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We propose a fast scheme involving atoms fixed in an optical cavity to directly implement the universal
controlled-unitary gate. The present technique based on adiabatic passage uses dark states well suited for the
controlled-rotation operation. We show that these dark states allow the robust implementation of a gate that is
a generalization of the controlled-unitary gate to the case where the control qubit can be selected to be an
arbitrary state. This gate has potential applications to the rapid implementation of quantum algorithms such as
the projective measurement algorithm. This process is decoherence-free since excited atomic states and cavity
modes are not populated during the dynamics.
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I. INTRODUCTION

The realization of a universal quantum circuit is a great
challenge in quantum-information science. It is known that
an arbitrary quantum computation can be performed by com-
bining quantum gates, i.e., unitary operators acting on qubits,
that form a universal set. We distinguish two types of uni-
versal sets. The first one is composed of a general one-qubit
gate �corresponding to a general operator U of SU�2�� and a
two-qubit entangling gate �1�; the second type is composed
of a single kind of gate, called a universal gate, like the
controlled-unitary gate �C-U� �2�.

In order to make quantum computations, the implementa-
tions of these quantum gates have to be robust, i.e., they have
to be insensitive to fluctuations or to partial knowledge of
experimental parameters. Furthermore they have to be insen-
sitive to decoherence effects, such as spontaneous emission.
Those conditions can be satisfied if the qubit is encoded in
atomic metastable states, and if the gates are implemented by
adiabatic passage along dark states, i.e., instantaneous eigen-
states with time-independent eigenvalue �equal to the energy
of the ground states� and with zero projection on the excited
states.

However, adiabaticity is not sufficient to ensure the ro-
bustness of certain quantum gates. The parameters that de-
termine the action of the gates on qubits, like the argument of
the rotation gate or the phase of the controlled-phase gate,
have to be controlled with high accuracy to perform compu-
tation �3�. We therefore have to avoid the use of the nonro-
bust dynamical phases, depending on the area under the adia-
batic pulses, and of geometric phases �4� that require the
control of a loop in the parameter space. An alternative tech-
nique consists in using elliptic polarization and the static
phase difference of lasers, which can be easily controlled
experimentally. Following this idea, the implementation of a
general single-qubit gate based on fractional stimulated Ra-
man adiabatic passage �FSTIRAP� �5,6� in a tripod-type sys-
tem �7� has been proposed in Ref. �8�. A multicontrolled-
unitary gate acting on qubits fixed in an optical cavity has
been proposed in Ref. �9�, but with an undesirable phase gate
that has to be compensated. The latter proposition is based

on the two-qubit adiabatic transfert described in Ref. �10�
and FSTIRAP. It has been extended in Ref. �11� for the case
of arbitrary states of the control qubits. However, an unde-
sirable phase still has to be compensated at the end by adding
a supplementary standard phase gate, requiring additional
pulses and longer computational time.

Since in experimental implementations of quantum com-
putations the errors grow with the number of quantum gates
involved, it is advantageous to implement directly certain
gates instead of relegating them to a combination of elemen-
tary gates, as illustrated in Ref. �14� with the direct imple-
mentation of the SWAP gate. There is a double advantage: to
reduce the errors with a smaller number of gates and to de-
crease decoherence effects by reducing the computational
time.

In this paper we propose a direct implementation by adia-
batic passage along dark states of an arbitrary state
controlled-unitary gate using only seven pulses. This gate
can be writen as

�1 0

0 U
� �1�

in the basis ���nc0	 , ��nc1	 , ��c0	 , ��c1	
, where U�1� is a uni-
tary �identity� operator of SU�2�, �c an arbitrary control state
of the first qubit, and �nc its orthogonal state.

The proposed technique is faster and simpler than the one
described in Ref. �11�, since the controlled-unitary gate is
directly implemented as a single circuit without the need of
phase compensation. It requires only 12 laser pulses �which
can be reduced to seven as will be shown� instead of 17
�which could be reduced to 11 in the same manner�. This
process is based on dark states generalizing those of
FSTIRAP and of Ref. �10�, and is particularly adapted for a
two-qubit controlled-rotation operation. This gate has poten-
tial applications for the rapid realization of quantum algo-
rithms. We show, for instance, that it allows a direct imple-
mentation of the projective measurement algorithm. The
paper is organized as follows. The system is introduced in
Sec. II. The definition and the dynamics of the gate are
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shown in Sec. III. Section IV is devoted to the numerical
demonstration, and Sec. V presents some conclusions.

II. SYSTEM

As in Refs. �9–12� we consider a register of qubits fixed
in an optical cavity. Each qubit is encoded in a tripod-type
Zeeman system composed of three metastable states and one
excited state, and can be addressed individually by laser
fields. The qubits interact with each other through the cavity
mode �10�. The single-qubit gates can be implemented in this
system by coupling the three ground states by lasers �13�. We
choose here to identify the Zeeman sublevels �J=1, M = ±1	
with the computational states �0	 and �1	. The ancillary state
�J=1, M =0	 and the excited state �J=0, M =0	 are, respec-
tively, denoted �a	 and �e	 �see Fig. 1�.

During the dynamics, the excited state �e	 is coupled to
the computational states �0	 and �1	 by circularly polarized
laser fields of Rabi frequencies �0

�k� and �1
�k� �the superscript

k labels the atoms�, and to the ancillary state �a	 by the lin-
early polarized cavity mode of Rabi frequency g�k� which is
time independent. Each field is one-photon resonant, and
their polarization and frequencies are such that they drive a
unique transition. The choice of the polarization is guided by
geometrical constraints, when we impose that the lasers
propagate orthogonally to the cavity axis. The essential point
is that the polarization of the cavity mode is orthogonal to
the plane of the circular polarization of the lasers.

III. DYNAMICS

In this section we describe the sequence of pulses that will
permit us to generate an arbitrary state controlled-unitary
gate �Cas-U�. We recall that a standard controlled-unitary
gate yields a unitary operation on the target qubit if the con-
trol qubit is in state �1	. We define its generalization as fol-
lows. The arbitrary state controlled-unitary gate yields a uni-
tary operation on the target qubit if the control qubit is in an
arbitrary preselected state that we can choose robustly by the
laser pulse parameters. It is equivalent to the quantum circuit
represented in Fig. 2, where U ,V are unitary operators and
�q0	 , �q1	 the control and target qubit.

A. Background

We use the following notation: the states of the system are
written �s1s2	�n	, where the indices s1 ,s2 denote, respectively,

the states of the first and second qubits, and n the photon
number state of the cavity mode.

In Ref. �10�, a robust tool has been established to drive a
complete population transfer between two-qubit states
�s1s2	�0	. For instance, if the states �a	 of each atom are
coupled by the cavity, then a counterintuitive pulse sequence
�1

�2� ,�0
�1� induces the population transfer �0a	�0	→ �a1	�0	.

Such a coherent manipulation of the two-atom state �s1s2	�0	
offers various possibilities for the implementation of two-
qubit quantum gates. This tool is at the heart of the SWAP

gate in Ref. �14� and of the controlled-NOT gate in Ref. �15�.
As STIRAP �5� can be extended to FSTIRAP �6�, one can

extend this process to the creation of coherent superpositions
of the two-atom states. In this case, we use three laser fields
of the form Ei

�k� cos��t+�i
�k�� �i=0,1, k=1,2�, coupling, re-

spectively, the states �1	 and �e	 of the first atom and the
states �0	− �e	 and �1	− �e	 of the second atom. In the inter-
action picture and under the rotating-wave approximation the
Hamiltonian is given by

H = �1
�1�e−i�1

�1�
�e�1�	�1�1�� + g�1�â�e�1�	�a�1�� + �0

�2�e−i�0
�2�

�e�2�	

��0�2�� + �1
�2�e−i�1

�2�
�e�2�	�1�2�� + g�2�â�e�2�	�a�2�� + H.c. �2�

with â the anihilation operator of the cavity mode and �i
�k�

the Rabi frequencies associated with the laser amplitudes
Ei

�k�.
The interaction of the second qubit is parametrized by the

following laser Rabi frequencies:

�0
�2��t� = ��2��t�sin � , �3a�

�1
�2��t� = ��2��t�cos � , �3b�

which can be generated in a robust way using a single laser
of appropriate elliptic polarization. We refer to such a laser
as ��2� in what follows. We define for the second qubit one
noncoupled and three coupled states as

��nc	 = cos � ei��2�
�1	 − sin ��0	 , �4a�

��c	 = sin � ei��2�
�1	 + cos ��0	 , �4b�

��c2	 = sin � ei��2�
�1	 − cos ��0	 , �4c�

��c3	 = cos � ei��2�
�1	 + sin ��0	 , �4d�

where ��2�=�1
�2�−�0

�2�.
The Hamiltonian admits the following dark states, i.e.,

instantaneous eigenstates of null eigenvalues and not con-
nected to excited atomic states, which belong to three or-
thogonal subspaces:

FIG. 1. Schematic representation of a Zeeman sublevel system
with the polarization of the fields driving each transition associated
with the states �J ,M	 for J=0,1. For the generation of single-qubit
gates, each transition is driven by a laser; for the two-qubit-state
rotation a cavity field drives the transition �a	-�e	; the others are
driven by lasers.

FIG. 2. Quantum circuit representing the decomposition of the
arbitrary state controlled-unitary gate from elementary gates.

LACOUR et al. PHYSICAL REVIEW A 73, 042321 �2006�

042321-2



��1	 = �0�nc	�0	 , �5a�

��2	 = cos ��0�c	�0	 − sin � e−i�0
�2�

�0a	�1	 �5b�

for the first one,

��3	 = �a�nc	�0	 , �6a�

��4	 = sin 	�a�c	�0	 + cos 
 cos 	 ei��1
�1�−�0

�2���1a	�0	

− sin 
 cos 	 e−i�0
�2�

�aa	�1	 �6b�

for the second one, and

��5	 = cos 
 ei�1
�1�

�1�c2	�0	 − sin 
�a�c2	�1	 , �7a�

��6	 = ��2 cos ��cos 
ei�1
�1�

�1�c3	�0	 − sin 
�a�c3	�1	�

− sin � e−i�0
�2�

��2 cos 
 ei�1
�1�

�1a	�1	

+ sin 
�aa	�2	��/�1 + cos2 
 + sin2 
 cos2 �� �7b�

for the third one.
The mixing angles are determined by the Rabi frequencies

through the relations

tan � = ��2�/g�2�, �8a�

tan 
 = �1
�1�/g�1�, tan 	 = sin 
/tan � . �8b�

The dark states ��1,2	, ��3,4	, and ��5,6	 drive, respec-
tively, the population of the states �00	�0	, �01	�0	, �a0	�0	,
�a1	�0	, and �10	�0	, �11	�0	 in the adiabatic limit.

Since the coupling between the dark states of the same
subspace are, respectively, of the form

�2� d

dt
��1� = − �̇ cos � , �9a�

�4� d

dt
��3� = − �̇ sin 	 , �9b�

�6� d

dt
��5� = �̇�2 cos � , �9c�

the six dark states can evolve freely and independently in the
adiabatic limit under the condition ���0=const. This con-
dition can be satisfied when the amplitudes of the lasers in-
teracting with the second atom vary with a constant ratio. It
guarantees that there is no geometric phase, which would be
detrimental for robustness.

The dark states ��1,3	 are stationary states and do not
participate in the dynamics. Furthermore, since g�k� is time
independent, we remark that for an arbitrary pulse sequence
involving ��2� and �1

�1�, the initial population of the states
�00	�0	, �01	�0	, �10	�0	, �11	�0	 stays always unchanged at the
end of such a process.

The dark state ��4	 is the principal eigenstate involved in
the gate operation. It evolves according to the linkage pattern
represented in Fig. 3. There are similarities between this
linkage pattern and the one of the tripod-type system used

for single-qubit rotations �8�. It shows that the states �a0	�0	,
�a1	�0	, �1a	�0	 can, respectively, evolve in the same way as
the states �0	, �1	, �a	 involved in the single-qubit rotation,
leading to a robust rotation of the two-atom states
��a0	�0	 , �a1	�0	
.

We first describe precisely the dynamics of this two-atom-
state rotation, before applying it to the construction of the
arbitrary state controlled-unitary gate.

B. Robust rotation of two-atom states

We start with the initial state

��i	 = ��a1	�0	 + ��a0	�0	

= �a	 � ���1	 + ��0	� � �0	 = �a�i	�0	 �10�

where � ,� are complex numbers such that ���2+ ���2=1.
Step 1. We induce the initial connection to the dark states

��i	 = �3��3	 + �4��4	 �11�

with the constant coefficients

�3 = ��nc��i	, �4 = ��c��i	 , �12�

using the partially overlapping pulse sequence �1
�1� ,��2�

such that 	 decreases from  /2 to 0. In the adiabatic limit
the dark states evolve independently, such that at the end of
the pulse sequence the state vector becomes

��	 = �3��3	 + �4ei��1
�1�−�0

�2���1a	�0	 �13�

since ��3	 is a stationary state.
Step 2. We use a pulse sequence in the reversed order, i.e.,

��2� ,�1
�1� such that 	 increases from 0 to  /2. The phases

�0,1
�2� are unchanged, while we shift by � the phase �1

�1� of the
laser pulse addressing the first qubit. This induces the con-
nection �1a	�0	→e−i���4	, and therefore the state vector be-
comes

��	 = �3��3	 + �4e−i���4	 , �14�

and at the end of the pulse sequence

�� f	 = �a	��3��nc	 + �4e−i���c	��0	 = e−i�/2�a	U��,n���i	�0	 ,

�15�

where

U��,n� = exp�− i
�

2
n · �̂� �16�

is a general rotation of SU�2� of angle � around the vector n.
The components of this vector n are

FIG. 3. Linkage pattern associated with the dark state ��4	.
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n = �sin 2� cos ��2�,sin 2� sin ��2�,cos 2�� , �17�

and �̂= ��x ,�y ,�z� are the Pauli operators defined for the
second qubit: �x= �0	�1�+ �1	�0�, �y = i��0	�1�− �1	�0��, �z

= �0	�0�− �1	�1�. We notice that the initial population of the
states �01	�0	 and �00	�0	 ��10	�0	 and �11	�0	�, which are con-
nected to the dark states ��1	 and ��2	 ���5	 and ��6	�, stay
unchanged at the end of the process.

The first qubit controls the rotation applied on the second
qubit. Indeed, Eqs. �5� and �16� show that the process de-
scribed induces, up to a global phase −� /2, a rotation of the
second qubit of angle � around the vector n on the Bloch
sphere only if the first one is in the ancillary state �a	. Then,
by transferring the population of an arbitrary preselected
state of the first qubit on state �a	 before realizing the two-
atom rotation, we get a controlled-unitary gate generalized to
the case of an arbitrary state for the control qubit. Moreover,
if the couplings between the cavity mode and the atoms are
much stronger than the classical laser-field interaction, then
the cavity is negligibly populated and the coupling between
the atoms are given by a virtual photon. The proposed pro-
cess is then decoherence-free in the sense that spontaneous
radiation from the excited state and cavity damping are
avoided.

C. The arbitrary state controlled-unitary gate

The extension of the previous process to the implementa-
tion of the arbitrary state controlled-unitary gate is now
simple: it consists in transfering as a preliminary step the
controlled state ��c	 of the first qubit to its ancillary state �a	.
This can be done using two lasers of appropriate polariza-
tions of Rabi frequencies: �a�s�

�1� and

�0�s�
�1� �t� = ��s�

�1��t�cos � , �18a�

�1�s�
�1� �t� = ��s�

�1��t�sin � . �18b�

The latter of elliptical polarization is referred to as ��s�
�1�. They

drive, respectively, in a nonresonant way the transition of
states �a	, �0	, �1	 of the first qubit to �e	 with a one-photon
detuning. Alternatively, we prefer to use more efficient one-
photon resonant transitions to a second excited atomic state.
The important point is to discard the transition �a	-�e	 by the
cavity in this preliminary step.

They define the control state of the control qubit and its
orthogonal state as

��c	 = sin �ei��1�
�1	 + cos ��0	 , �19a�

��nc	 = cos �ei��1�
�1	 − sin ��0	 . �19b�

The full process is decomposed in three steps:
Step 1. We start from a general initial state written in the

basis ���nc	 , ��c	
 � ��0	 , �1	


�
i	 = ��nc	��1�0	 + �2�1	��0	 + ��c	��3�0	 + �4�1	��0	 ,

�20�

where �i=1,. . .,4 are complex numbers such that �i=1
4 ��i�2=1.

We use a FSTIRAP process with the pulse sequence �a�s�
�1� ,

��1� with relative phase � in order to transfer for the first
qubit the population of state ��c	 to state �a	. This gives the
state

�
1	 = ��nc	��1�0	 + �2�1	��0	 − ei��a	��3�0	 + �4�1	��0	 .

�21�

Step 2. We apply the process previously described to imple-
ment the rotation U�� ,n� �see Eqs. �15� and �16��. The state
�21� becomes

FIG. 4. �Color online� Time evolution of the phases of the
probality amplitudes for the initial states �+0	�0	 �top frame� and
�+1	�0	 �middle frame�. The Rabi frequencies are represented in the
bottom frame.

FIG. 5. �Color online� Time evolution of the populations repre-
sented, respectively, for the initial states �−0	�0	, �−1	�0	, �+0	�0	,
�+1	�0	 �frames �a�–�d��. The Rabi frequencies are represented in
the lower frame.
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�
2	 = ��nc	��1�0	 + �2�1	��0	 − ei�e−i�/2�a	U��,n���3�0	

+ �4�1	��0	 . �22�

Step 3. We make the inverse operation of step 1, i.e., a
FSTIRAP process with the pulse sequence ��1�, �a�s�

�1� with

relative phase �� in order to transfer in the first qubit the
population of state �a	 to state ��c	. The final system state
reads

�
3	 = ��nc	��1�0	 + �2�1	��0	 + ei��−���e−i�/2��c	U��,n�

���3�0	 + �4�1	��0	 . �23�

Under the condition �−��−� /2=0 the undesirable phase
factor of the state �23� vanishes and one obtains directly the
arbitrary state controlled-unitary gate which makes the uni-
tary operation U�� ,n� on the second qubit only if the first
one is in state ��c	.

IV. NUMERICAL SIMULATION

We show the numerical simulation of the arbitrary state
controlled-unitary gate on Figs. 4 and 5. We have chosen
Rabi frequencies of Gaussian shape and of full width at half
maximum TP=100 ns. The couplings are parametrized by
�max/2=14 MHz and g /2=34 MHz which can be pres-
ently obtained experimentally with recent technologies
�16,17�. The simulation is made for the state of the control
qubit �+ 	� 1

�2
��0	+ �1	� �its orthogonal state is denoted �−	

� 1
�2

��0	− �1	��. We have represented in Fig. 4 the time evo-
lution of the phases associated with the probability ampli-
tudes for the initial states �+0	�0	, �+1	�0	. Figure 5 exibits
the time evolution of the populations for the initial states
�−0	�0	, �−1	�0	, �+0	�0	, �+1	�0	. They show that when the
control qubit is in state ��	, the state of the target qubit is
unchanged �Figs. 5�a� and 5�b��; and when the control qubit
is in state ��	, an R� /4� gate is applied on the target qubit,
such that its states �0	 and �1	 become, respectively, ��0	
+ �1	� /�2 �Figs. 4�a� and 5�c�� and �−�0	+ �1	� /�2
�Figs. 4�b� and 5�d��.

V. DISCUSSION AND CONCLUSION

The implementation of the arbitrary state controlled-
unitary gate proposed is robust under the adiabatic condi-
tions � j,max

�i� TP ,g�i�TP�1, � j,max
�i� ,g�i��� ,1 /� where � ,1 /�

are the cavity decay rate and the spectral linewidth of the
excited atomic states. It does not involve spontaneous emis-
sion since the dynamics follows dark states. However, since
the population of the states �−0	�0	 and �−1	�0	 evolves par-
tially along dark states ��5,6	, which are superpositions of
several one-photon states, the coherence of the process is
sensitive to the cavity decay rate. These losses are negligible
under the condition g�i��� j,max

�i� where the cavity is negligi-
bly populated, and cavity damping is thus avoided. We have
calculated the gate fidelity F−, F+ in Table I for different
values of the parameters �� j,max

�i� ,g�i� ,��. F−, F+ stand, re-
spectively, for ��−id �−num	�2, ��+id �+num	�2 where �±id	, �±num	
denote, respectively, the ideal final state without cavity decay
and the final state of the numerical simulation for the evolu-
tion of an initial state with a control qubit in state ��	, and a
target qubit in state �0	 or �1	.

We have presented a fast scheme adapted for the direct
implementation of a universal two-qubit quantum gate that
generalizes the controlled-unitary gate to an arbitrary control
state of the first qubit. This arbitrary state controlled-unitary
gate opens up further applications for the rapid implementa-
tion of quantum algorithms. For instance, the main part of
the projective measurement circuit �2� can be built directly
from this gate, as represented in Fig. 6, where M is a unitary
operator of eigenvalues ±1. The output qubit of this circuit is
an eigenvector of M depending on the result of the measure-
ment of the first qubit. This circuit offers many applications
for quantum error corrections �2,18�.
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