+BP+CI calculation and
by means of RELCI program �21� with the wave functions
issue from MCDF+CI calculation. Using the MCDF+CI
value for �L=661.2 nm, we obtain for the scalar polarizabil-

ities ��0��2S1/2�=42.474 85�10−4 �Hz m2� /W, ��0��2D5/2�
=23.586 21�10−6 �Hz m2� /W, and for the tensor polariz-
ability ��2��2D5/2�=−��0��2D5/2�. When compared to the E1
scalar polarizability �E1, the higher orders multipole correc-
tions from the magnetic dipole M1 and the electric-
quadrupole E2 were found negligible. Numerical estimates
give �E2��M1�10−10�E1 for both levels. The resulting fre-
quency shift is then given by

��0/2� �Hz� = − 1.421 21 � 10−3�P/S� �W/m2� . �16�

The values obtained by the MCHF+BP+CI and RHF
method are, respectively, −1.416 16�10−3 �Hz m2� /W and
−1.063 14�10−3 �Hz m2� /W. One can notice a good agree-
ment between the value obtained by the MCDF and MCHF
methods. The value obtained by the RHF method is lower
but still in good agreement with the other results. This could
easily be explained if we take into account that the core-core
and core-valence effects are not considered in this method.
This frequency shift can be reduced below to 10−18 in rela-
tive value if the laser intensity fluctuations are below to
1 W/cm2. Figure 2 gives the light shift of the transition from
the 5 2S1/2�F=0,M =0� sublevel to the 5 2D5/2�F�=2,MF�
=0� sublevel as a function of the laser field intensity. The
value of the wavelength of the laser field is chosen to be �
=661.2 nm.

TABLE II. Reduced matrix elements between the low-lying
states of neutral silver atoms �in a.u.�.

n

�S����
1/2

RHF MCDF MCHF

4d105s 2S1/2-4d10np 2P1/2

5 2.71626 3.15676 3.10948

6 0.25713 0.28695 0.55130

7 0.07804 0.46984 0.27075

8 0.02411

9 0.00753

10 0.00824

4d105s 2S1/2-4d10np 2P3/2

5 3.84198 4.39435 4.39814

6 0.35436 0.76091 0.77914

7 0.10750 0.20103 0.38288

8 0.03408

9 0.00753

10 0.06839

4d10np 2P3/2-4d105s2 2D5/2

5 0.53457 0.46459 0.52186

6 0.25828 0.29357 0.52555

7 0.19293 0.21712 0.175630

8 0.14554

9 0.10885

10 0.11751

TABLE III. Transition probabilities, lifetime, and width of the
quadrupolar clock transition of the silver atom.

Method
A

�s−1�
Lifetime

�s�
Width
�Hz�

RHF 5.026 0.199 0.799

MCHF+BP+CI 5.747 0.174 0.915

MCDF+CI 8.680 0.115 1.381

FIG. 1. Scalar polarizabilities ��0� of the ground state 5S1/2 �a�
and the excited state 5D5/2 �b� as a function of the light wavelength
�L.
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B. Blackbody radiation

The interaction between atoms and the electric fields of
blackbody radiation �BBR� both induces transitions and pro-
duces non resonant Stark and Zeeman shifts of the atomic
transitions �22�. The nonresonant ac Stark shift �W�k� of the
energy of state ��J� induced by the level ���J�� is given by
�23�

�W�k���J� = −
1

�


��

S����
0

+� ����

����
2 − �2

�2���d� , �17�

where e is the electron charge and �2��� is the quadratic
electric field strength of BBR. At room temperature �T
=300 K�, BBR has its peak spectral density around a fre-
quency �max/2�=17 THz which is far below the minimum
value of ���� corresponding to the D1 and D2 transitions in
silver atoms. Hence, it is possible to omit the �2 term in the
denominator of Eq. �17� avoiding the singularity of the inte-
grand �24�. It is assumed that the perturbing BBR is isotropic
and unpolarized. Only the scalar polarizability contributes to
the BBR shift. Furthermore, due to the very low intensity of
the BBR field, the hyperpolarizability effect is negligible.
The relation �17� becomes

�W�k���J� = −
1

2
�0��J�	��

2 �t�� , �18�

where

�0��J� =
2

�


��

S���

����
�19�

is the dc Stark coefficient. The time averaged quadratic elec-
tric field strength is given by the Stephan-Boltzman law

	��
2 �t�� = �

0

+�

�2���d� =
4
T4

�0c
. �20�

The total BBR shift between two states ��J� and ���J�� is
then

�� = −
1

�
��W���J�� − �W��J�� . �21�

As previously, the summation occurs, respectively, on
the np 2P1/2,3/2 and np 2P3/2 n= �5–7� for the ground state
and the upper state, with the wave functions issue from
the MCDF+CI calculations. We obtained �0�2S1/2�=7.16
�10−39 �C m2� /V and �0�2D5/2�=6.83�10−39 �C m2� /V.
Combining both results, the total BBR frequency shift ex-
pressed as a relative quantity is given by

yBBR = ���T�/�0 = ���T/300 K�4 �22�

with �=1.9�10−16 and �=1+0.001 �T /300 K�2. Here �0 is
the unperturbed clock transition frequency of the silver at-
oms, � is a corrective term which accounts for the separation
in frequency between the BBR spectrum and the transition
frequency of the D1 and D2 lines in silver atoms �24�. The
blackbody frequency shift in the clock transition is estimated
to be −160 mHz at T=293 K. The quantity yBBR can be re-
duced to the 10−18 level by controlling the surrounding tem-
perature variation �T�0.5 K. Figure 3 gives the variation of
the frequency shift of the clock transition as a function of the
temperature TBBR.

C. Quadratic Zeeman shift

While the �F=0,MF=0� to �F�=2,MF�=0� hyperfine
component has no linear Zeeman shift, it does have a qua-
dratic Zeeman shift that must be accounted for. Let HS and
HD be the effective Hamiltonian operators that operate
within the subspaces of hyperfine sublevels associated with
the levels 5 2S1/2 and 5 2D5/2, respectively,

FIG. 2. Light shift of the transition from the 5S1/2F=0, MF=0
sublevel to the 5D5/2F�=2, MF�=0 sublevel. The value of the
wavelength of the laser field is chosen to be �=661.2 nm. The
electric component field is linearly polarized along the quantization
axis z.

FIG. 3. Predicted frequency shifts due to BBR as a function of
temperature TBBR.
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HS = hASI · J + gJ�S��BJ · B + gI��BI · B ,

HD = hADI · J + gJ�D��BJ · B + gI��BI · B , �23�

where AS and AD are the dipole hyperfine constants and �B
is the Bohr magneton. All of the parameters entering in HS
and HD are known from experiments. The ground-state hy-
perfine constant A and the excited-state hyperfine constant
AD have been measured in Ref. �25,26� to be, respectively,
1976.93�4� and −145.1584�5� MHz. For low magnetic fields
�B less than 1 mT�, it is sufficient to calculate the energy
levels to second order in B. To this order in B, the energies of
the hyperfine-Zeeman sublevels for the states denoted
��JFMF� are

	5s 1/2 0 0�HS�5s 1/2 0 0�

= ES −
3hAS

4
−

�gJ − gI��
2�B

2B2

4hAS
,

	5s2 5/2 2 0�HD�5s2 5/2 2 0�

= ED −
7hAD

4
−

�gJ − gI��
2�B

2B2

12hAD
, �24�

where ES and ED are the unperturbed energy levels of the
corresponding states. We obtained −993.32�2� Hz/G2 for the
ground state and 1621.02�1� Hz/G2 for the upper state. This
leads to a total shift of 627.70�2� Hz/G2. To reach a relative

accuracy of 10−18, one has to control the surrounding mag-
netic field within 1 mG which is currently the case in Cs
atomic clocks.

V. SUMMARY AND CONCLUSION

We report ab initio calculations of the frequency shifts of
the quadrupolar optical clocks transition in neutral silver at-
oms due to external fields. We found that the fractional fre-
quency shift due to the laser field can be reduced to 10−18 if
the laser intensity fluctuations are within 0.1 mW/cm2. The
BBR frequency shift is equal to −160 mHz at T=293 K.
Fractional BBR shift can be reduced to 10−18 by controlling
the fluctuations of the surrounding medium temperature to
�T�0.5 K. The effect of the quadrupolar Zeeman shift can
also be negligible ��10−18� if the magnetic field variations of
the surrounding medium are within �B�1 mG. The lifetime
of the upper metastable level has been evaluated to �
=115 ms. Hence, the neutral silver atom appears as a prom-
ising candidate for the next generation of atomic optical
clocks. Recently, this transition has been observed for the
first time by the group at CNAM using a thermal atomic
beam �27�.
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