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We consider topological quantum computation �TQC� with a particular class of anyons that are believed to
exist in the fractional quantum Hall effect state at Landau-level filling fraction �=5/2. Since the braid group
representation describing the statistics of these anyons is not computationally universal, one cannot directly
apply the standard TQC technique. We propose to use very noisy nontopological operations such as direct
short-range interactions between anyons to simulate a universal set of gates. Assuming that all TQC operations
are implemented perfectly, we prove that the threshold error rate for nontopological operations is above 14%.
The total number of nontopological computational elements that one needs to simulate a quantum circuit with
L gates scales as L�ln L�3.
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I. INTRODUCTION

One of the most important results in the theory of fault-
tolerant quantum computation is the threshold theorem. It
asserts that ideal quantum circuits can be efficiently simu-
lated by noisy circuits if an error rate of individual gates is
smaller than a certain constant threshold value �; see �1–4�.
Estimates of � vary from 10−7–10−4 for a local architecture
�5,6� to 10−5–10−2 for nonlocal gates �4,7�. With the present
technology these rates are hardly achievable by any real de-
vice. Moreover, for practical computations it is desirable to
have an error rate much smaller than �; otherwise, one may
need too many concatenation levels and the simulation over-
head may become too large.

These challenges can be overcomed �at least partially� in
the topological quantum computation �TQC� scheme devel-
oped by Kitaev and co-workers �8–10�. It makes use of the
fact that elementary excitations of some two-dimensional
�2D� many-body quantum systems are anyons—spatially lo-
calized quasiparticles with unusual exchange statistics de-
scribed by nontrivial representations of the braid group. For
the purposes of TQC one needs non-Abelian anyons �corre-
sponding to multidimensional braid group representations�.
A computation is carried out by creating pairs of anyons
from the ground state, separating them far apart, transporting
individual anyons adiabatically around each other, and fi-
nally fusing pairs of anyons together. A list of particle types
produced in the fusion is the classical outcome of the com-
putation. An error rate of individual gates in TQC is expected
to be much smaller than �.

A physical system that may serve as a platform for TQC is
a two-dimensional electron gas in the fractional quantum
Hall effect �FQHE� regime. The FQHE plateau at the filling
fraction �=5/2 was observed by Willett et al. �11� in the late
1980s. Shortly after that Moore and Read �12� developed a
theory predicting that elementary excitations of the �=5/2
state are non-Abelian anyons. The corresponding braid group
representation was found by Nayak and Wilczek �13�. For
the sake of brevity we shall refer to the anyons existing in
the �=5/2 state as Ising anyons �their exchange statistics can
be described by monodromy of holomorphic correlation
functions of the 2D Ising model �12��.

From the experimental point of view, Ising anyons have
many favorable properties. A large quasiparticles gap �esti-
mated as ��100 mK in �14�� suppresses thermal creation of
“stray” particles, while nonzero electric charge permits con-
trol of anyons using electrostatic gates. Besides, one can take
advantage of the well-developed FQHE experimental tech-
nology. An experimental setup for controlling Ising anyons
and testing their statistics has been recently proposed by sev-
eral authors �15–18�. An error rate for the one-qubit �x op-
eration has been estimated as 10−30 in �15�.

The only fact that prevents one from using Ising anyons
for TQC is that the braid group representation describing
their statistics is not computationally universal. We shall see
that one can easily compute an amplitude of any braiding
process; see Sec. III. Loosely speaking, TQC with Ising
anyons is an intersection of two computational models
known to be classically simulatable: quantum circuits with
Clifford gates �19–21� and fermionic linear optics �22–24�.
Therefore, Ising anyons offer only reliable storage of quan-
tum information and reliable implementation of a certain
nonuniversal gate set; see Sec. III for details.

The goal of the present paper is to argue that this draw-
back is not as serious as it might seem. We show that a
universal gate set can be simulated by standard TQC
operations—i.e., adiabatic transport and fusion of anyons—
and very noisy nontopological operations, such as direct
short-range interaction of anyons. The latter can be thought
of as a tunneling process in which two anyons exchange a
virtual quasiparticle. It can be implemented by transporting
two anyons sufficiently close to each other, waiting for an
appropriate period of time, and then returning the anyons to
the original positions. Another example of a nontopological
computational element is a two-point contact interferometer
proposed in �16–18�. It has the geometry of a Hall bar with
two constrictions, such that quasiparticle tunneling occurs
between two edge currents on the opposite edges of the bar.
The tunneling current is sensitive to the total topological
charge of anyons trapped inside the interferometer loop. We
will show that the short-range interaction and two-point con-
tact interferometer together with TQC operations provide a
universal gate set.
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Our main result concerns the threshold error rate of non-
topological operations. To avoid propagation of errors we
apply all nontopological operations before the computation
itself to prepare a supply of “computationally universal” an-
cillary states from the vacuum. In our scheme there will be
two types of ancillary states: a four-particle state �a4� and an
eight-particle state �a8�. From the computational perspective,
�a4� can be identified with a one-qubit state 2−1/2��0�
+ei�/4 �1�� �we represent a qubit by four quasiparticles�.
Analogously, �a8� can be identified with a two-qubit state
2−1/2��0,0�+ �1,1��. One copy of �a8� together with TQC op-
erations allows the implementation of the conrolled-NOT

�CNOT� gate. One copy of �a4� together with TQC operations
and CNOT gates allows one to implement the one-qubit � /8
rotation. Summarizing, universal computation can be carried
out by TQC operations if a supply of states �a4� and �a8�is
available.

Since nontopological operations are not perfect, in prac-
tice one can prepare only some very noisy ancillary states �4
and �8 approximating �a4� and �a8� up to some precision. We
characterize this precision by two parameters

�4 = 1 − �a4��4�a4� and �8 = 1 − �a8��8�a8� .

We prove that the ideal states �a4� and �a8� can be distilled
from many copies of �4 and �8 by TQC operations provided
that �i� all TQC operations are perfect, �ii� �4	0.14, and �iii�
�8	0.38.

A distillation method that we use is a combination of
“magic states distillation” proposed in �25� and a slightly
modified version of the entanglement purification protocol of
Bennett et al. �26,27�.

Summarizing, if one can prepare the states �a4�, �a8� ac-
curately enough, such that the conditions above are satisfied,
then any quantum computation can be efficiently simulated
by Ising anyons. The overall simulation requires only poly-
logarithmic overhead. Specifically, the number of noisy an-
cillas �4 and �8 and the number of TQC operations that one
needs to simulate a quantum circuit with L gates scales as
L�ln L�3.

In the case when one can meet only the condition
�8	0.38, TQC operations allow one to implement any Clif-
ford gates �i.e., the CNOT gate, the Hadamard gate, and the
one-qubit � /4 rotation�. Though these gates do not constitute
a universal set, they are sufficient to implement any error
correction scheme based on stabilizer codes �28�. Error cor-
rection might be needed if one takes into account finite error
rate of TQC operations �which is neglected throughout this
paper�.

Our derivation of the threshold conditions �ii� and �iii� is
based on a single assumption regarding the error model char-
acterizing nontopological operations—they must obey the
superselection rules of Ising anyons. Accordingly, we assume
that matrix elements of �4 and �8 are nonzero only for the
vacuum sector �recall that each ancilla is prepared from the
vacuum�.

The rest of the paper is organized as follows. Section II
provides the necessary background on Ising anyons. In Sec.
III a TQC with Ising anyons is discussed and its classical
simulatibility is proved. Section IV describes a distillation

method for the state �a8�. We show how to use ancillas �a8� to
implement Clifford group gates in Sec. V. Finally, in Sec. VI
we make use of the magic-states distillation protocol to
simulate universal computation. Also the efficiency of the
simulation is analyzed. Some particular nontopological an-
cilla preparation methods are discussed in Sec. VII.

II. ISING ANYONS

A complete specification of any class of anyons is rather
complicated and involves a lot of data including a list
of particle types, their fusion and braiding rules, S matrices,
etc.; see �29� for a comprehensive review and �16� for a
detailed discussion of Ising anyons in the context of
the FQHE. In this section we briefly outline the properties
of Ising anyons, focusing on those relevant for quantum
computation.

A. Particle types and fusion rules

There are two nontrivial particle types in the class of Ising
anyons. We shall label them by � and �. Particles of differ-
ent types cannot be converted to one another �or to the
vacuum� by a local operator, thus describing superselection
sectors of the model. However, if one brings two particles
close to each other, they can fuse into a single one or anni-
hilate each other, forming a topologically trivial particle �be-
longing to the vacuum sector�. Admissible interconversions
of particles are formally described by the fusion rules


 � 
 = 1, 
 � � = �, � � � = 1 + 
 . �1�

Here 1 stands for the vacuum sector. The most important for
us is the last rule. It implies that a pair of � particles can be
prepared in two orthogonal states that differ by the total to-
pological charge. Computing a product �� ¯ �� for 2n �
particles one can easily get

��2n = 2n−11 + 2n−1
 . �2�

Thus, if one creates 2n � particles from the vacuum, there is
a 2n−1-dimensional subspace of states that can be distin-
guished by fusing some pairs of particles together and ob-
serving the type of resulting particles. It is used as a compu-
tational space in the TQC scheme.

B. Braid group representation

Recall that the exchange statistics of particles residing in
the �2+1�-dimensional space-time is described by unitary
representations of the braid group rather than the symmetric
group �because the clockwise and counterclockwise ex-
changes are not equivalent�. The braid group Bn with n
strings can be formally described by the generators bj, bj

−1,
j=1, . . . ,n−1 �see Fig. 1�, which obey the Yang-Baxter rela-
tions

bjbk = bkbj for �j − k� � 1,

bjbj+1bj = bj+1bjbj+1 for j = 1, . . . ,n − 2. �3�

The strings can be thought of as world lines of particles,
whose initial and final positions are chosen on the x axis.
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The exchange statistics of � particles is described by the
spinor representation of the braid group �13�:


:B2n → U�2n� .

It is constructed using the spinor representation of the or-
thogonal group SO�2n�. Let us introduce the Pauli operators
� j

x, � j
y, and � j

z on n qubits and auxiliary Majorana operators
ĉ1 , ĉ2 , . . . , ĉ2n defined as

ĉ2j−1 = �1
z

� ¯ � � j−1
z

� � j
x

� Ij+1 � ¯ � In,

ĉ2j = �1
z

� ¯ � � j−1
z

� � j
y

� Ij+1 � ¯ � In, �4�

where I stands for the one-qubit identity operator and j runs
from 1 to n. The Majorana operators obey commutation rules

ĉpĉq + ĉqĉp = 2�pqI, ĉp
† = ĉp, for any p,q .

Then the spinor representation of the braid group generators
b1 , . . . ,b2n−1 is defined as


�bp� = exp�−
�

4
ĉpĉp+1	 =

1

2

�I − ĉpĉp+1� .

�We have omitted the overall phase of 
�bp�, since it is irrel-
evant for quantum computation purposes.�

The Yang-Baxter relations can be easily verified using the
following identity:


�bp�ĉq
�bp�† = �ĉq, if q � �p,p + 1
 ,

ĉp+1, if q = p ,

− ĉp, if q = p + 1.
�

It says that an exchange of adjacent � particles is equivalent
to an exchange of the corresponding Majorana operators �up
to a sign�.

C. Topological charge measurements

The multidimensionality of the braid group representation
accounts for the fact that there is more than one way to fuse
2n � particles into the vacuum �or into 
 particles�. A pro-
cess in which two adjacent � particles p and p+1 are fused
together and then a type of the resulting particle �1 or 
� is
observed can be described as a projective measurement of an
observable

Fp = − iĉpĉp+1.

The eigenvalues +1 and −1 correspond to the resulting par-
ticle’s type 1 and 
, respectively.

A type of a particle that one would obtain by fusing to-
gether all 2n � particles is measured by a parity operator

Q = �1
1

� ¯ � �n
z = �− i�nĉ1ĉ2 ¯ ĉ2n. �5�

Note that Q commutes with the action of any braid
group element, as well as with observables Fp. This is a
manifestation of the superselection rules—any local operator
preserves the total topological charge. Any state ��� of
2n � particles that can be created from the vacuum obeys
Q ���= + ���. Analogously, ��� can be prepared starting
from a single � particle iff Q ���=−���.

Remark. Strictly speaking, fusion is a process reducing
the Hilbert space of states, since it replaces two particles by
one. To simplify the notation we describe fusion as a projec-
tive measurement. This is justified, since a fusion can always
be followed by an auxiliary fission process in which the re-
sulting 1 or � particle is split into a pair of � particles.

III. TOPOLOGICAL QUANTUM COMPUTATION
WITH ISING ANYONS

The goal of this section is to introduce a computational
model that captures all features of TQC with Ising anyons.
We will show that any computation within this model can be
efficiently simulated classically. Finally, we describe a natu-
ral encoding of a qubit by � particles.

A. Formal computational model

To define a formal model we just need to extract its con-
stituents from Sec. II—the computational Hilbert space with
a fiducial initial state, a set of unitary gates, and a set of
admissible measurements.

The computational Hilbert space of n qubits,

Fn = �C2��n,

will be represented by 2n � particles. The initial state
�0�= �0� � ¯ � �0� is prepared by preparing pairs of �
particles, �1,2� , . . . , �2n−1,2n�, from the vacuum.

A set of elementary unitary gates includes nearest-
neighbor exchange operations

Bp � 
�bp� = exp�−
�

4
ĉpĉp+1	 .

For any p	q define a nonlocal exchange operation

Bp,q = exp�−
�

4
ĉpĉq	 . �6�

Its conjugated action on the Majorana operators is

Bp,qĉrBp,q
† = �ĉr, if r � �p,q
 ,

ĉq, if r = p ,

− ĉp, if r = q .
� �7�

One can easily verify that a nonlocal exchange is a compo-
sition of O�n� nearest-neighbor exchanges; namely, for any
p�q−2 one has

Bp,q = Bq−1 ¯ Bp+1BpBp+1
†

¯ Bq−1
† .

The operations Bp,q constitute a set of elementary unitary

FIG. 1. Braid group generators.
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gates in our model. We shall refer to them as braid gates.
Finally, a set of measurements includes nearest-neighbor

two-particle fusion processes—i.e., nondestructive projective
measurements of observables Fp=−iĉpĉp+1. For any p	q de-
fine an observable

Fp,q = − iĉpĉq.

Taking into account that Fp,q=Bp+1,qFpBp+1,q
† , we can also

measure eigenvalues of any observable Fp,q. Summarizing,
the formal computational model is as follows: �i� the Hilbert
space Fn= �C2��n, �ii� the initial state �0�= �0� � ¯ � �0�, �iii�
Braid gates Bp,q=exp�− �

4 ĉpĉq�, and �iv� measurable observ-
ables Fp,q=−iĉpĉq.

We shall refer to this list as a TQC model. It will be
assumed throughout this paper that TQC operations are
implemented perfectly �a storage of quantum states in Fn is
also assumed to be perfect�.

B. Classical simulation of TQC with Ising anyons

The fact that any computation in the TQC model can be
simulated classically follows easily from the Gottesman-
Knill theorem; see �19�. Indeed, taking into account the re-
lation, Eq. �4�, between the Pauli matrices and the Majorana
operators and the conjugated action of the braid gates, Eq.
�7�, one can easily prove that any braid gate maps Pauli
operators to Pauli operators under a conjugation. Thus all
braid gates belong to the Clifford group. Since the set of
measurable observables includes only Pauli operators, we
can directly apply the stabilizer formalism �20,21� to simu-
late the TQC.

Another way to deduce the same result is to relate the
TQC model and the fermionic linear optics �FLO�; see
�22–24�. A theorem proved in these papers asserts that any
computation within the FLO model can be efficiently simu-
lated classically. In terms of FLO operations, the initial state
�0� is the Fock vacuum and the braid gates, Eq. �6�, are just
special case of Bogolyubov canonical transformations, while
the observables Fp,q measure single-mode occupation num-
bers. Then the classical simulatibility of the TQC model fol-
lows directly from �24�.

Loosely speaking, TQC with Ising anyons is an intersec-
tion of two computational models known to be classically
simulatable: the Clifford group and stabilizer formalism
model and the FLO. This is the reason why we need two
types of “computationally universal” ancillary states. The an-
cilla �a4� takes us beyond the Clifford group model, while the
ancilla �a8� introduces a nonlinearity necessary to go beyond
the FLO model.

In the remainder of this subsection we explicitly describe
a set of unitary operators and a set of quantum states that can
be achieved by TQC operations.

Let G�U�2n� be a group generated by braid gates Bp,q

for 2n � particles. To describe G note that a subgroup
H�G generated by double exchanges Bp

2 =−ĉpĉp+1,
p=1, . . . ,2n−1, coincides with the set of all even products of
Majorana operators �we do not care about the overall phase
of operators�. Thus, if one parametrizes a product of Majo-
rana operators ĉ1

x1
¯ ĉ2n

x2n by a binary 2n-bit string

�x1 , . . . ,x2n�, we get H��Z2�2n−1. Moreover, the subgroup H
is normal:BpHBp

† =H for any p. One can easily check that the
factor group G /H coincides with the permutation group S2n
of 2n objects. Thus G can be represented as a semidirect
product:

G = �Z2�2n−1
’ S2n.

To characterize the set of quantum states that can be pre-
pared by TQC operations, note that the initial state �0� is a
stabilizer state with a stabilizer group

S = �ĉ1ĉ2, ĉ3ĉ4, . . . , ĉ2n−1ĉ2n� .

Applying any sequence of braid gates Bp,q to this state is
equivalent to updating the stabilizer group according to Eq.
�7�. A new stabilizer group is

S� = �ĉp�1�ĉp�2�, ĉp�3�ĉp�4�, . . . , ĉp�2n−1�ĉp�2n�� , �8�

where p is a permutation of the numbers �1,2 , . . . ,2n
.
Let �
� be any state with a stabilizer group S� as above. A

measurement of an observable Fp,q has nontrivial effect on
�
� only if ĉpĉq is not a stabilizer of �
�. In this case p and q
must belong to different pairs; i.e., ĉrĉp and ĉqĉs are stabiliz-
ers of �
� for some integers r�s. Moreover, these are the
only generators of S�that anticommute with Fp,q. Therefore,
measuring eigenvalue of Fp,q is equivalent to updating the
stabilizer group according to

�. . . , ĉrĉp, ĉqĉs, . . . � → �. . . , ĉrĉs, ĉpĉq, . . . � .

We conclude that any state one can get from the initial state
�0� by TQC operations can be described by a stabilizer
group, Eq. �8� for some permutation p�S2n.

Remark. In the arguments above we have ignored eigen-
values associated with stabilizer operators which may be ei-
ther +i or −i. Naturally, after each transformation one has to
update the eigenvalues as well. For simplicity we skip these
details.

C. Representation of a qubit

So far we represented a single qubit by a pair of � par-
ticles. Although this is the most efficient representation in
terms of resources, it has some serious drawbacks. Since a
pair of � particles prepared in the basis states �0� and �1� has
the total topological charge 1 and 
, respectively, a qubit
cannot be prepared in a superposition of the basis states—
e.g., �0�± �1�—because they violate the superselection rules.

For this reason we shall represent a logical qubit by a

group of four � particles. The basis states �0̄� and �1̄� of a
logical qubit will be identified with physical states �0,0�
�F2 and �1,1��F2. Both these states have trivial total
charge. A computational subspace spanned by �0,0� and
�1,1� can be specified by an eigenvalue equation

− ĉ1ĉ2ĉ3ĉ4�
 = �
� . �9�

Logical Pauli operators �̄x, �̄y, and �̄z acting on the compu-
tational subspace can be chosen as

�̄z = − iĉ1ĉ2,
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�̄x = − iĉ2ĉ3,

�̄y = − iĉ1ĉ3. �10�

Clearly, logical Pauli operators can be implemented by braid
gates—for example, �̄z corresponds to winding the particle 1
around the particle 2. Besides, TQC operations allow one to
measure an eigenvalue of the logical one-qubit Pauli opera-
tors.

Note that any four-particle braid gate commutes with the
parity operator ĉ1ĉ2ĉ3ĉ4; i.e., it implements some logical one-
qubit gate. To find a subgroup of U�2� generated by these
gates, it suffices to consider the braid gates B1,2, B2,3, and
B3,4. In terms of logical Pauli operators one has

B1,2 = B3,4 = exp�− i
�

4
�̄z	 = e−i�/4�1 0

0 i
	 ,

B2,3 = exp�− i
�

4
�̄x	 =

1

2

� 1 − i

− i 1
	 .

�By abuse of notation, we identify a braid gate and the cor-
responding logical operator.� These gates generate the one-
qubit Clifford group Cl�1��U�2�.

The four-particle qubit representation also has some draw-
backs which come out if one considers two logical qubits.
Let us show that any two-qubit logical state

�
� = a�0̄, 0̄� + b�0̄, 1̄� + c�1̄, 0̄� + d�1̄, 1̄� � F4

that can be prepared by TQC operations has a product form

�
� = �
1� � �
2� .

Here �
1� and �
2� are some logical one-qubit states. Indeed,
we already know that �
� obeys stabilizer equations

ĉp�1�ĉp�2��
� = ± i�
�, . . . , ĉp�7�ĉp�8��
� = ± i�
� , �11�

for some permutation p�S8; see Eq. �8�. On the other hand,
the assumption that �
� is a logical two-qubit state implies
that

− ĉ1ĉ2ĉ3ĉ4�
� = − ĉ5ĉ6ĉ7ĉ8�
� = �
� . �12�

Obviously, Eqs. �11� and �12� are consistent with each other
iff for any 1� j�4 one has

p�2j − 1�,p�2j� � �1,2,3,4
 ,

or

p�2j − 1�,p�2j� � �5,6,7,8
 .

In other words, each stabilizer ĉp�2j−1�ĉp�2j� of the state �
� is
composed either from generators ĉ1 , ĉ2 , ĉ3 , ĉ4 or from the
generators ĉ5 , ĉ6 , ĉ7 , ĉ8. It means that �
� has a product struc-
ture �
�= �
1� � �
2�.

Summarizing, the four-particle qubit representation al-
lows one to prepare qubits in a superposition, but no en-
tangled states can be prepared topologically.

No-entanglement rule. The only logical states that can be
prepared by TQC operations from the initial state �0� are
products of one-qubit states.

IV. PURIFICATION OF THE EIGHT-PARTICLE
ANCILLAS

One way to get around the no-entanglement rule is to use
some very noisy nontopological operations to prepare a state
� that approximates some logical entangled “target” state.
Then one can try to improve accuracy of the approximation
by running a purification protocol involving only TQC op-
erations. This is the strategy that we shall follow in this
section.

A. Outline

A target state which we would like to purify is the maxi-
mally entangled two-qubit logical state

�a8� =
1

2

��0̄, 0̄� + �1̄, 1̄�� =
1

2

��0,0,0,0� + �1,1,1,1�� .

�13�

It consists of eight � particles.1 The quasiparticles 1 ,2 ,3 ,4
and 5,6 ,7 ,8 represent the first and second logical qubits,
respectively.

Let us denote D�H� the set of all �mixed� quantum states
on the Hilbert space H. Let ��D�F4� be eight-particle
mixed state that we can prepare by nontopological opera-
tions. A precision up to which � approximates �a8� can be
characterized by a parameter

� = 1 − �a8���a8� .

It will be referred to as an error rate.
The only assumption we made about � is that it has a

support only on the even subspace of F4—i.e.,

Q� = �Q = � , �14�

where Q is the total parity operator,

Q = ĉ1ĉ2ĉ3ĉ4ĉ5ĉ6ĉ7ĉ8 = �1
z

� �2
z

� �3
z

� �4
z .

This assumption is justified if � is prepared starting from the
vacuum by a local operator. As was mentioned in Sec. II, the
operator Q measures the total topological charge �1 or ��, so
Eq. �14� is a consequence of the superselection rules.

An orthogonal projector onto �a8� looks as

�a8��a8�=
1

16
�I + S1��I + S2��I + S3��I + Q� ,

where

S1 = − ĉ1ĉ2ĉ5ĉ6,

S2 = − ĉ2ĉ3ĉ6ĉ7,

1Under certain natural assumptions, 8 is the minimal number of �
particles one has to start with to prepare an entangled logical state.
The reason is that any state �
��Fk, k�3, with a trivial total
charge is a Gaussian fermionic state; see �31� for a proof. The
arguments used to prove the no-entanglement rule can be easily
generalized to any Gaussian state since it also possesses a paired
structure.
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S3 = − ĉ1ĉ2ĉ3ĉ4. �15�

Given a binary string s= �s1 ,s2 ,s3�, sj � �0,1
, consider a
normalized vector ��s��F4 such that

Sj��s� = �− 1�sj��s�, j = 1,2,3, Q��s� = ��s� .

Notice that �a8�= �S000���S0�. Obviously, ���s�
 constitute an
orthonormal basis of the even subspace of F4. Therefore, �
can be written as

� = �
s,t

�st��s���t�, �00 = 1 − � . �16�

By analogy with quantum error correcting codes, the opera-
tors Sj and the string s will be referred to as stabilizers and a
syndrome, respectively.

The goal of a purification is to prepare one copy of �a8�
with an arbitrarily small error rate �� starting from n noisy
copies of �a8� with an error rate �. The performance of a
purification protocol can be characterized by a threshold
value of � below which the purification is possible and
efficiency—i.e., an asymptotic behavior of n=n�� ,��� for
��→0. We shall describe a protocol for which the threshold
error rate is

�8 � 0.384 �17�

and

n��,��� � C�− ln ���3 �18�

for any fixed �	�8 and ��→0. Here C is a function of �
only. The protocol succeeds with a probability at least 1 /2
and there is a flag that tells us when it fails.

The protocol involves the following steps.
�i� Dephasing: make � diagonal in the basis ���s�
.
�ii� Syndrome whirling: make the probability distribution

of the nonzero syndromes s�0 uniform.
�iii� Purification: convert two noisy copies of �a8� into one

clean copy by postselective measurements on four pairs of �
particles.

In order to achieve an arbitrarily small error rate, these
steps have to be repeated sufficiently many times in a recur-
sive fashion. Below we describe the protocol on a more tech-
nical level.

B. Dephasing

Let S be a group generated by S1, S2, and S3. It consists of
eight elements. Consider a quantum operation

�S��� =
1

8 �
U�S

U�U†.

It symmetrizes a state over the group S, thus implementing a
dephasing in the basis ���s�
. The stabilizer operators Sj

themselves can be implemented using braid gates—for in-
stance, S1=−B1,2

2 B5,6
2 . Accordingly, �S can be implemented

using braid gates, if U�S is drawn randomly according to
the uniform distribution. Obviously, for any state � one has

�S��� = �
s

p�s���s���s�, p�s� � ��s����s� . �19�

We shall assume that each ancilla is acted on by �S before it
is fed into the purification protocol. It allows one to identify
quantum states with probability distributions of syndromes.

C. Syndrome whirling

A probability distribution of syndromes p�s� can be
brought by braid gates into the standard bimodal form

p�s� = �1 − � if s = �0,0,0� ,

�/7 if s � �0,0,0� .
� �20�

To achieve this, we will first show how to implement a cyclic
shift on the set of seven nonzero syndromes s�0. Then we
shall implement a random cyclic shift.

Consider a braid gate

U12 = B2,3B6,7
† . �21�

Its conjugated action is as follows �only nontrivial part of the
action is shown�:

U12 · U12
† =�

ĉ2 → ĉ3,

ĉ3 → − ĉ2,

ĉ6 → − ĉ7,

ĉ7 → ĉ6.
�

Accordingly, a conjugated action of U12 on the stabilizers Sj
is

U12 · U12
† = �S1 → S1S2,

S2 → S2,

S3 → S3.
�

Therefore, U12 implements an exclusive-OR-�XOR�-like trans-
formation

U12��s1,s2,s3
� = ��s1�s2,s2,s3

� ,

where � stands for the addition by modulo 2. Analogously,
one can check that braid gates

U23 = B1,2
† B3,4 and U31 = B1,5B2,6

implement XOR-like transformations

U23��s1,s2,s3
� = ��s1,s2�s3,s3

� ,

U31��s1,s2,s3
� = ��s1,s2,s1�s3

� . �22�

Consider now a braid gate

U = U31U23U12.

One can easily check that U implements a cyclic shift of
nonzero syndromes:

U��s� = ����s��, � = �0 1 2 3 4 5 6 7

0 3 7 4 5 6 2 1
	 .

Here � is a permutation of the numbers �0,1 , . . . ,7
, and the
syndromes are represented by integers according to s=4s1
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+2s2+s3. Consider a symmetrization �U over the cyclic
group generated by U �it is the cyclic group Z7, since
U7= I�—i.e.,

�U��� =
1

7 �
p=0

6

Up�U−p.

An application of �U to a state �=�sp�s� ��s���s� trans-
forms the probability distribution p�s� into the standard form
Eq. �20�, where

� = 1 − p�0� = 1 − ��0����0� .

By construction, �U is a probabilistic mixture of braid gates.

D. Elementary purification round

Suppose we are given a supply of states

� = �
s

p�s���s��s� .

Here p�s� is some fixed probability distribution of syndromes
�which may or may not have the standard bimodal form�.

Consider a state � � � where the first and second copies
are composed from generators ĉ1 , . . . , ĉ8 and ĉ9 , . . . , ĉ16, re-
spectively. Let us reshuffle the generators by a braid gate B
shown in Fig. 2 �inside the dashed rectangle� and then mea-
sure eigenvalues of four operators

T1 = − iĉ9ĉ10, T2 = − iĉ11ĉ12,

T3 = − iĉ13ĉ14, T4 = − iĉ15ĉ16. �23�

Let t1 , t2 , t3 , t4� �0,1
 be the measurement outcomes, such
that Tj has an eigenvalue �−1�tj. Since the input state � � �
is a probabilistic mixture of pure states ��r� � ��s�, it
suffices to analyze the effect of the braiding�measurement
operation on these input states. For any string of outcomes
t= �t1 , t2 , t3 , t4� consider the final �unnormalized� state

�Ft�trs� = PtB��r � �s,

where

Pt =
1

16�
j=1

4

„I + �− 1�tjTj…

is the projector corresponding to the outcomes t. Taking into
account an identity

�ĉ5ĉ6ĉ7ĉ8��ĉ9ĉ10ĉ11ĉ12� = B†�T1T2T3T4�B �24�

and the fact that ��r� and ��s� are even states, we conclude
that

�Ft�rs� = 0 unless r3 � s3 = t1 � t2 � t3 � t4. �25�

Thus a bit

t � t1 � t2 � t3 � t4

can be regarded as a check sum for the syndrome bits r3
and s3. If t=0, then either both syndrome bits are correct,
r3=s3=0, or both of them are wrong, r3=s3=1. If the input
state � has a sufficiently small error rate �the probability
distribution p�s� is concentrated at s=0�, the former possibil-
ity is more likely than the latter one. As we shall see now,
one can enhance a probability of states with a correct eigen-
value of S3 by discarding the final state whenever the out-
come t=1 is observed.

Indeed, suppose we have measured t=0 and �Ft�rs��0.
After some algebra one gets

�Ft�rs� = ��u� � �t1,t2,t3,t4� �26�

�up to a normalization�, where

u1 = r1 � s1 � t1 � t2 � 1,

u2 = r2 � s2 � t2 � t3 � 1,

u3 = r3 = s3. �27�

Note that the syndrome bit u3 depends only upon r and s,
while u1 and u2 depend also upon t. Let us apply additional
braid gates

ĉ2ĉ3:��u1,u2,u3
� → ��u1�1,u2,u3

� ,

ĉ1ĉ2:��u1,u2,u3
� → ��u1,u2�1,u3

� ,

conditioned on bits t1 � t2 � 1 and t2 � t3 � 1, respectively.
These braid gates flip the bits u1 and u2, so we get

u1 = r1 � s1, u2 = r2 � s2, u3 = r3 = s3. �28�

�To avoid clutter, the additional braid gates are not shown in
Fig. 2.� Summarizing, the output state of the elementary pu-
rification round is ��u� with u determined by Eq. �28�.

For the mixed input state � � � the syndromes r and s are
drawn from a product distribution p�r�p�s�, so the output
�normalized� state is

FIG. 2. The elementary purification round.
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�out = �
u

pout�u���u���u� ,

where

pout�u� = Z−1�
r,s

�r,s
u p�r�p�s� �29�

and

�r,s
u = �r3,u3

�s3,u3
�r1�s1,u1

�r2�s2,u2
.

Normalizing �out one gets

Z = �
r,s,u

�r,s
u p�r�p�s� = �

r,s
�r3,s3

p�r�p�s� .

Note that Z is equal to the probability to observe t=0—i.e., a
success probability of the elementary purification round.

E. Protocol

Let ��j� and �out
�j� be a probability to observe sj =1 for the

distribution p�s� and pout�s�, respectively �j=1,2 ,3�. They
can be regarded as error rates for the individual syndrome
bits. If p�s� has the standard bimodal form, Eq. �20�, then
��j�=4� /7. On the other hand, for ��1 one can easily find
from Eq. �29� that

�out
�3� � 16�2/49, �out

�1� = �out
�2� � 4�/7.

It tells us that the error rate ��3� is suppressed quadratically,
�out

�3� ����3��2, while the error rates ��1� and ��2� remain practi-
cally unchanged, �out

�1� ���1� and �out
�2� ���2�. For this reason we

shall iterate the elementary purification round shown in Fig.
2 three times to purify all three syndrome bits s1, s2, and s3.
The iterations are interlaced with an additional braid gate C
which shifts the syndrome bits cyclically—i.e.,

CS1C† = S2, CS2C† = S3, CS3C† = S1.

These equations can be satisfied if C transforms the genera-
tors ĉ1 , . . . , ĉ8 according to

C:�
ĉ1 → ĉ6, ĉ5 → − ĉ7,

ĉ2 → ĉ2, ĉ6 → ĉ3,

ĉ3 → ĉ1, ĉ7 → − ĉ4,

ĉ4 → ĉ5, ĉ8 → ĉ8.
�

An explicit implementation of C is shown in Fig. 3.
A single round of a8-purification protocol is shown in Fig.

4. Its input consists of eight copies of a noisy �a8� state in the
standard bimodal form with an error rate �:

� = �1 − ����0���0� +
�

7 �
s�0

��s���s� .

The protocol outputs a single copy of a noisy �a8� state in the
standard bimodal form with an error rate �out. The triangles
labeled by E denote the elementary purification rounds
shown in Fig. 2. The boxes labeled by C denote the braid
gate shown in Fig. 3. The circle labeled by W stands for the
syndrome whirling transformation. Each line in the figure
represents eight � particles.

The corresponding recursive flow equation �out��� can be
found by iterating Eq. �29� three times with an additional
cyclic shifts inserted after each iteration. Equivalently, �out���
is implicitly defined by equations

�out = 1 − Z−1p1�0� ,

p1�u� = �
r,s

�r,s
u p2�r�p2�s� ,

p2�u� = �
r,s

�r,s
u p3�r�p3�s� ,

p3�u� = �
r,s

�r,s
u p�r�p�s� ,

FIG. 3. A braid gate C implementing a cyclic shift of stabilizers
S1→S2→S3→S1.

FIG. 4. A single round of a8-purification protocol. Time flows
upwards. Each line represents one copy of the noisy �a8� state �eight
� particles�. Each triangle E corresponds to the elementary purifi-
cation round shown in Fig. 2. Each rectangle C represents a braid
gate that shifts the generators S1, S2, and S3 cyclically; see Fig. 3.
Finally, a circle W stands for the syndrome whirling transformation.
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Z = �
u

p1�u� . �30�

The initial distribution p�s� has the standard bimodal form,
Eq. �20�, with the error rate �. The coefficients �r,s

u and �r,s
u

are obtained from �r,s
u by a cyclic shift of indices,

�r,s
u = �r1,u1

�s1,u1
�r2�s2,u2

�r3�s3,u3
,

�r,s
u = �r2,u2

�s2,u2
�r1�s1,u1

�r3�s3,u3
.

The final cyclic shift can be discarded because it is followed
by the syndrome whirling. We have found a solution of Eq.
�30� using MAPLE. A plot of a function �out��� is shown in
Fig. 5.

The threshold error rate �8 satisfying �out��8�=�8 turns
out to be �8�0.384. If the initial error rate is below the
threshold, �	�8, one can invoke the protocol recursively to
achieve arbitrarily small error rates. For ��1 one can easily
get

�out��� =
48

49
�2 + O��3� .

A probability for all elementary purification rounds in Fig.
4 to succeed is given by the normalizing coefficient Z in Eq.
�30�. For small � one has

Z = 1 − 8� + O��2� . �31�

The function Z��� is monotone decreasing in the interval
0����8 and Z��8��0.04.

The initial supply of states �a8� with an error rate �0��
will be called level-0 ancillas. Accordingly, level-k ancillas
are obtained from the level-0 ancillas by iterating the proto-
col, shown in Fig. 4, k times. Let �k and nk be an error rate
and the total number of level-k ancillas. The numbers �k+1,
nk+1 and �k, nk are related by the recursive flow equations

nk+1 �
Z��k�

8
nk, �k+1 �

48

49
�k

2. �32�

Here fluctuations of the quantity nk are neglected. Monte
Carlo simulation of the a8-purification protocol shows that
taking into account fluctuations does not change the answer
significantly; see Fig. 6.

If one needs to prepare one copy of �a8� with an error rate
��, the required number of levels k can be found from an
equation

2k �
ln�C���
ln�C�0�

, C �
48

49
.

The corresponding number of level-0 ancillas is

n0 � 8k�
j=0

k−1

Z�� j�−1. �33�

Assuming that k�1 and denoting p��0�=� j=0
� Z�� j� �one can

easily check that this product is convergent�, we get

n0 �
ln3�C���

p��0�ln3�C�0�
.

To find the probability for the protocol to convert n0 copies
of the level-0 ancillas into one �or larger number� level-k
ancilla, we used numerical simulations; see Fig. 6. The suc-
cess probability Ps=Prob�nk�0� was calculated as a func-
tion of n0 using the Monte Carlo method. For each particular
k=1, . . . ,5 an equation Ps�n0�=1/2 has been solved to find
n0 as a function of �0. As one can see from the figure, the
scaling of n0 is pretty well described by Eq. �33�.

The operational cost of the purification—i.e., the total
number of braid gates and fusions needed to achieve an error
rate ��—has the same scaling as n0; i.e., it is proportional to
�−ln ���3.

FIG. 5. Input and output error rates for a single round of
a8-purification protocol.

FIG. 6. The graph shows the number of level-0 ancillas, n0, that
one needs to prepare one level-k ancilla �k=1, . . . ,5� with a success
probability 1 /2. The success probability has been evaluated using
Monte Carlo simulation of the protocol with 105 trials. Solid lines
show the dependence n0��0� that one gets using a naive equation
n0=8k� j=0

k−1Z�� j�−1 �it neglects fluctuations of nk�.
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Suppose we have to prepare a large number L of ancillas
�a8�. Let us first prepare n=3Ln0��0 ,��� level-0 ancillas,
split them into 3L groups, and then perform the
a8-purification protocol independently in each group. If the
purification succeeds in each group with a probability 1 /2,
the average number of successful group is 3L /2. Using the
Chernoff bound one can easily show that the probability for
the number of successful group to be smaller than L is at
most exp�−L /12�. Thus one can say that a preparation of a
single ancilla �a8� with an accuracy �� costs about �−ln ���3

elementary operations �TQC operations and preparations
of �8�.

This observation also shows that the purification can be
described by a trace-preserving completely positive linear
map �in the exponentially rare events when the purification
fails, one can output an arbitrary state�. Accordingly, we can
generalize all above results to the case when the preparation
of the level-0 ancillas is a stochastic process that outputs a
state �� with a probability p�, such that ��p���=�.

V. IMPLEMENTATION OF THE CLIFFORD GROUP
GATES

Having prepared a supply of clean ancillas �a8� one can
proceed to the next goal—implementation of entangling two-
qubit gates. We shall now explain how to implement a two-
qubit controlled �z gate

���z�:�ā, b̄� → �− 1�ab�ā, b̄�

acting on the logical qubits. Together with logical one-qubit
Clifford gates which can be implemented by braid gates �see
Sec. III� it will allow us to execute any Clifford group com-
putation �on the level of logical qubits�. We shall need the
following technical result.

Lemma 1. The following operations can simulate one an-
other with assistance of TQC operations: �O1� a preparation
of �a8�, �O2� a nondestructive measurement of an observable
ĉpĉqĉrĉs �all four labels are distinct�, and �O3� a unitary gate
exp�i �

4 ĉpĉqĉrĉs�,
Remarks. �i� It is meant that one copy of any operation

can be exactly simulated by one copy of any other operation.
�ii� The operator ĉpĉqĉrĉs has eigenvalues ±1, so O2 can be
described by orthogonal projectors �1/2��I± ĉpĉqĉrĉs�. �iii� If
O1 is not ideal, so that �a8� has an error rate �, then O2 and
O3 can be executed with an error probability O���. �iv� Ex-
plicit simulation protocols are given in the proof of the
lemma.

The controlled �z can be easily reduced to O3.
Indeed, suppose the first qubit is encoded by ĉ1 , . . . , ĉ4, while
the second qubit is encoded by ĉ5 , . . . , ĉ8. Then
���z�=exp�i �

4 �I− �̄1
z��I− �̄2

z��, where �̄ j
z are the logical Pauli

operators defined as �1
z =−iĉ3ĉ4 and �2

z =−iĉ5ĉ6; see Sec. III.
Therefore,

���z� = ei�/4exp�− i
�

4
ĉ3ĉ4ĉ5ĉ6	exp�−

�

4
ĉ3ĉ4	

�exp�−
�

4
ĉ5ĉ6	 . �34�

The last two exponents in Eq. �34� are braid gates, so the

controlled �z gate is equivalent to O3 �we disregard the over-
all phase�. One remains to prove the lemma.

2. Proof of lemma 1

O3 can simulate O1. Using solely braid gates one can
prepare a state with a stabilizer group

S = �− iĉ1ĉ7,− iĉ2ĉ8,− iĉ3ĉ5,− iĉ4ĉ6�

�all eigenvalues are +1�. Let this state be acted upon by an
operator

U � exp�i
�

4
ĉ1ĉ2ĉ3ĉ6	 .

The conjugated action of U on the Majorana operators is as
follows:

U · U†:�
ĉ1 → − iĉ2ĉ3ĉ6, ĉ5 → ĉ5,

ĉ2 → iĉ1ĉ3ĉ6, ĉ6 → iĉ1ĉ2ĉ3,

ĉ3 → − iĉ1ĉ2ĉ6, ĉ7 → ĉ7,

ĉ4 → ĉ4, ĉ8 → ĉ8.
�

Accordingly, the stabilizer group S is mapped onto

S� = �− ĉ2ĉ3ĉ6ĉ7, ĉ1ĉ3ĉ6ĉ8,− ĉ1ĉ2ĉ5ĉ6,− ĉ1ĉ2ĉ3ĉ4� .

It coincides with the stabilizer group �S1 ,S2 ,S3� of the state
�a8�; see Eq. �15�. Therefore the state stabilized by S� coin-
cides with �a8� up to an overall phase.

O2 can simulate O1. �This part is not necessary for the
proof, but we shall use this result later.� Using solely braid
gates one can prepare a state with a stabilizer group

S = �− iĉ1ĉ5,iĉ2ĉ6,− iĉ3ĉ7,iĉ4ĉ8� .

Let us measure an eigenvalue of −ĉ5ĉ6ĉ7ĉ8 on this state. To
find the final stabilizer group, choose generators of S as

S = �− ĉ1ĉ2ĉ5ĉ6,− ĉ2ĉ3ĉ6ĉ7,− ĉ3ĉ4ĉ7ĉ8,iĉ4ĉ8� .

After the measurement the last generator is replaced by
−ĉ5ĉ6ĉ7ĉ8 �may be with the opposite sign�, which is equiva-
lent to a generator −ĉ1ĉ2ĉ3ĉ4. The resulting stabilizer group
coincides with the one of �a8�. �The preparation of �a8� by
measuring ĉ5ĉ6ĉ7ĉ8 is illustrated by Fig. 8 below.�

O1 can simulate O2. Assume that one copy of �a8� is
available. A sequence of braidings and fusions that allows
one to measure an eigenvalue of ĉ1ĉ2ĉ3ĉ4 is shown in Fig. 7.
The particles labeled by 1, 2, 3, and 4 in the figure are pre-
pared in an arbitrary initial state �
in�. The state �a8� is de-
scribed by generators ĉ5 , . . . , ĉ12. Accordingly, the circuit
shown in Fig. 7 is applied to a state �
in � a8�. The particles
are reshuffled by a braid operator, and then observables
T1=−iĉ1ĉ2,T2=−iĉ3ĉ4, T3=−iĉ5ĉ6, and T4=−iĉ7ĉ8 are mea-
sured. The final state �
 f� is read out from the particles 9, 10,
11, and 12.

Let �−1�tj be the measured eigenvalue of Tj. We shall
consider in details only the case t1 � t2 � t3 � t4=0. Let ��t�
be the final state corresponding to outcomes t= �t1 , t2 , t3 , t4�.
Using the stabilizer description of �a8� �see Eq. �15��, one can
easily check that
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��t� = �ĉ2
t1ĉ4

t2ĉ6
t3ĉ8

t4��ĉ9
t1ĉ10

t2 ĉ11
t3 ĉ12

t4 ���0

whenever t1 � t2 � t3 � t4=0. Let us apply additional braid
gates ĉ2ĉ9, ĉ4ĉ10, ĉ6ĉ11, and ĉ8ĉ12 controlled by classical bits
t1, t2, t3, and t4, respectively �these gates are not shown on
Fig. 7 to avoid clutter�. They map ��t� into ��0�, so it suf-
fices to analyze the case tj =0. Obviously, ��0� has a product
structure ��0�= �0,0 ,0 ,0� � �
 fin�.

One can easily notice that the left-upper part of Fig. 7
with tj =0 is almost identical to the preparation procedure
for �a8�; see Fig. 8. The only missing element is a projector
�1/2��I− ĉ5ĉ6ĉ7ĉ8�. However, one can safely add the missing
projector because it stabilizes the state �a8�. Therefore,
for the outcomes tj =0 the protocol shown in Fig. 7 coincides
with the one shown in Fig. 9. Taking into account that �a8�
is the encoded Einstein-Podolsky-Rosen �EPR� state,

�a8�=2−1/2��0̄ , 0̄�+ �1̄ , 1̄��, the protocol in Fig. 9 is just
a projection of �
in� onto the code subspace followed by
teleportation of the encoded qubit from the particles 1, 2, 3,
and 4 to the particles 9, 10, 11, and 12. Accordingly,
�
 f�= �1/2��I− ĉ1ĉ2ĉ3ĉ4� �
in�, up to an overall normalization
constant. Using similar arguments one can check that
�
 f�= �1/2��I+ ĉ1ĉ2ĉ3ĉ4� �
in� whenever t1 � t2 � t3 � t4=1.

O2 can simulate O3. �This result has been already proved
in �30�.� Suppose we want to implement an operator
exp�i �

4 ĉ1ĉ2ĉ3ĉ4�. Let us prepare an ancillary pair of particles
5 and 6 in the state �0�. Accordingly, any input state �
� of
the system satisfies

�ĉ5 + iĉ6��
� = 0. �35�

Let us measure an eigenvalue of ĉ1ĉ2ĉ4ĉ5. Depending
upon the outcome, the initial state �
� gets multiplied
by a projector �±

�4�= �1/2��I± ĉ1ĉ2ĉ4ĉ5� �with a proper
normalizing coefficient�. Next we measure an eigenvalue
of −iĉ3ĉ5. The eigenvalues ±1 correspond to projectors
�±

�2�= �1/2��1� iĉ3ĉ5�. We claim that after some correction
depending on the measurements outcomes, the protocol ef-
fectively executes the operator exp�i �

4 ĉ1ĉ2ĉ3ĉ4� while leaving
the ancillary pair of particles intact. The correction step re-
quires only braid gates. Indeed, one can use the following
identities:

exp�i
�

4
ĉ1ĉ2ĉ3ĉ4	�
�

= 2exp��

4
ĉ3ĉ6	�+

�2��+
�4��
�

= 2i exp��

2
ĉ1ĉ2	exp��

2
ĉ3ĉ4	exp��

4
ĉ3ĉ6	�−

�2��−
�4��


= 2i exp��

2
ĉ1ĉ2	exp��

2
ĉ3ĉ4	exp�−

�

4
ĉ3ĉ6	�−

�2��+
�4��
�

= 2 exp�−
�

4
ĉ3ĉ6	�−

�2��−
�4��
 �36�

�we have used Eq. �35��. In each of the four cases one
can apply a suitable correction operator Uyz �for example,
U++=exp� �

4 ĉ3ĉ6� if the outcomes were ++, etc.� so that

exp�i
�

4
ĉ1ĉ2ĉ3ĉ4	�
� = 2Uyz�y

�2��z
�4��
� .

Each of the four outcome combinations occurs with prob-
ability 1 /4. The final state is always the desired one—i.e.,
exp�i �

4 ĉ1ĉ2ĉ3ĉ4� �
�.

VI. UNIVERSAL QUANTUM COMPUTATION

The protocols described in Sec. V allow one to execute
any Clifford group gates on the logical qubits. In addition to
that, one can measure logical qubits in the standard basis and

FIG. 7. Implementation of a nondestructive measurement of
ĉ1ĉ2ĉ3ĉ4 that consumes one copy of �a8�.

FIG. 8. Preparation of �a8� via eigenvalue measurement of
ĉ5ĉ6ĉ7ĉ8.

FIG. 9. Teleportation.
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prepare fresh logical qubits in the state �0̄�. Let us refer to
this set of operations as Clifford operations. As we have
shown, Clifford operations can be implemented with an ar-
bitrarily small error rate and the overhead is polylogarithmic.
To simplify the discussion, we shall firstly set the error rate
of Clifford operations to zero and then address the precision
and overhead issues separately.

Below we will show how to execute the � /8 rotation

��ei/�4� = �1 0

0 ei
�
4
	 �37�

on the logical qubit. It is well known that the � /8 rotation
and Clifford operations constitute a universal set of gates.

Although the � /8 rotation cannot be implemented by
Clifford operations only, we can follow the same strategy as
in Sec. IV: namely, try to use very noisy nontopological op-
erations to prepare a state � that approximates some logical
target state �a�, improve the accuracy of the approximation
by running a purification protocol �which now can use any
Clifford operations�, and then convert �a� into the gate
��ei�/4�.

It is not a priori clear what ancillary state �a� leads to the
most efficient implementation of ��ei�/4� We shall argue that
a good choice of �a� is a state

�a4� =
1

2

��0̄� + ei�/4�1̄� = ��ei�/4��+̄ � ,

where �+̄�=2−1/2��0̄�+ �1̄��. The state �a4� is composed of four
� particles. A purification protocol for �a4� with a high
threshold error rate and polylogarithmic overhead which uses
only Clifford operation has been put forward in �25� under
the name “magic-states distillation.” For the sake of com-
pleteness we briefly describe it below. Then we assess an
efficiency of the whole simulation scheme.

In the rest of this section a word “qubit” refers to a logical
qubit encoded by four � particles as explained in Sec. III. By

abuse of notation we shall abbreviate �0̄� to �0� and �1̄� to �1�.
Accordingly, �a4� will be regarded as a one-qubit state.

A. Converting �a4‹ into a non-Clifford gate

We start from explaining how to execute the gate ��ei�/4�
using Clifford operations and one copy of �a4�; see �25�. Let
�
�=a �0�+b �1� be an unknown state �the coefficients a and
b may actually be quantum states as well�. Suppose we want
to apply the gate ��ei�/4� to �
�. Let us start from a two-qubit
state ��0�= �
 � a4� and measure an eigenvalue of observable
T1=�z � �z �recall that any multiqubit Pauli operator can be
converted by Clifford gates into a one-qubit operator �z,
which is an admissible observable in the TQC model�. The
outcomes ±1 of the measurement appear with the probability
1 /2 each, yielding the final states

��1
+� = a�0,0� + bei�/4�1,1� ,

��1
−� = aei�/4�0,1� + b�1,0� . �38�

Applying the controlled �x operator ���x� with the first qu-
bit as a control one, we get

��2
+� = ���x���1

+� = �a�0� + bei�/4�1�� � �0� ,

��2
−� = ���x���1

−� = �aei�/4�0� + b�1�� � �1� .

Now let us measure the second qubit in the ��0� , �1�
 basis.
If the outcome is �1�, apply the additional Clifford gate
K= �0��0 � + i �1��1� to the first qubit �as was mentioned in Sec.
III, K is a braid gate�. In both cases we end up with the final
state a �0�+bei�/4 �1�. Thus the input state �
� has been acted
upon by ��ei�/4�.

B. Purification of �a4‹

Here we outline the magic-states distillation method; see
the original paper �25� for details. A noisy �a4� state will be
described by a one-qubit density matrix �. The quality of � is
characterized by a parameter

� = 1 − �a4���a4� ,

which will be referred to as the error rate. The purification
protocol exploits some nice properties of the CSS second-
order punctured Reed-Muller quantum code. It encodes one
qubit into 15 qubits and has the minimal distance 3. Let � be
a projector on the code subspace of the Reed-Muller code.
Consider a state

�out = Z−1���15�, Z � Tr����15� .

Although �out is a 15-qubit state, it can be regarded as a
one-qubit state encoded by the Reed-Muller code. It turns
out that an error rate �out of the state �out is cubically sup-
pressed as compared to the error rate of �,

�out = 35�3 + O��4� .

The properties of the Reed-Muller quantum code that are
responsible for this effect are the following: �i� The mini-
mum Hamming weight of �z-type errors that are not detected
by the code is 3. �ii� The code has non-Clifford automor-
phisms: an operator ��ei�/4��15 commutes with � and its
action on the encoded qubit coincides with ��ei�/4�.

This observation provides a natural mean of purifying �.
Namely, one takes 15 copies of � and measures eigenvalues
of 14 stabilizer operators for the Reed-Muller code. All sta-
bilizers are the Pauli operators, so these measurements re-
quire only Clifford gates and admissible TQC measurements.
The final state is accepted iff one observes the trivial syn-
drome �eigenvalue of all stabilizer operators is +1�. After that
one applies a decoding transformation �a certain Clifford
group operator� that maps �out onto a one-qubit state. The
threshold value of � is determined by an equation �out���=�.
Denote the threshold by �4. Its numerical value is

�4 � 0.141.

If �	�4, the output state �out is more clean than the input
one—i.e., �out���	�.
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Let ps be the probability for this algorithm to succeed—
i.e., the probability to observe the trivial syndrome. In the
limit �→0 one has ps�2−10. Moreover, by introducing an
additional “error correction” step into the algorithm one can
accept a larger set of measured syndromes �syndromes
for which only all �x-type stabilizers have eigenvalue +1�.
The error correction step enhances the success probability to
ps�1 �in the limit �→0�.

The initial supply of states � with an error rate �0�� will
be called level-0 ancillas. Accordingly, level-k ancillas are
obtained from the level-0 ancillas by iterating the elementary
purification procedure k times. Let �k and nk be an error rate
and the total number of level-k ancillas. The numbers �k+1,
nk+1, and �k, nk are related by recursive flow equations

nk+1 �
nk

15
, �k+1 � 35�k

3 �39�

�we are interested in the asymptotic regime ��1�. Accord-
ingly, if one needs to prepare one copy of �a4� with an error
rate ��, one needs to have a supply of

n0 � �ln������, � = ln315 � 2.5, �40�

level-0 ancillas with an error rate below the threshold,
�0	�4. The operational cost of the purification—i.e., the to-
tal number of Clifford gates and standard measurements
needed to achieve an error rate ��—has the same scaling as
n0.

C. Efficiency analysis

Suppose our goal is to simulate a quantum circuit with N
one-qubit and two-qubit gates operating on n qubits. We as-
sume that the following gate set is used:

1

2

�1 i

i 1
	, ��ei�/4�, ���z� . �41�

The simulation must be able to reproduce the output of the
circuit with a constant error probability. Accordingly, the
nontopological gates ��ei�/4� and ���z� have to be simulated
with an error probability ��N−1. As we have learned in Sec.
IV, preparation of �a8� with an accuracy � requires about
�ln��−1��3 raw ancillas �8 and about the same number of TQC
operations. According to Sec. V one copy of �a8� can be
traded for a gate ���z� implemented with about the same
precision. Thus each ���z� gate “costs” O(�ln�N��3) TQC
operations and raw ancilla preparations.

Simulation of the gate ��ei�/4� deserves more careful
analysis. Consider one round of a4 purification at the level k.
It takes as input 15 copies of level-k ancillas �a4� with an
error rate �k and outputs one copy of �a4� with an error rate
�k+1 �sometimes it outputs nothing because we use postselec-
tion�. An implementation of this a4-purification round re-
quires O�1� gates ���z�. To simulate each of these gates the
a8-purification protocol has to be invoked. Obviously, at this
point it does not make sense to purify �a8� ancillas all the
way down to the error rate ��N−1. Instead, the error
rate O��k

3� is sufficient, since it still gives the flow equation
�k+1=C�k

3 for a4 purification with some constant C. Compar-

ing Eqs. �18� and �40� one can see that for a fixed error rate
the simulation of ���z� is more demanding in terms of re-
sources than the simulation of ��ei�/4�. Therefore, we can try
to use the above observation to improve the efficiency of the
whole simulation scheme.

Indeed, purification of one copy of �a8� with the final
error rate O��k

3� requires mk��ln��k��3 elementary
operations. From Eq. �39� one gets �k�exp�−c3k�, where
c�0 is a constant. Therefore, mk�33k. The total number of
a4-purification rounds on the level k is gk�nk+1�n015−k−1,
where n0 is the number of level-0 ancillas �a4�. From
Eq. �40� with ��N−1 one gets n0��ln�N���. Thus the
total number of elementary operation needed to generate all
level-�k+1� ancillas �a4� is Mk=mkgk��ln�N���15−k33k.
Clearly, Mk grows exponentially with k, so almost all re-
sources needed to purify �a4� are spent at the highest level of
a4 purification. Accordingly, the total number of elementary
operations needed to purify one copy of �a4� with the final
error rate ��N−1 is

Mtot = �
k=1

d

Mk � Md,

where d is the total number of recursion levels in the distil-
lation that can be determined by setting �d=� in Eq. �39�—
i.e., 3d� ln�N�. Thus

Mtot � Md � �ln�N���15−d33d � 33d � �ln�N��3.

We conclude that any gate in the universal gate set Eq. �41�
“costs” O(�ln�N��3) elementary operations.

VII. IMPLEMENTATION OF NONTOPOLOGICAL
OPERATIONS

This part of the paper is rather speculative, since we know
almost nothing about the nontopological properties of
anyons, such as the effects of a finite separation between
particles, nonadiabaticity of the anyonic transport, interac-
tion between an anyon and a control device, etc.

Recall that we need nontopological operations to prepare
�may be very noisy� ancillary states �a4� and �a8� composed
of four and eight � particles, respectively. We shall argue
below that a good strategy is to use a direct short-range in-
teraction between anyons. One can expect that the amplitude
of this interaction decays as exp�−l / lH�, where l is a separa-
tion between the particles and lH is the magnetic length
�for experiments with AlGaAs/GaAs heterostructures the
magnetic field corresponding to �=5/2 is B�5 T, so that
lH= ��c /eB�1/2�10−6 cm�.

Remark. Note that any state in the orbit of �a4� or �a8�
under the action of braid gates is equally acceptable as the
states �a4� and �a8� themselves. As the number of particles
increases, the size of the orbit grows, and thus the set of
acceptable states becomes larger. For example, the orbit of
�a4� consists of 12 states �we disregard the overall phase�,
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while the orbit of �a8� consists of 240 states2. It suffices to
prepare any of these states �we have to know which� with a
fidelity above the threshold one.

A. How to prepare �a4‹

Let us start from preparation of �a4� since it is much
easier. The preparation process is illustrated in Fig. 10. One
starts from the vacuum state, creates two pairs of � particles,
and then brings two particles, one from each pair, sufficiently
close to each other. After that one waits for a time � and
finally returns the particles to their original positions.

Taking into account that the short-range interaction is a
local operator, we infer that the total charge of the four par-
ticles and the total charge of the particles 1 and 2 must be
preserved. Therefore, the interaction can be described by a
Hamiltonian

Hint = − iĉ1ĉ2 � X + I � Y ,

where X and Y are some operators acting on the environ-
ment.

A purpose of the two braid operations preceding the in-
teraction in Fig. 10 is to create a state

��� = B1,2
† B2,3�0,0� = 2−1/2��0,0� + �1,1�� � F4.

Using the qubit representation of Sec. III one gets

���=2−1/2��0̄�+ �1̄��.
Free evolution under Hint for the time � maps ��� onto a

state

1

2

��0̄� � ei�X+Y����E� + �1̄� � ei�−X+Y����E�� .

Here ��E� is the initial state of the environment �one can
always assume that it is pure�. Tracing out the environment
we end up with a mixed state

� =
1

2
� 1 r

r* 1
	, r = ��E�ei�X+Y��ei�X−Y����E� .

The case �= �a4��a4� corresponds to r=ei�/4. By varying the
interaction time � we can try to fulfill the threshold condition
�a4 �� �a4��1−�4�0.86. This may or may not be possible,
depending upon particular form of X, Y, and ��E�. For ex-
ample, if X is proportional to the identity operator, X=gI,
one gets

r = e2ig�.

Tuning � such that g�= ±� /8 we can prepare the desired
state �a4� �or a state that can be converted to �a4� by a braid
gate�.

B. How to prepare �a8‹

The preparation of �a8� based on the direct short-range
interaction between anyons is more tricky because one has to
cancel unwanted interactions. For example, if � particles 1,
2, 3, and 4 are sufficiently close to each other, the interaction
Hamiltonian looks as

H = − i�
j,k

ĉjĉk � Xjk − ĉ1ĉ2ĉ3ĉ4 � X + I � Y ,

where Xjk, X, and Y are some operators acting on the envi-
ronment. Recall that �a8� can be prepared by TQC operations
and a nonlinear gate W=exp�i� /4ĉ1ĉ2ĉ3ĉ4�; see the first part
of the proof of lemma 1. Free evolution under the Hamil-
tonian H might be used to implement W, provided that one
can “turn off” the quadratic interactions ĉjĉk � Xjk. In prin-
ciple, it can be done using a technique analogous to decou-
pling and refocusing in nuclear magnetic resonance. Indeed,
denote F= ĉ1ĉ2, G= ĉ1ĉ3and consider a Hamiltonian

H� =
1

4
�H + FHF† + GHG† + �FG�H�FG�†� .

One can easily check that

H� = − ĉ1ĉ2ĉ3ĉ4 � X + I � Y .

Now let U� and U�� be unitary operators describing evolution
under the Hamiltonians H and H�, respectively, for a
time �. If � is sufficiently small, one gets, from the Trotter
expansion,

U�� � U�/4 · �FU�/4F†� · �GU�/4G†� · �FGU�/4G†F†� .

Therefore one could try to simulate U�� by U�/4 and “control
pulses” F and G. Obviously, F and G can be implemented by
braid gates �for example, F corresponds to winding particle 1
around the particle 2�. However, before applying any of
these braid gates one has to return particles 1, 2, 3, and 4 into

2This counting goes along the following lines: �1� The set of four-
qubit stabilizer states with a fixed parity consists of two nonover-
lapping subsets: the orbit of �a8� and the subset of “paired” states
whose stabilizer group can be represented as in Eq. �8�. �2� The
number of four-qubit stabilizer states with a fixed parity �say, +1� is
equal to the total number of three-qubit stabilizer states. �3� There
are totally 1080 three-qubit stabilizer states. �4� There are totally
238! ! =840 “paired” four-qubit stabilizer states with a fixed parity
�say, +1�. Therefore the number of states in the orbit of �a8� is
1080−840=240.

FIG. 10. A preparation of �a4� based on the short-range two-
particle interaction.
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original well-separated positions. After that one can compose
the evolutions U�� to simulate any desired interaction time.

The preparation of �a8� based on the refocusing may fail
to provide the necessary precision �8 because it involves too
many noisy operations. So it is more fair to say that an ad-
ditional nontopological operation is needed.

According to lemma 1, the state �a8� can also be prepared
by TQC operations and a nondestructive measurement of an
observable ĉ1ĉ2ĉ3ĉ4. In other words, we have to measure the
total topological charge �1 or 
� of four � particles without
destroying their pairwise correlations. It is very likely that
such a measurement can be implemented using an interfero-
metric device proposed recently by Bonderson, Kitaev, and
Shtengel �16� �see also �18�� to test topological properties of
� particles.

The device is based on the Hall bar geometry �see Fig.
11�, so that the transport of electric charge is governed by
edge currents on the top and bottom edges of the bar. Elec-
trical gates are used to create two constrictions in the region
occupied by the FQH electron gas �the unshaded region in
Fig. 11�, so that � particles can tunnel between the top and
bottom edges through the electron gas at either constriction.
The parameters of the device are tuned to allow quantum
interference between the two tunneling paths. The total tun-
neling current is measured through the longitudinal resis-
tance Rxx. Ideally, such a measurement projects the initial
state onto an eigenvector of the tunneling current operator.

Suppose that four antidots are created inside the interfer-
ometer loop and exactly one � particle is trapped at each

antidot. Let us label the trapped � particles by 1, 2, 3, and 4
and the tunneling � particle by 0. The difference between the
two tunneling paths corresponds to a braid b in which the
tunneling particle 0 winds around the trapped particles 1, 2,
3, and 4; see Fig. 12. Using the braid group representation
described in Sec. II one can easily find that the action of b is

�b�= + ĉ1ĉ2ĉ3ĉ4. Thus the longitudinal resistance measure-
ment projects the initial state of the particles 1, 2, 3, and 4
onto an eigenvector of ĉ1ĉ2ĉ3ĉ4. Combining the interferomet-
ric experiment with the standard TQC measurements one can
calibrate the device to infer an eigenvalue of ĉ1ĉ2ĉ3ĉ4 from
the measurement outcome.
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