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The concept of generalized quantum measurement is introduced as a transformation that sets a one-to-one
correspondence between the initial states of the measured object system and final states of the object-meter
system with the help of a classical informational index, unambiguously linked to a classically compatible set
of quantum states. It is shown that the generalized quantum measurement concept covers all key types of
quantum measurement—standard projective, entangling, fuzzy, and generalized measurements with a partial or
complete destruction of initial information associated with the object. A special class of soft quantum mea-
surements as a basic model for the fuzzy measurements widespread in physics is introduced and its information
properties are studied in detail. Also, a special class of partially destructive measurements mapping all states of
the Hilbert space of a finite-dimensional quantum system onto the basis states of an infinite-dimensional
quantum system is considered.
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I. INTRODUCTION

One of the fundamental transformations in quantum phys-
ics is the projective measurement transformation, which sets
a correspondence between a basis set of the quantum object
states and classical results of its observation �1–3�. This
transformation leaves the eigenstates of the measured quan-
tum variables unperturbed and, therefore, corresponds to the
nondemolition measurement. Despite the fact that its experi-
mental realization causes significant experimental difficulties
�4,5�, the fundamental value of such a transformation in
quantum physics as a standard procedure for obtaining
physically meaning information is beyond controversy �6�.

Nowadays, tremendous progress in experimental quantum
physics has given us new, powerful tools for quantum-state
engineering and arbitrary manipulation of quantum informa-
tion �7�. This new experimental environment serves as the
ground for further development of quantum theory and, spe-
cifically, leads to the necessity of revising the standard con-
cept of quantum measurement in accordance with the needs
of modern quantum information science �8–10�.

In our view, the first step towards a generalization of the
concept of the standard quantum measurement could be
waiving the limitation on the measuring device �the meter� as
a �quasi�classical system, which is necessary for a proper
analysis of modern experiments in the field of quantum in-
formation engineering with the use of such objects as pho-
tons and trapped atoms or ions. This generalization has been
recently given in the form of the entangling measurement
concept �11,12� in which the measurement results in en-
tanglement between the measured object and the meter. In
this paper, we take the next step towards a generalization of
the standard quantum measurement concept introducing the
soft quantum measurements that adopt the concept of fuzzy
quantum measurements �13,14�, but give the results of the

measurements in an approximate form, with some uncer-
tainty, due only to their quantum indistinguishability—i.e., to
the nonorthogonality of their wave functions.

As the next step, we consider a special class of so-called
partially destructive quantum measurements, which give
measurement results at the cost of information loss about
initial states of the measured object. This information loss is
only due to the representation of the output information
about classically indistinguishable nonorthogonal measured
states in a classically distinguishable form.

All these classes of generalized quantum measurements
are based on an analogy with projective measurements and
the idea of a one-to-one correspondence between the initial
states of the object and final states of the meter.

In the classical case, one can easily fulfill the requirement
of the absolute accuracy of the measurement result with the
requirement of the absolute absence of perturbations in the
object system during the measuring procedure. By contrast,
in the quantum case, both these requirements cannot be ful-
filled, simply due to the specific properties of the set of quan-
tum states forming a linear space. Any interaction with a
quantum system inevitably changes at least part of its quan-
tum states �15�.

For a quantum system, the requirement of the absolute
absence of perturbations can be fulfilled only with respect to
the chosen simultaneously measurable variables via the
choice of a nondemolition type of measurement. Due to the
uniqueness of the entire quantum information �thanks to the
no-cloning principle �16�� the nondemolition measurement
completely destroys the coherent—i.e., essentially
quantum—information about the initial state of the object
�11�, which in the case of completely coherent measurements
is distributed among the object and meter and does not exist
in the separate systems of the object and meter.

Considered in this paper the class of soft quantum mea-
surements allows a partial preservation of the coherent infor-
mation in the object. On the contrary, the transmission of the
major portion of the coherent information towards the meter
can be realized only via destructive �demolition� quantum*Electronic address: grishan@comsim1.phys.msu.ru
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measurements, when the state of the object is inevitably per-
turbed. A limiting case of maximally destructive measure-
ments, which entirely destroy the initial information, can be
illustrated with the purely coherent transition of the excita-
tion from one oscillator to another one in a set of coupled
oscillators. Purely noncoherent measurements of the state of
a two-level atom with the help of detection of the irradiated
photon can serve as another example.

We consider here a more general class of partially de-
structive quantum measurements, which by contrast with the
soft quantum measurements allows perturbation of the initial
eigenstates of any physical variable. We analyze the most
interesting, with respect to the qualitative content of the
mapped information, case of nonselective mapping of all
states ���A of the Hilbert space HA of a quantum system onto
the classically distinguishable eigenstates ���B of a continu-
ous variable of another more complex system with the Hil-
bert space HB=L2�HA�.

The generalized quantum measurements, along with re-
vealing potential resources of the measurement transforma-
tions for developing new methods of quantum information
engineering, is also of interest from the viewpoint of a quali-
tative interpretation of quantum theory. It helps to expose the
most general relationships between the physical changes
caused by the transformations applied to a quantum system
and the classical information contained in the information
index that sets a one-to-one correspondence between the ini-
tial quantum states and those after the measurement.

The paper is organized as follows. In Sec. II, we define
the generalized quantum measurements and discuss their in-
formational meaning. In Sec. III, the class of soft quantum
measurements is introduced and discussed in detail, includ-
ing its information analysis and concurrency between object
and meter. Section IV discusses the partially destructive
measurements. Finally, key results are summarized in the
Conclusions.

II. DEFINITION AND INFORMATIONAL MEANING
OF THE GENERALIZED QUANTUM MEASUREMENTS

In this section we introduce the generalized quantum mea-
surements starting from the definition of the entangling mea-
surement.

In the abridged description of a measurement process,
only two quantum systems—i.e., the object and meter repre-
sented by the corresponding Hilbert spaces HA and
HB—must be introduced explicitly. Taking into account that
the initial state of the meter can be specially prepared, the
measurement can be represented as a properly specified type
of a physically meaning transformation HA→HA � HB,
which, in the general case, is described by a corresponding
superoperator in order to take into account the interaction
with the microscopical subsystem of the meter and, possibly,
with an auxiliary environment �17�. The standard projective
measurement then is given by the nondemolition entangling
measurement superoperator

Me = �
kl

Rkl�k�A�k�B�l�B�l�A�k�A � �l�A, �1�

with the specific choice Rkl=�kl of matrix Rkl. Here the sym-
bol � denotes the place to substitute with the initial object

density matrix �̂A; the ket and brastates denote the orthogo-
nal eigenbasis states of the measured object and meter
pointer, correspondingly. The entangling matrix R= �Rkl�
�0 with Rkk	1 �in the general case, Rkl��kl� takes into
account the quantum nature of the meter and the resulting
after-measurement entanglement between the meter and ob-
ject.

The case of Rkl	1 corresponds to a purely coherent—i.e.,
isometric—transformation, which is called sometimes a pre-
measurement �14�, which results in the total preservation of
the initial coherency and transmission of all essentially quan-
tum �coherent� information, initially stored in the object,
onto the set of duplicated states �k�A�k�B �18�. Inequality Rkl
�1 represents dephasing due to the interaction of the object-
meter system �19� with the traced-out degrees of freedom:
Rkl can be represented as the Gram matrix �l��k�D resulting
from averaging over the nonorthogonal dephasing subsystem
states �k�D that are coupled with the meter ones simply via
the set of the joint product states �k�B�k�D.

The entangling measurement generalizes the standard pro-
jective measurement onto the case when the quantum nature
of the meter is taken into account and, as a result, the ob-
tained information is provided in the form of a complete or
partial entanglement between the object and meter leaving
the measured states �k�A unperturbed �20�. It may also be
worth mentioning that even in the case of a purely coherent
transformation Me the corresponding reduced A→A
transformation is given by the maximally incoherent
projective measurement superoperator MA=TrBMe
=�k�k�A�k�A� �k�A�k�A.

Physical meaning of the transformation �1� is that it maps
the information about the object onto the meter by setting a
one-to-one correspondence between the classically distin-
guishable quantum states of the object and quantum states of
the meter with the help of the classical information index k.
It is worth stressing here that this information index has an
important physical meaning, being associated with the corre-
sponding physical variables, that is possible due to the or-
thogonality of the corresponding quantum states and hence
enables unlimited copying of information associated with
this index. By contrast, for the case of an arbitrary set of
nonorthogonal states �k�, this copying is impossible and,
therefore, the information index k has no physical informa-
tional meaning. Undoubtedly, this approach, based on the
classical information index connecting the quantum states of
the object and meter systems, is important for quantum in-
formation and has apparently a fundamental value for the
foundations of quantum mechanics.

One can generalize the entangling measurement by releas-
ing two requirements—first, that the measured states are not
to be perturbed after the measurement and, second, about the
classical distinguishability of the states in both the object and
meter systems. This can be readily done by replacing in Eq.
�1� the exactly cloned orthogonal states �k� of the object and
meter with the nonorthogonal states �k�, which contain the
internal indeterminacy and cannot be cloned in principle. Af-
ter this replacement, the superoperator �1� remains positively
defined. However, as one can easily see, in order to preserve
its normalization it is necessary and sufficient to fulfill the
condition RklQkl

AQkl
B =0 for all k , l, where Qkl

A,B= �k��l�A,B are
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the respective Gram matrices for the corresponding sets of
object and meter states. This means that the orthogonality for
the given k , l must be hold true at least in one of the sub-
systems of the object-meter-reservoir system, which is due to
the unitarity of the mapping, considered in terms of the com-
plete system evolution.

Respectively, for the completely coherent measurement
�Rkl	1�, the possibility of using the nonorthogonal resulting
states of the object and meter has an alternative character;
i.e., for the output object-system states instead of ��k��AB
= �k�A�k�B we have to use either

��k��AB = �k�A�k�B or ��k��AB = �k�A�k�B. �2�

These alternative equations define a condition that k is a
physically meaning information index. They result in two
specific types of generalized quantum measurements that are
discussed below in the following sections of this paper.

First, we consider in Sec. III the generalization of the
entangled measurement onto the case of the so-called soft
quantum measurements, which maps distinguishable mea-
sured states of the object onto not entirely distinguishable
states of the meter. Second, we consider in Sec. IV the gen-
eralization onto the case of so-called partially destructive
quantum measurements, which change the initial basis states
of the object. Both these classes of measurements are based
on the isometric transformation of the form A→A+B+D,
where D is the dephasing subsystem �a reservoir�. Therefore,
both these generalized quantum measurements completely
preserve an initial distinguishable information �21� on the
“measured” states �k�A �or �k�A�—i.e., the probability distri-
bution Pk=�k�k��̂A�k�A ��k is given by Eq. �23� later on in the
paper�—in the form of joint states �2�, regardless to the pres-
ence or absence of an external dephasing or decoherency.

III. SOFT QUANTUM MEASUREMENTS

A. Definition and physical essence of the soft quantum
measurements

The most general nondemolition measurement transfor-
mation that preserves a complete set of classically compat-
ible object states �k�A is described by the superoperator of the
form

Mnd = �
kl

��k�A�l�A � �̂kl
B ��k�A � �l�A, �3�

where the set of operators �̂kl
B defines a positive block-type

operator with the normalized diagonal terms Tr �̂kk
B =1 in a

Hilbert space HB, which describes variables of the meter that
are essential for the measurement. This superoperator asso-
ciates the object projectors �k�A�l�A with the kl elements of
the block-type operator ��̂kl

AB�= �k�A�l�A � �̂kl
B in the object-

meter system, which, in the general case, results in the states
of the meter entangled with the measured states of the object.
Here, normalization of the diagonal terms ensures preserving
the probability for the set of compatible measured object
states �k�A�k�A, which are not perturbed during this measure-
ment.

For the trivial case of �̂kl
B = �̂0

B we get Mnd�̂
A= �̂A � �̂0

B, and
all states of the meter are associated with a single density

matrix of the meter states; i.e., no measurement is performed.
In the case of the entangling measurement �1�, we have a set
of �̂kl

B =Rkl�k�B�l�B, which establishes a one-to-one correspon-
dence between the measured states of the object with similar,
orthogonal, and completely distinguishable states of the
meter. Such a measurement is a distinct one in the sense that
for the respective events, represented by the compatible

states P̂k
A= �k�A�k�A � ÎB, P̂l

B= ÎA � �l�B�l�B of the object and
meter, the joint probability distribution, corresponding to the
resulting joint density matrix �̂AB=Mnd�̂

A, is singular:

P�k , l�=Tr P̂k
AP̂l

B�̂AB=�kl�kk
A ; i.e., in the supporting subspace

of the density matrix �̂AB we have P̂k
A= P̂k

B for all k.
We will consider here the most fundamental class of the

nondemolition measurements �3�, which is characterized by
using a “fuzzy” set of nonorthogonal states �k�B that contain
the internal quantum uncertainty for the measurement results
in the form �̂kl

B =Rkl�k�B�k�B. This kind of measurement in the
limiting cases of orthogonal or trivial �consisting of the only
state �k�B	�0�B� sets is reduced to the above-described en-
tangling �specifically, projective� measurement and the case
where no measurement is performed, respectively. In the
most general case, measurements of this type are usually
called fuzzy measurements �13,14�. For this generalized mea-
surement, the meter does not contain any specified physical
variable, which can store exact information about the number
k of measured object states �k�A, and the attained information
is connected with the entire physical structure of the meter,
being represented in an essentially quantum form �22�.

We will call this type of measurement �3�, described by
the superoperator

M = �
kl

Rkl�k�A�k�B�k�A � �l�A�l�B�l�A, �k��l�B = Qkl,

�4�

the soft quantum measurement. The resulting information is
represented here by the pure states �k�B�HB, the uncertainty
of which has a purely quantum nature and is related to their
nonorthogonality, which leads to the impossibility of setting
a one-to-one correspondence between the measured physical

variable Â=��k�k�A�k�A and any analogous variable of the
meter. Instead, the one-to-one correspondence is set between
the distinguishable object states �k�A and undistinguishable
states of the meter, �k�B.

The physical essence of the superoperator �4� is the trans-
formation of the initial orthogonal basis object states �k�A
into also orthogonal—i.e., completely distinguishable—
states �k�A�k�B of the bipartite object-meter system, which is
independent from the initial meter state. At the same time,
the phase relationships between the initial states are gener-
ally perturbed and their joint correlations are described by
the matrix elements Rkl, whereas the Gram matrix Q= �Qkl�
describes the degree of quantum distinguishability of the
measuring states �k�B of the meter. The soft character of the
measurement is characterized by the difference of the matrix
Q from the identity matrix I that corresponds to the conven-
tional �distinct� entangling measurement. For the transforma-
tion �4�, as well as in the case of a distinct measurement, the
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classical content of the measured object states �k�A is not
perturbed, whereas the quantum information initially stored
in the initial object state �̂A is redistributed between two
subsystems and perturbed due to decoherence.

In the case of Rkl	1, when the coherency is preserved,
the soft quantum measurement, considered as the transfor-
mation in the bipartite object-meter system with the initially
“prepared” pure state �0�B of the meter, is equivalent to the
unitary transformation. It maps the set of initial orthogonal
states of the form �k�A�0�B onto the orthogonal states �k�A�k�B
and, obviously, can be redefined up to the unitary operator
UAB in the total space HA � HB. The respective redefinition of
the superoperator �4� then can be represented by the super-
position US of the superoperator S= �0�B�0�BTrB� , which
resets the meter into the initial state �0�B, and the unitary
superoperator transformation U=UAB�UAB

−1 .
One can also easily see that in this case the entropy of the

initial object state is entirely transferred into the entropy of
the bipartite object-meter system, S��̂A�=S��̂AB�. Respec-
tively, the coherent information �23�, modified with respect
to its transfer from HA into HA � HB �18�, is equal to its
initial value S��̂A�. All losses are due to the decoherence and
respective violation of the isometricity of the transformation
at Rkl�1 only. Nevertheless, the corresponding marginal
transformation A→A of the object system is ever incoherent
due to the interaction-produced loss of initial coherence,
even in the case of completely coherent measurements.

For the purely coherent case, it is not difficult to calculate
now the Hamiltonian of the transformation of the infinitesi-
mal soft quantum measurement in the object-meter system
with the fixed initial state �0�B of the meter, which can be
chosen as one of the resulting states of the meter—i.e.,�0�B
= �0�B. Calculating the infinitesimal addition for a short time
in the state of the object-meter system as the result of the
corresponding unitary transformation with the “perturbation-
free” Hamiltonian �̂=�k�k�A�k�A � �̂B�k� and equating its re-
sult to the deviation, which is caused by the transformation
�4�, we do have −i 	t


 �̂�k�A�0�B= �k�A��k�B, where��k�B= �k�B
− �0�B. From here, for the k-dependent Hamiltonian of the
meter we receive −i 	t


 �l��̂B�k��0�B= �l��k�B, from which, due
to the Hermitian property, follows the equation for the
uniquely determined matrix elements:

�̂B�k� = �
l

lim
t→0

i



	t
��l��k�B�l�B�0�B − ��k�l�B�0�B�l�B� . �5�

Other elements can be defined arbitrary or set to zero.

B. Repeated soft quantum measurements

In this section, we will consider the results of the repeated
quantum measurements of the object, which are illustrated
on example of a two-level system in Appendix A.

Repeated application of the soft measurement to the result
of the previous measurement does not increase the attained
information, because the resulted information contains an ad-
ditional indeterminacy in comparison with a single measure-
ment. The indeterminacy produced by the latter does not
vanish or decrease at the next interaction of the meter with
the object.

For the repeated measurements of the object with preser-
vation of the measurement results in independent degrees of
freedom of the multicomponent meter due to the n-fold ap-
plication of the measurement transformation we receive the
following resulting transformation:

M�n� = �
kl

Rkl
n �k� ¯ �k��k�A�k�A � �l�A�l�A�l� ¯ �l� . �6�

Here �k�¯ �k� denotes the corresponding product state in the
combined Hilbert space HB

n =HB � . . . � HB of the identical
copies of the initial meter system HB with dimension D.

This transformation results in increasing incoherency and
yields multiply duplicated fuzzy information about the value
k. At the same time, the quantum character of the measured
information is maximally preserved only in the entire sys-
tem, which includes all the meter’s subsystems. After aver-
aging over m�n output subsystems of the meter the remain-
ing quantum information is affected by the decoherence and
can be characterized by the entanglement matrix Rkl

�n−m�

=Qkl
mRkl

n . This matrix defines the decoherence properties of
the measurement even without any decoherence during the
creation of the entanglement in separate measurements—i.e.,
for Rkl	1. In the active subspace HD=sp
��k�� , k
=1, . . . ,D��HB

n of the collective states ��k��= �k�¯ �k� the
measurement transformation �6� has the form of a single
measurement, but with entanglement matrices and scalar
products corresponding to n measurements.

Such a measurement can be illustrated with various ex-
amples of its physical implementation. For instance, if we
select an atom from an atomic gas as a quantum object, we
can consider, in general, all the surrounding atoms as the
multipartite meter system. Then, collisions between atoms
can be considered as separate measurement acts, which aug-
ment the measured information in the multipartite system.
This situation is surely beyond the scope of the standard
quantum measurement concept, which assures that all ob-
tained information is accessible and can be used for any pur-
pose. An optical dipole trap �24,25� can serve as another
physical example, which clarifies our model of the repeated
measurements more distinctly. In this trap, an atom, a carrier
of quantum information, moves along the linear chain of
atoms, which are located in the potential microtraps of the
optical dipole trap, each of which performs a measurement
�Fig. 1�; i.e., we have the case of repeated measurements.
Also, successful experimental realizations of the nondemoli-
tion projective measurements with single photons �5,26� give
us a hope that the repeated measurements considered here
would be implemented experimentally in the nearest future,
not only with atoms, but also with photons.

FIG. 1. Physical implementation of the repeated soft quantum
measurements in an optical dipole trap: an atom, a carrier of quan-
tum information, moves along the linear chain of atoms, which are
located in the potential microtraps of the optical dipole trap, each of
which performs a measurement.
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The dimension of the Hilbert space of the active states of
the meter does not exceed the dimension of the single meter
space, despite the fact that the combined space of the meter’s
states unrestrictedly expands. For the appearance of new ac-
tive states different from the set �k�A�k�¯ �k� �or to the uni-
tary equivalent to it� it is necessary that the dynamics along
the different degrees of freedom be independent and random.
However, deviations of the bases used in different measure-
ments lead to deviations of the resulting states of the meter
from the indicated active space and, if we have no a priori
information about these deviations, will result in losses of
information about the object. Therefore, coding of informa-
tion in the series of repeated soft measurements provides a
resource for the latent storing of information with the unique
quantum key.

When all the measurement results are preserved, the joint
density matrix of the object-meter system can be written as

�̂BnA = �
kl

Rkl
n �kl

A �k� ¯ �k��k�A�l�A�l� ¯ �l� . �7�

In its turn, the density matrix of the meter, averaged over the
states of the object, is equal to

�̂Bn
= � �kk

A �k� ¯ �k��k� ¯ �k� , �8�

i.e., represented with the weighted sum of D noncommuting
projectors. In an orthogonal basis ��ek�� of the active sub-
space of the collective states HD, they can be rewritten in the
form

�̂BnA = � �ki,lj
BnA��ek���i�A� j�A��el�� , �9�

�̂Bn
= � �kl

Bn
��ek����el�� , �10�

with matrix elements corresponding to the respective equa-
tions �7� and �8� and the choice of basis ��ek��.

The matrix of scalar products for the vector set �k�¯ �k�
has the form Q�n�= �Qkl

n �. In the case of the linearly indepen-
dent set �k� for n→� this matrix has the form of the identity
matrix Q���= I. The orthonormalized basis in HD can be ex-
pressed via the duplicated states of the meter with the help of
the following relationship:

��ek�� = �
l

�Q�n�−1/2�kl
* �l� ¯ �l� . �11�

The corresponding formulas

�ki,lj
BnA = ��ek���i��̂BnA� j���el�� = Rij

n �ij
Ai

Bn
�k� j

Bn*�l� , �12�

�kl
Bn

= ��ek���̂Bn��el�� = �
j

� j j
A  j

Bn
�k� j

Bn*�l� �13�

represent here the states of the meter with the matrix

i
Bn

�k� = �Q�n�1/2�ki �14�

of fixed dimension D�D. This dimension does not depend
on the number of measurements, n, and respective total di-
mension Dn of the multipartite Hilbert space HB

n of the meter.
The entanglement matrix Rij is essential only for construct-

ing the bipartite density matrix of the object-meter system
and does not affect the partial density matrix of the meter
because after the tracing over the object states their coher-
ence is not important. A set of nonorthogonal, in the general

case, functions i
Bn

�k� makes sense of the ensemble of pure
collective states of the meter, post-selected after n measure-
ments and corresponding to the ith measured object states.

All of them satisfy the normalization condition �i
Bn

,i
Bn

�
	1, in which, due to definition �14� of collective states, the
scalar products are reduced to the normalized on unit diago-
nal elements of the matrix Q�n�.

C. Information analysis of the soft quantum measurements

In this subsection, we present a quantum information
analysis of the soft quantum measurements with the help of
both the coherent and semiclassical information.

1. Coherent information in the object-meter and object-object
channels

The key features of the coherent information �23� ex-
change at the entangling measurement �1� are described in
detail in Ref. �11�. The coherent information is purely quan-
tum �27,28� and, therefore, cannot be copied or duplicated.
Thus, when the states �k�A are duplicated, the coherent infor-
mation is transferred onto the superposition of bipartite states
�k�A�k�B and is equal to zero in the channels “initial-resulting
state of the object” and “initial state of the object-resulting
state of the meter.”

In accordance with its definition, the coherent information
preserved in the channel, which implements the superopera-
tor transformation N, can be written as

Ic = S�N�̂� − S��N � I���†� , �15�

where the first term describes the entropy at the output of the
channel and the second term the so-called exchange entropy
that characterizes the entropy surge due to the irreversibility
of the transformation; the pure state � represents the so-
called “purified state” at the input of the channel as the state
of the bipartite system input�reference, which describes the
mixed input state as the result of its tracing over the auxiliary
reference system, and I is the identical transformation on the
reference system state, which is not perturbed.

Let us consider how the coherent information is trans-
formed at the soft measurement. In the two-time channel
“object→object�meter,” a fully coherent variance of the soft
quantum measurement does not affect the coherent informa-
tion, on account of the orthogonality of the states �k�A�k�B of
the object-meter system. All losses of coherent information
in this channel are due to the decoherence only. By contrast,
in the two-time “object-object” channel the influence of the
soft measurement on the coherent information is a nontrivial
one—in this channel the amount of preserved coherent infor-
mation depends on both the decoherence and soft character
of the measurement. The latter determines how the amount
of information obtained by the meter affects the information
preserved in the object.

Substituting in Eq. �15� the transformation N=TrBM and
taking into account Eq. �4�, we get Ic=S��RklQkl�kl

A ��
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−S��RklQkl�ki�lj
* ��, where the arguments in the parentheses

are the matrix elements �̃kl and �̃ki,lj corresponding to the
transformed density matrices of the object and object-
reference systems; �i�ki�li

* =�kl
A . Therefore, for the consid-

ered channel contributions due to the decoherence and dis-
tinctness of the measurements, which are presented with the
respected matrices Rkl and Qkl, are totally equivalent. Sim-
plifying the expression in the argument of the second term
�for details, see Appendix B�,one can rewrite the expression
in the final form

Ic = S��RklQkl�kl
A �� − S����kk

A RklQkl
��ll

A�� . �16�

In the absence of decoherence—i.e., Rkl	1—and at the
maximal softness degree—i.e., �k�	�0�—the second term in
Eq. �16� vanishes, as far as its argument goes to the density
matrix of a pure state, whereas the first term coincides with
the entropy of the output; i.e., the coherent information is
transmitted without disturbance to the object system only. In
the opposite case, for the measurement with complete distin-
guishability of the states of the meter or for their maximal
dephasing RklQkl=�kl, both terms describe the entropy of the
set of the measured states of the object �k�A, which is deter-
mined with the maximum entropy probability distribution
pk=�kk

A , and, respectively, the coherent information vanishes
due to the complete decoherence of the input information.

Let us illustrate calculation of the coherent information Ic
on an example of a two-level system, for which we have

Ic =
1

2
��1 − x1�log2�1 − x1� + �1 + x1�log2�1 + x1�

− �1 − x2�log2�1 − x2� − �1 + x2�log2�1 + x2�� , �17�

where x1,2 can be written with the only parameter q
= �R12Q12� of the matrix RklQkl, diagonal matrix element p
=�11

A , and the coefficient module of correlations �
= ��12

A � /�p�1− p�:

x1 = �1 − 4p�1 − p��1 − q2�, x2 = �1 − 4p�1 − p��1 − q2�2� .

The dependence corresponding to Eq. �17� for p=1/2 �for
the maximally possible amount of information of the source
equal to 1 bit� is shown in Fig. 2�a�.

2. Semiclassical information in the object-meter channel

When one uses the object as a source of purely classical
information in the most general form of the mixed ensemble

p� , �̂A����, the semiclassical information retrieved by the
meter is described by the respective ensemble 
p� , �̂�� result-
ing after the averaging over the object variables to

�̂� = �
k

�kk
A ����k��k� . �18�

Nonclassicality of this channel is related to the commutator

Ĉ��= ��̂� , �̂��=�k��kk
A ����ll

A���−�kk
A ����ll

A����Qkl�k��l�, which
is nonzero only for the soft quantum measurements with
Qkl��kl. Nonorthogonality of the meter states �k� in en-
semble �18� leads to the respective reduction of the retrieved
information.

Let us illustrate how the amount of information depends
on the parameters of the soft quantum measurement for the
case of the repeated measurements in the same basis for the
input ensemble of pure states �̂k

A= �k��k�. As one can easily
see, this ensemble corresponds to another one in the form of

pure states �̂k
Bn

= ��k����k�� in the active subspace of the meter,
which is described in Sec. III B. As an adequate quantitative
characteristic for this kind of the channels we can use the

semiclassical Holevo information Is=S��pk�̂k
Bn

�−�pkS��̂k
Bn

�
�29�, which in this case is simply equal to the entropy S��̂Bn

�
of the resulting density matrix �̂Bn

=�pk��k����k��, which has
the matrix elements �13� with �kk

A →pk, at the output of the
measurement channel. For a two-level case, on account of

FIG. 2. �Color online� �a� The coherent information Ic, pre-
served in the object after the soft quantum measurement with the
combined parameter q, which characterizes the level of the softness
and the degree of coherency of the measurement, versus the func-
tion of the degree of coherency � of the initial state of the object.
�b� The coherent information Ic

E retrieved by Eve after the soft
quantum measurement performed by Bob and the coherent informa-
tion Ic

B retrieved by Bob after the soft quantum measurement per-
formed by Eve with the same fuzziness parameter qB. The graphs
�a� and �b� numerically coincide, but they are different by their
physical content.
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Eq. �A5� and for the a priori distribution pk= 
1/2 ,1 /2� we
have the following amount of information:

Is = −
1

2
log2

1 − e−4�t

4
+ e−2�tlog2

1 + e−2�t

1 − e−2�t� ,

which monotonously changes from zero up to Imax=1 with
the change of the measurement time 0��t��. The effects
of the decoherence are not important in this case because
related phases of the measured states of the meter are not
essential.

D. Competition at the retrieval of information from the object

In this subsection we discuss the competition at the re-
trieval of the quantum information for the case when there is
a single source of information and two receivers. This setting
resembles the standard setup for quantum cryptography
when Alice transmits a piece of information to Bob via a
secure quantum or semiclassical channel and Eve tries to
eavesdrop on the transmitted information �7�.

1. Competition at the retrieval the coherent information

Let us consider now the restrictions on the soft quantum
measurement information for the case when there is a single
source of information �we will call it “Alice”� and two re-
ceivers �“Bob” and “Eve”�. The latter retrieve this informa-
tion in series with the help of a repeated nondemolition
quantum measurement with a different choice of the mea-
sured variables, in the general case �by contrast with Sec.
III B�. Mapping of the quantum states in the Hilbert spaces
has the form HA→HA � HE � HB and the respective complete
superoperator transformation can be written as

MEB = �IE � MB��ME � IB� , �19�

where

ME = � RkElE
E �kE��kE��lE��lE��kE� � �lE� ,

MB = � RkBlB
B �kB��kB��lB��lB��kB� � �lB�

describe the measurements performed by Eve and Bob under
the same object, but using different meters, and IE,B is the
respective identical transformation over the variable of the
meter inaccessible in this measurement.

Expanding Eq. �19�, we have

MEB = � RkElE
E RkBlB

B �kB�kE��lE�lB��kB��kE��kB��lB��lE��lB�

��kE� � �lE� .

In a specific case of coinciding meter bases, �kB�= �kE�, we
have

MEB
0 = � Rkl

ERkl
B �k��k��k��l��l��l��k� � �l� .

The difference between the above-considered case and that
described in Sec. III B is in the independent use of informa-
tion contained in the bipartite states �k��k� of the Eve-Bob
system, which are partially coherently connected to the states
�k� of the object.

The result of Eve’s measurement does not depend on the
subsequent Bob’s measurement only for the marginal states
�̂B, but not for the joint states �̂AE, which after Bob’s mea-
surement �for instance, in the same basis� are represented
instead of the initial superoperator ME
=�Rkl

E �k��k��l��l��k�� �l� with the superoperator

ME� = TrBMEB
0 = � Rkl

ERkl
BQkl

B �k��k��l��l��k� � �l� ,

which contains an additional decoherency factor Rkl
BQkl

B . An
absence of the back action—i.e., the equality ME� =ME—in
the case of Rkl

E �1, when Eve retrieves the information in
essentially quantum form, occurs only for the completely
coherent measurement by Bob, which contains no resulting
information �Rkl

B 	1, Qkl
B 	1�. In the case of completely in-

coherent measurements by Eve there is never any reaction
after Bob’s measurement, which ensures the stability of clas-
sical information against its copying. A similar action does
the measurement by Eve on Bob’s measurement, which has
after Eve’s measurement the form MB� =TrEMEB

0

=�Rkl
BRkl

EQkl
E �k��k��l��l��k�� �l�, i.e., contains an additional

factor Rkl
EQkl

Ecompare to the case without Eve’s measurement.
Such a reaction of the quantum operation can be ad-

equately described with a respected reduction of coherent
information due to its reception by a new receiver. In this
case, due to the quantum measurement, the meter receives
coherent information about the object states only after the
measurement and the received information can be considered
as the corresponding degree of quantum entanglement in the
object-meter system, which is measured, for instance, in the
system A+B with the help of the difference Ic
=S�TrBM�̂A�−S�M�̂A�, which is always positive in the case
of the soft quantum measurement.

By contrast with a similar definition used in Ref. �11� for
the special case of distinct entangling measurements, the first
term here determines the entropy of the object, but not the
meter, because the entropies of the object and meter do not
coincide for the case of the soft quantum measurement.

Calculating the respective information for Eve and Bob,
we have

Ic
E = S���kl

ARkl
ERkl

BQkl
EQkl

B �� − S���kl
ARkl

ERkl
BQkl

B �� ,

Ic
B = S���kl

ARkl
ERkl

BQkl
EQkl

B �� − S���kl
ARkl

BRkl
EQkl

E �� .

The coherent information retrieved by Eve after Bob’s mea-
surement and the amount of information received by Bob are
shown for the two-dimensional case in Fig. 2�b� as functions
of the softness parameters for the Bob’s �qB= �Q12

B � � and the
Eve’s �qE= �Q12

E � � measurements at R12
B =R12

E =1 and for the
density matrix of the object �11

A =�22
A =1/2, �12

A =�21
A =� /2.

The respective analytical expressions for Ic
E , Ic

B can be ob-
tained using Eq. �17� for Ic�q ,��, which determines the co-
herent information about the reference system, which is pre-
served in the object with the initial density matrix �̂A after
the soft measurement with the softness parameter q. This
case corresponds to the change of variables 
q→qB� , �
→qE� when calculating the information retrieved by Eve
and, respectively, 
q→qE� , �→qB� for the calculation of
the information retrieved by Bob. In these calculations, qB
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=1 corresponds to the case when Bob practically does not
perform the measurement and retrieves the unperturbed
amount of Eve’s information Ic

E �and vice versa�, which is
decreased with decreasing qB due to the competence.

Note that the impact of the coherency parameter of the
initial state � on the coherent information �17�, shown in
Fig. 2�a�, and the competitive information Ic

E,B, shown in Fig.
2�b�, is the opposite. Whereas the value of Eq. �17� with
increasing � falls due to the decrease of the initial entropy of
the density matrix, which determines the entanglement be-
tween the object and associated reference system, the infor-
mation Ic

E,B increases with increasing � due to the respective
increase of the object-meter entanglement after the measure-
ment. This entanglement does not exist for the incoherent
mixture of pure states 
pk , �k��, and because of their imper-
turbability, the states �k� even at the completely coherent
measurement are described with the incoherent mixture of
independent states �k��k� of the object-meter system.

The competition at the selection of the coherent informa-
tion reveals an opposite action of the parameters qB and qE
on the information Ic

E retrieved by Eve, for instance: with
decreasing qE—i.e., with increasing accuracy of Eve’s
measurement—her information increases, whereas with de-
creasing qB it decreases up to zero at qB=0 due to the partial
transfer of the information to Bob.

2. Competition at the selection of the classical information

The competition at the retrieval of the quantum informa-
tion is revealed also in the case of the semiclassical channels
A→E and A→B with a given ensemble of input states. An
ensemble corresponding via Eq. �18� to the first channel, as
can be easily checked by respective averaging of the super-
operator �19�, is not modified after the secondary measure-
ment by Bob because he does not affect the input state. How-
ever, Bob’s measurement result depends on the basis choice,
which is used for Eve’s measurement. The respective inter-
dependence of the resulting quantum transformations is the
foundation of quantum cryptography �7�.

Whereas the transformation MA→E=�k�k��k��k�� �k� in-
cludes only parameters of the measurement performed by
Eve—namely, the measured states �k� and the states of the
meter �k�—the transformation of the channel A→B depends
also on the parameters of Eve’s measurement, in accordance
with Eq. �19�, as

MA→B = �
kl

Rkl
EQkl

E �PB�k�E�l�E��k�E � �l�E. �20�

Here PB=�k�k�B�k�B�k�B� �k�B is the superoperator of the soft
projection from HA onto HB, which describes the result of the
secondary measurement performed by Bob after Eve’s mea-
surement; �k , l�E,B are the vectors of the measured basis states
in the space HA of the object states for the measurements by
Eve and Bob.

The incoherence introduced by Bob due to the averaging
over the states of the object does not affect the information
retrieved by Bob, and the soft character of the measurement
is described by the superoperator PB. At the same time, the
incoherence of Eve’s measurement and its soft character are

reflected with the common decoherence matrix �external in
respect to Bob� qkl=Rkl

EQkl
E , which describes the resulting de-

gree of the “softness” of Eve’s measurement. When the bases
coincide—i.e., �k�E= �k�B= �k�—Eve’s measurement does not
affect the information retrieved by Bob because PB�k�E�l�E
=�kl�k�B�k�B and the dependence on the parameters Rkl

E ,Qkl
E

vanishes. In this case, both Eve and Bob use only classically
compatible information about the object, which surely lacks
a specific quantum nature of the competition in its selection,
and this information can be copied independently. The de-
pendence of the resulting channel A→B on Eve’s transfor-
mations is related exclusively to the lack of coincidence of
their measurements bases, which makes an essential quan-
tum disturbance of the object state introduced by Eve at qkl
�1.

The corresponding generalization of the semiclassical
channel �18� on account of its modification �20� of the re-
spective transformation of its quantum input has the form

�̂� = �
kl

�kl
A�E���qklPB�k�E�l�E, �21�

where �kl
A�E is the density matrix of the object in the basis Eve

performs the measurement. The respective dependence of the
semiclassical information Is on the measurement parameters
and on the input ensemble for the two-level example is
shown in Fig. 3. At its maximum degree, the competition of
the measurements is revealed at the orientation angle �
=� /2, which, in the case of a physical realization of the
Hilbert space of the object as the polarization degree of free-
dom of a photon, corresponds to the rotation of linear polar-
ization of the photon at 45°.

IV. PARTIALLY DESTRUCTIVE QUANTUM
MEASUREMENTS

Partially destructive quantum measurements, which we
will discuss in this section, form a special class of general-
ized quantum measurements that map an overfull nonor-

FIG. 3. �Color online� The semiclassical information Is versus
the softness parameter q= �q

12
� of the measurement performed by

Eve and the orientation angle � of Eve’s basis on the Bloch sphere
in respect to the input ensemble of two equiprobable pure states �k�B

at the rigid measurement by Bob with �k�B= �k�B.
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thogonal set of states of the object quantum system onto an
orthogonal basis set of the meter system. Of a special interest
is a particular case when all states of a finite-dimensional
Hilbert space are mapped onto a continuous orthogonal basis
set of an infinite-dimensional Hilbert space.

We will start with an isometric transformation of the form

V = �
�

������AB���A �22�

from the Hilbert space HA of the object A onto the space
HA � HB of the bipartite object-meter system A+B. Here the
vectors ���AB define the orthogonal basis in the Hilbert space
of the object-meter system, indexed by the values � of an
indicator variable. This basis allows a new representation of
the initial quantum information that can be measured in the
general case with the help of nonorthogonal “probe” states
���A; the set of positive numbers �� characterizes the repeti-
tion factor of the elementary maps ���A→ ���AB, of which the
resulting transformation V is constructed as the coherent �i.e.,
depending on the phases of the wave functions� superposi-
tion of the respective generalized projectors.

The relation

V+V 	 �
�

�����A���A = ÎA �23�

assures the isometric property of the transformation. It ad-
mittedly can be fulfilled if the set of mapped states ���A is a
collection of orthogonal bases, randomly rotated with respect
to each other. Specifically, for N equally represented bases
we have ��=1/N.

The transformation �22� is a generalized modification of
the canonical representation of the isometric mapping V
=��k�C�k�A as the transformation of the entire orthogonal set
in HA into an orthogonal set in an arbitrary space HC. This
transformation, first of all, concretizes the structure of the
mapping space as the space of the states of the bipartite
object-meter system, A+B. Second, it uses in the general
case an overfull set of states ��� for the representation of the
set of the initial states. The isometric property is the condi-
tion for the physical realizability of the transformation in the
form of dynamically reversible evolution in the bipartite
object-meter system.

The index � in the transformation �22� accumulates in the
classically measurable form information associated with a set
of initial quantum states ���A of the object. The values of the
index � are mutually uniquely mapped with the set of clas-
sically distinguishable states ���AB of the bipartite system.
This correspondence allows us to define the measurement
transformation �22� as a sort of purely coherent measure-
ment, which delivers the output information about the object
in the form of entanglement of a linear combination of the
states ���AB. On account of the decoherence effects, which
are pronounced in the partial loss of coherence of the mea-
surement results without loss of the classical information,
such a measurement can be represented by the following
superoperator �19�:

M = D�V � V+� = �
��

R��
��������AB���A � ���A���AB,

�24�

where D=���R�����AB���AB� ���AB���AB is the decoherence
superoperator and R�� is an entangling matrix representing
decoherence. At R��	1—i.e., without decoherence—this
superoperator simply describes the transformation V in terms
of density matrix transformation.

In accordance with the two possibilities �2�, representa-
tion �24� of the generalized measurement, as well as its
purely coherent modification �22�, include the following

�i� The standard projective and entangling measure-
ments �1� at the choice of the mapped information in the
form of a the complete set of classically compatible states,
the orthogonal basis �k�A, and as ���AB—the duplicated basis
�k�A�k�B.

�ii� The soft quantum measurement at the choice of
���AB→ �k�A�k�B with a nonorthogonal set �k�B.

�iii� The measurement with partial destruction of the
initial information at the choice ���AB= �e��A���B, where the
set of states �e��A is arbitrary and ���B is formed of orthogo-
nal states and unambiguously maps the values of the infor-
mation index �, whereas the set ���A can count in nonor-
thogonal states, as well.

The transformation �22� corresponding to the generalized
quantum measurement takes the form

V = � ����e��A���B���A, �25�

where in the case of nonorthogonal set ���A the information
index � is not unambiguously linked with the classically
distinguishable states of A and its statistics includes the in-
ternal quantum uncertainty of the mapped states ���A. It can
be formally interpreted as the number of elementary coherent
subchannels ���A→ �e��A���B, which link classically noncom-
patible input states of the object ���A with the states of the
bipartite object-meter system �e��A���B.

In the case of the soft quantum measurement, the orthogo-
nality of the set �e��A= �k�A leads to a unique correspondence
to the informational index �=k and, respectively, to the non-
demolition character of the measurement along the variables

of the form �̂=��k�k�A�k�A, and to complete vanishing of the
coherent information of the meter with respect to the initial
state of the object.

Nonorthogonality of the set �e��A leads, in its turn, to a
reduction of the information remaining in the object—i.e., to
the destructive measurement. During this measurement some
coherent information is transferred into the meter states, the
indicator � of which contains quantum uncertainty with re-
spect to the object states ���A only if the latter have an inter-
nal quantum uncertainty despite being uniquely represented
by the input states ���B of the meter. In the limiting case
�e��A	�0�A, the transformation �25� corresponds to the com-
plete transmission of the initial information from A into B.

If one uses the orthogonal bases �k�A for the sets �e��A,
���A, the transformation �25� corresponds to the entirely co-
herent entangling measurement �11�, which leads to the eq-
uitable probability distribution of the initial information be-
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tween A and B and the complete absence of coherent
information about the initial states in the subcomponents of
the bipartite system A+B.

In the general case, the distribution of the initial informa-
tion about the object among the object and meter is deter-
mined by the metric matrix Q��= �e���e��A of the vector set
�e��A.

In the case of the overfull set �e��A, the representation of
the operator �25� as a sum over � can be reduced into the
superposition of D2 projectors by shifting to the minimal
orthogonal basis �k�A. The respective representation has the
form

V = �
kl

�k�A�kl�B�l�A, �26�

where �kl�B=��
������l�A�k�e�����B with the scalar product

�k�l���kl� = �
�

�����l�A�k�e��A�e��k��A�l����A,

which is determined only by the states in the Hilbert space of
the object HA. Therefore, representation �25� clarifies the
transformation of the form �26� as setting the correspondence
between the input and output via the classical information
index, which surely contains the internal quantum uncer-
tainty.

A. Relationship between the partially destructive quantum
measurement transformation and its representation
in the form of a positive operator valued measure

Let us now consider the superoperator �24�, which applies
the partially destructive isometric transformation �25� and
additionally takes decoherence into account:

M = �
��

R��
������e��A���B���A � ���A���B�e��A.

�27�

It corresponds to the probability distribution P���
= ���B�̂B���B, where �̂B=TrAM�̂A, for the results � of the
measurement, which are physically realized in the form of
meter quantum states. This distribution has the form

P��� = TrAÊ��̂A, �28�

with the positive operator valued measure �POVM� Ê�

=�����A���A.
This expression does not depend either on the coherency

of the transformation or on the form of its representation in
the output state of the object and corresponding entangle-
ment in the bipartite object-meter system after the measure-
ment because it describes only classically compatible infor-
mation of the object about its initial state. Equation �28� does
not describe the quantum result of the measurement, but the
resulting nonselected information preserved in the object in
quasiclassical form.

The complete resulting information, though displayed in
the classically distinguishable form ���B, is described by the
contracted superoperator for the bipartite object-meter
system:

MB = �
��

R��
������e�

��e��A���B���A � ���A���B,

�29�

which takes into account quantum correlations with the ini-
tial state. Even for the completely coherent measurement, it
contains the decoherence factor R��

A = �e���e��A, which is due
to ignoring the coherent information bundled in the form of
entanglement in the bipartite object-meter system. In the case
of complete decay of the output information at R��=��� the
transformation �29� is reduced to

MB = �
�

�����B���A � ���A���B.

The respected probability distribution for this transformation
is given by Eq. �28� on the algebra of classical events de-
scribed by the set of compatible states ���B and its subsets.

It is worth noting here that the generalized measurements
in terms of the POVM have been widely discussed in the
literature, particularly in connection with the problem of op-
timal measurement of continual quantum variables—e.g., co-
ordinates and momenta �30–32�. However, the consideration
presented here is qualitatively different, because in our terms
a discussion of the measurements with a continuous output
makes evident sense even in the case of a finite-dimensional
object systems.

B. Selective and nonselective partially destructive quantum
measurements

1. Selective partially destructive quantum measurements

A special case of the generalized quantum measurement
�27� is the selective partially destructive quantum measure-
ment, which has a different generalized set of output object
states from the case of entangling measurement �1� but the
same measured states:

�k�A → �e��A = �k�A, ���A = �k�A, ���B = �k�B,

k = 1, . . . ,D, �� = 1.

The output object states �k�A differ by their nonorthogonality
from the orthogonal basis states �k�A of the measured vari-
able, which prevents the object from preserving initial states
of the form �k�A.

In the case of a purely coherent measurement Rkl	1, the
meter attains a nonzero coherent piece of information about
the initial state of the object, which in the trivial limit �k�A
	�0�A is the complete information; i.e., the information
equals numerically the initial entropy of the object. In this
case, the information relationships for the object-meter map-
ping reproduce obviously the same relationships for the
object-object mapping for the case of the soft quantum mea-
surement, the transformation for which is described by the
transformation HA�HB of the resulting states of the object
and meter. Therefore, the respective dependences given al-
ready in the Sec. III D 1 for coherent information in the
object-object channel for the two-level system retain their
validity for the present case, as well. Quasiclassical informa-
tion attained by the meter, due to the absolute accuracy of the
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measurement, is always complete; i.e., the amount of infor-
mation coincides with the entropy of the measured variable.

2. Nonselective partially destructive quantum measurements

The nonselective partially destructive quantum measure-
ment is another special case of the generalized quantum mea-
surements for which the set of mapped states ���A includes
all quantum states of the object. In this case, the information
index � unambiguously maps all physically different ele-
ments of the Hilbert space HA and the appropriate represen-
tation of the set of its states is the unit �2D−2�-mensional
sphere of the real Euclidean space.

Then, the respected generalized measurement is the map
HA→HA � HB with the states of the meter B����HB

=L2�HA� the wave functions of the continual argument �.
Multiplicity of the states, d�=�dV��, which corresponds to
the elements in the set ��dV, has in this case the form d�
=DdV /V, where V is the entire volume of the hypersphere of
the physical states. Figure 4 illustrates the concept of the
nonselective partially destructive quantum measurement in
an example of a two-level system.

C. Distribution of information between the object and meter
at the partially destructive quantum measurements

The amount of information preserved in the object is de-
termined by the information capacity of the overfull basis
�e��A, which duplicates information represented by the states
of the meter ���B. In the general case, this information cor-
responds to a partial or complete loss of initial information
���A about the object. In the case of the completely coherent
measurement—i.e., at R��	1—the information capacity of
the basis �e��A for the pure input state �̂A= ��A��A is deter-
mined by the entanglement E���AB� of the resulting state
��AB=V��Aof the bipartite object-meter system. The meter
in this case contains all accessible information �21� about the
entire Hilbert space of the object states, which is represented
in a quantum form including the entanglement with the ob-
ject. This information is reduced to a classical form either
after an additional projective measurement or after entirely
decohering transformation D, Eq. �24�, at R��=���, which
are equivalent from an information point of view.

Let us illustrate the distribution of information among the
object and meter in an example of a two-level system with
D=2 using as �e��A all states of a part of the Bloch sphere,
which is formed by the mapping �→q�, where 0�q�1 is
the compression coefficient of the initial Bloch sphere that is
mapped onto its part corresponding to 0����q. With this

choice of mapping, at q�1 there is some asymmetry with
respect to the value of the polar angle s of the initial state
�0= �s ,�0�. This asymmetry reaches its maximum at q=0
and vanishes at q=1.

The entanglement in the object-meter system that arises
after the measurement can be written as the entropy S��̂A��
=−Tr�̂A�log2�̂A� of the partial density matrix �̂A�
=TrB��AB��AB of the transformed object state �33�. The cor-
responding dependence E�s ,q� is shown in Fig. 5.

The results of the analysis of the information distribution
in the case of a two-level system for the completely nonse-
lected representation of the final state of the object at q=1
and, respectively, �e��A= ���A are the obvious ones, even
without calculations, because in this case �̂A� corresponds to
the entirely depolarized initial state �see, for example, Eq.
�3.115� at p=1 in Ref. �34��

�̂A� = �2/3���0���0� + �1/3���0���0�

���0� is orthogonal to ��0�� and, independently from �0, E
=E0= �2/3�log2�3/2�+ �1/3�log2�3/1�=0.918 bit.

However, the result E=1 bit—i.e., the complete entangle-
ment between the object and meter, which is achieved at the
orientation of the initial state s=�, opposite to the Bloch
sphere compression point �=0, and at the intermediate value
of the compression coefficient—is not trivial and requires a
qualitative elucidation.

We can do that easily because at the chosen orientation
the problem is symmetrical with respect to the axis of the
Bloch sphere; thus, the density matrix in the respective basis
is a diagonal one and has the form �̂A� = p1�1�A�1�A
+ p2�2�A�2�A. Also, the direction �=0 is opposite to the direc-
tion of the initial state s=� and, therefore, the probability p1
in accordance with the given above equation for q=1 is sim-
ply p1=1/3. If one changes the compression coefficient up to
the value of q=0, which corresponds to the collapse of the

FIG. 4. Mapping of elementary states in the process of the non-
selective partially destructive quantum measurement. New states
�e��A of the object are, generally, different from ���A.

FIG. 5. �Color online� The degree of entanglement E �bits� ver-
sus the compression coefficient q of the Bloch sphere and angle
�=s of the initial state. The maximum value E=1 is achieved at
s=� and q=0.7978. At q=1 the degree of entanglement does not
depend on s and is equal to the entropy E0=0.918 for the pure state
of the qubit after its complete depolarization.
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Bloch sphere onto the point �=0, the probability of the op-
posite state p2 reduces up to zero and, respectively, the prob-
ability p1 grows up to unity in accordance with the following
analytical formula:

p1 = 1 − p2 =
3 − 2q2 + cos �q

4�1 − q2�
−

1 − cos �q

4�4 − q2�
.

This probability, due to its continuity, passes the value of
p1=1/2, which corresponds to the maximum possible en-
tanglement between two systems, one of which is the two-
level system �qubit�.

Note also that the degree of entanglement E0=0.918 bit,
achieved at exact reproduction by the object after the mea-
surement of all states of the Hilbert space, is very close to the
maximal entanglement E=1, which is achieved at the totally
coherent nondemolition entangling measurement. However,
the latter can be achieved only with the optimal choice of the
initial wave function of the object. In the case of the com-
pletely nonselective measurement, the degree of entangle-
ment is invariant with regard to the initial state ��0�A because
all the states are due entirely equal.

D. Competition between the object and meter in the selection
of nonselective partially destructive quantum

information

In case of the nondemolition quantum measurement, there
is no competition between the object and meter because clas-
sically compatible information retrieved at such measure-
ment can be duplicated without bound. However, with the
choice of nonselected information, which is connected with
the nonorthogonal overfull set ���A, as is typical, for in-
stance, for the quantum key distribution protocols �35�,
competition arises. It is due to the impossibility of nondemo-
lition duplication of the information about the nonorthogonal

quantum states. Mathematically, such competition can be
sufficiently treated with the Holevo information �29�, which
implicitly takes into account the quantum nature of the out-
put information.

The corresponding Holevo information is defined for the
semiclassical channel, which is characterized by the density
matrix �̂��� depending on the continuous classical messages
� at the input, as

Ih = S��̂� −� P�d��S��̂����, �̂ =� �̂���P�d�� , �30�

where P�d�� defines the probability distribution or the fre-
quencies of messages �. One can easily see that in the
above-considered quantum measurement transformation the
classical parameter � corresponds to the informational index
of the initial states of the object ���A and two considered
channels, object-object and object-meter, are described by
the averaging of the pure state V���A���AV+ of the combined
object�meter system �or, in general, of the density matrix,
which results after the incoherent transformation �24�� over
the competing system. For the uniform distribution P�d��,
the density matrices for the corresponding channels have the
following form:

�̂A��� =
D

V
� dV��������A�2�e��A�e��A,

�̂A =
1

V
� dV��e���e�� , �31�

�̂B��� = �
���

�������e�
��e���A�������A������A����B���B, �32�

�̂B =
1

D
�
���

�������e�
��e���A�������A����B���B → �33�

�̂̃B =
1

V
� dV����A�e�

*��e�
* ����A. �34�

The latter equation is the isometric display of the continual
density matrix of the meter into the discrete space HA � HA,
which realizes the active subspace of the states and which is
used for the numerical calculations. The entropies of the den-
sity matrices �̂A��� and �̂B��� coincide with each other, so
that there is no need to use the continual representation. The
respective dependences for the information �30� of the meter
and the object that are calculated with the help of Eqs. �31�
and �34� are shown in Fig. 6. They demonstrate the relatively
weak competition character, by contrast with the competition

FIG. 6. �Color online� The measured amount of Holevo infor-
mation �IB, bit� and information preserved in the object �IA� about
the equally distributed ensemble of initial states ���A of the object
�qubit� versus the degree q of the preserved information in the ob-
ject. The maximum amount of information about the object IA

=0.081 bit corresponds to the minimum of measured information
IB=0.874 bit.
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of the coherent information at the selective partially destruc-
tive quantum measurement, when preserving the entire infor-
mation in the object corresponds to its complete absence in
the meter �11�.

V. CONCLUSIONS

In conclusion, we introduced the concept of generalized
quantum measurement transformation of quantum states of
the object onto quantum states of the bipartite object+meter
system. It is based on mapping an orthogonal set of the
object�meter states onto a classical information index that is
additionally associated with an orthogonal—i.e., classically
compatible and, hence, physically meaning—basis set either
of the input object or the output meter states. This generali-
zation accumulates in the natural way all of the most impor-
tant classes of quantum measurements previously discussed
in the literature: standard projective, entangling, soft, de-
structive, coherent, and partially incoherent measurements.

Two special classes of the generalized quantum
measurements—the soft quantum measurements and the par-
tially destructive quantum measurements—were defined and
their information properties were analyzed in detail. For the
soft quantum measurements, it was shown that they reveal
the fundamental meaning of the quantum indistinguishability
of the quantum states of the meter, which is used for storing
the measurement results. It was also clarified how the quan-
tum information about the object is obtained in the form of
collective states of the multicomponent meter. For the par-
tially destructive quantum measurements, our analysis shows
that they reveal all specific features of quantum information
transfer between two quantum systems �the object and
meter� without the nondemolition condition and, addition-
ally, the competitive nature of attaining the quantum infor-
mation.

Finally, the concept of generalized quantum measure-
ments developed in this paper helps to expose the most gen-
eral relationships between the physical changes, caused by
the transformations applied to a quantum system, and the
classical information, contained in the information index that
sets a one-to-one correspondence between the initial quan-
tum states and those after the measurement. We also hope
that this concept will be useful for further development of
the foundations of quantum information theory, especially
the part related to the conceptual setting and interpretation of
experiments on engineering of quantum information.
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APPENDIX A: REPEATED MEASUREMENTS
OF AN EXAMPLE OF A TWO-LEVEL SYSTEM

Let us choose a representation in which �0�= �1,0�, �1�
= �0,1�, and the fuzzy set of measured states has the form

�0� = �1,0�, �1� = ei�cos
�

2
,ei�sin

�

2
� . �A1�

Then, matrices of the scalar products

Q =� 1 ei�cos
�

2

e−i�cos
�

2
1 �,

Q�n� =� 1 ein�cos
�

2
�n

e−in�cos
�

2
�n

1 �
depend only on the angle � between vectors �1�, �2� and on
their phase difference �.

Applying relations �5� to the two-level case we have

�̂B�0� = 0,

�̂B�1� = lim
	t→0




	t� − 2 sin �cos
�

2
iei��+��sin

�

2

− ie−i��+��sin
�

2
0 �

= 
 − 2�̇ i�̇

− i�̇ 0
� , �A2�

where �̇ and �̇ describe the rates of changes of the respective
angles in the process of a single measurement. We do not
take into account here the dependence on the second phase
�, which describes the freedom in the choice of the common
phase for the states �0�, �1�.

For the matrix of wave functions of the ensemble under
measurement we have, after n measurements

Q�n�1/2 =
1

2� �1 − cos
�

2
�n

+�1 + cos
�

2
�n

ein���1 + cos
�

2
�n

−�1 − cos
�

2
�n�

e−in���1 + cos
�

2
�n

−�1 − cos
�

2
�n� �1 − cos

�

2
�n

+�1 + cos
�

2
�n � . �A3�
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The columns of this matrix play, in accordance with Eq. �14�,
the role of the wave functions describing n-fold excitations
of the meter in the minimal basis of the two-dimensional
�D=2� space of the collective states.

Let us consider a sequence of n identical measurements,
each performed with time period T with a small variation �.
We will also assume that relationships for the parameters,
necessary for asymptotically continuous changes of the result
of the n-fold measurement as a function of the continuous
time t at n� t are fulfilled. The respective continuous dynam-
ics has a quantum diffusion character, which can be seen at
short times. In addition to the usual classical diffusion qua-
dratic diffusional change of state, a specific linear diffusional
change in the nondiagonal matrix elements takes place, as
well. The fluctuation character of the dynamics, which is
typical for a description of the classical diffusion process
with the use of stochastic equations, becomes apparent while
considering the sequences of the respective classically com-
patible variables in the space HB, which are in charge for the
separate measurements in the whole measurement sequence.
Their statistical description cannot be reduced to a reversible
dynamics of the collective variables of the meter.

Matrix �A3� at �2=4�T→0, n= t /T→�, n�2=4�t
=const, and �= �̇T has a finite limit corresponding to the
diffusion dynamics:

Q1/2�t� =  s+�t� ei�̇ts−�t�
e−i�̇ts−�t� s+�t�

� , �A4�

where s+�t�= 1
2 ��1+e−�t+�1−e−�t� and s−�t�= 1

2 ��1+e−�t

−�1−e−�t�.

A similar limit has the entangling matrix

R�n� = �Rij
n � =  1 rn

r*n 1
� →  1 e−ṙt

e−ṙ*t 1
�, ṙ = lim

T→0

1 − r

T
.

This matrix describes the decoherence of the measurement
result due to the interaction of the meter with an external
reservoir. Simultaneously, at long times, asymptotic diago-
nalization of the collective states of the meter occurs in ac-
cordance with the following asymptotic expression:

Q1/2�t� Þ
t→��1 −

1

8
e−2�t 1

2
e−�t+i�̇t

1

2
e−�t−i�̇t 1 −

1

8
e−2�t� .

This matrix describes how the soft quantum measurement
transforms into the distinct completely coherent measure-
ment �“premeasurement”� with the orthogonal set of collec-
tive states of the meter ��k��→ �k�.

1. Partial density matrix of the meter

From Eqs. �8� and �A4� we obtain the partial density ma-
trix of the meter in the process of continuous measurement in
the form

�̂Bn
=�

1

2
+

1

2
�1 − e−�t��11

A − �22
A �

1

2
e−�t+i�̇t

1

2
e−�t−i�̇t 1

2
−

1

2
�1 − e−�t��11

A − �22
A � � . �A5�

At t=0, when no measurement is performed, for any initial
state the resulting state has only one and the same value
�2�= �1�= �0�; the density matrix of the meter does not depend
on �̂A and is equal to the projector �0��0� onto �0�, which in
the given basis �11� for n=1 has the form �0�
= �1/�2,1 /�2�. The choice of the basis states of the meter,
which determines in the structure of the measurement super-
operator �4� how the measured information is represented, is
arbitrary.

At t=�—i.e., in the limit of infinitive series of the limit-
ing continuous soft quantum measurements—matrix �A5�
becomes a diagonal one with the matrix elements �11

A and
�22

A , coinciding with the respective matrix elements of the
measured object. This coincidence holds not only for the
limiting continuous measurements, but also for the series of
measurements with finite accuracy about the object states

�k�A, which is determined with the tensor product of n states
�k�¯ �k� in the form of multiparticle excitations of the n-fold
copy of the meter system, the exact information in the limit
n→� is retrievable.

This leads to diagonalization of the marginal density
matrix of the meter, which is constructed as a bi-
linear combination of the duplicated states of the object-
meter system �k�A�k�¯ �k� and to its coincidence with the
density matrix of the object. The described coincidence

of the representations �̂Bn→ �̂A is due to the choice �11� of
the basis linked to the object variable k. The entropy of the
quantum state of the meter in the process of continuous
measurement changes from zero up to the entropy of the
object. At the same time, the zero internal entropy of the
initial state of the meter is due to its preparation in a known
pure state.
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2. Joint density matrix of the object-meter system

The orthogonal set �k�A�k�¯ �k� of the object-meter states
in the basis �l�A��em��, in accordance with Eqs. �7�, �12�, and
�A4�, where BnA are supplemented with the basis object
states, has the form

BnA = � s+�t���e1���1� + ei�̇ts−�t���e2���1� ,

e−i�̇ts−�t���e1���2� + s+�t���e2���2� .
�A6�

Using this set and in accordance with Eqs. �7� and �12� the
density matrix of the object-meter system can be written in
the form of a 4�4 matrix

�̂BnA�t� =� �11
A  s+

2 s+s−ei�̇t

s+s−e−i�̇t s−
2 � �12

A e−ṙts+s−e−i�̇t s+
2

s−
2e−2i�̇t s+s−e−i�̇t �

�21
A e−ṙ*ts+s−ei�̇t s−

2e2i�̇t

s+
2 s+s−ei�̇t � �22

A  s−
2 s+s−ei�̇t

s+s−e−i�̇t s+
2 � � . �A7�

APPENDIX B: CALCULATION OF THE ENTROPY OF
THE OBJECT SYSTEM

First, we represent the joint density matrix �̂̃AR

= �RklQkl�ki�lj
* � of the object-reference system in the form

�̂̃AR = ��̃kli
�k� j

�l�*� ,

where �̃kl=��kk
A RklQkl

��ll
A is the matrix argument of the en-

tropy of the object system in Eq. �16� and i
�k� are the nor-

malized to unit k-dependent pure states of the reference sys-
tem corresponding to the joint states �ki. The algebra of

scalar functions of the matrix �̂̃AR is governed by the rule

��̂̃AR�ki,lj
n = ��̂̃n�kli

�k� j
�l�*, which can be verified by induction,

paying attention to the rule of combining the cofactors of the
matrix product �i.e., the coincidence of the corresponding
matrix indices of the first and second matrices�.

Then, for the trace calculation of the n th power we get in

abridged form TrAB��̂̃AR�n=TrA�̂̃n. Hence, the same rule holds

for any scalar function h��̂̃AR�, a particular example of which
is the function h�x�=−x log�x� of the entropy functional
S��̂�=Tr h��̂� in Eq. �16�. An isometric equivalence of the
orthogonal set of the eigenstates ek

�n� of the object density

matrix �̂̃ and the object-reference system states ek
�n�i

�k�forms
the ground for the proved relation.
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