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We consider the problem of evaluating the entanglement of non-Gaussian mixed states generated by photon
subtraction from entangled squeezed states. The entanglement measures we use are the negativity and the
logarithmic negativity. These measures possess the unusual property of being computable with linear algebra
packages even for high-dimensional quantum systems. We numerically evaluate these measures for the non-
Gaussian mixed states which are generated by photon subtraction with on/off photon detectors. The results are
compared with the behavior of certain operational measures, namely the teleportation fidelity and the mutual
information in the dense coding scheme. It is found that all of these results are mutually consistent, in the sense
that whenever the enhancement is seen in terms of the operational measures, the negativity and the logarithmic

negativity are also enhanced.

DOI: 10.1103/PhysRevA.73.042310

I. INTRODUCTION

Continuous-variable (CV) quantum optical systems are
well-established tools for both theoretical and experimental
investigations of quantum-information processing (QIP)
[1,2]. The essential resource, entanglement, can be realized
with a Gaussian two-mode squeezed vacuum state. This state
is relatively easy to work with theoretically and is also com-
monly produced in the laboratory. It has been successfully
applied to implement various important protocols, such as
quantum teleportation [3-6], quantum dense coding [7-9],
and entanglement swapping [10,11]. These successes are
based on well-developed techniques of optical Gaussian op-
erations. These consist of beam splitting, phase shifting,
squeezing, displacement, and homodyne detection.

However, recent theoretical investigations have shown
some limits on such operations. A prime example is the
no-go theorem relating to the distillation of entanglement
shared by distant parties using only Gaussian local opera-
tions and classical communication (LOCC) [12-14]. To go
beyond this limit, one should use higher order nonlinear pro-
cesses, such as the cubic-phase gate [15] or Kerr nonlinearity
[16]. Tt is, however, difficult to implement these nonlinear
processes with presently available materials, which do not
have sufficiently high nonlinearity and suffer from losses. A
more practical alternative method has been developed, which
uses nonlinear processes induced by photon counting on
tapped-off beams from squeezed states [17-19]. When ideal
photon number resolving detectors are used, the input Gauss-
ian state can be transformed into a non-Gaussian pure state
with higher entanglement. In practice, however, such detec-
tors are not yet suitable for practical use. The most reliable
type of photodetector available at present is the on/off type
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photon detector based on avalanche photodiodes. This device
can only distinguish the vacuum (“off”) state from nonva-
cuum (“on”) states. The latter events result in a non-Gaussian
mixed state. Evaluating the entanglement of such a state is
far from trivial.

Previously, the effect of entanglement has been theoreti-
cally analyzed based on the figures of merit of concrete pro-
tocols, such as the fidelity of teleportation [20], the degree of
violation of Bell-type inequalities [21-23], and the mutual
information of dense coding [24]. In fact, it was shown that
the performance of every protocol was improved, implying
that the entanglement of the non-Gaussian mixed state must
be enhanced. However, these indirect evaluations were de-
pendent upon some external parameters, which depend upon
specific operations differing from protocol to another, such
as the type of input state for the teleportation fidelity, the
choice of the measurement basis for the Bell-type inequality
violation, and the signal power of modulation for the dense
coding.

Quantifying the entanglement of the photon-subtracted
squeezed state, in a way which is independent of particular
external parameters, is our main concern in this paper. To our
knowledge, this problem has not been previously addressed.
For a state p, an entanglement measure E(p) should satisfy
the following criteria [25]: (i) E is the non-negative func-
tional, (ii) E vanishes if the state p is separable, and (iii) E
should not increase on average under LOCC. In general, a
quantity satisfying these criteria is known as an entangle-
ment monotone. Many such quantities have been proposed,
such as the entanglement of formation [26,27], the entangle-
ment cost [28], the distillable entanglement [26], and the
relative entropy of entanglement [29]. It is, however, not
easy to calculate these measures for generic mixed states.
Recently, however, two entanglement measures which are
much more amenable to evaluation have been proposed.
These are the negativity and the logarithmic negativity [30].
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These measures are based on the Peres criterion [31]. That is,
they are defined in terms of the eigenvalues of the partially
transposed density operator. The most distinctive feature of
these entanglement measures is that they are easily comput-
able numerically with linear algebra packages. Furthermore,
the logarithmic negativity is an additive functional, and it is
an upper bound on the distillable entanglement Ep, [30].

In addition to being an entanglement monotone, it was
believed that an entanglement measure E should also be
(downward) convex, i.e., it should be nonincreasing on av-
erage under the loss of classical information by mixing. Con-
vexity is necessary for an entanglement measure to be
bounded from above by the entanglement of formation Eg
[32], although the logarithm function is concave (upward
convex). Recently, however, it has been shown by Plenio et
al. [33,34] that convexity is not directly related to the physi-
cal process of discarding guantum information, i.e., discard-
ing subsystems such as local ancillas during LOCC opera-
tions and that the logarithmic negativity is indeed a full
entanglement monotone [34]. In view of these consider-
ations, it is interesting to evaluate the entanglement of
photon-subtracted mixed state in terms of the (logarithmic)
negativities, and to compare them the figures of merit asso-
ciated with the aforementioned protocols. Of particular inter-
est to us is how the entanglement, and these figures of merit,
are enhanced by the photon-subtraction procedure.

This paper is organized as follows. In Sec. II, we briefly
summarize the measurement-induced non-Gaussian opera-
tion on the two-mode squeezed vacuum state and its math-
ematical description. In Sec. III, the negativity and the loga-
rithmic negativity are briefly reviewed, and their
monotonicity is discussed. In Sec. IV, our numerical methods
for calculating the negativities of the photon-subtracted
mixed state are presented. In Sec. V, we review the previous
analyses of the entanglement of such states using protocol-
specific figures of merit. We compare these results with those
relating to the negativity/logarithmic negativity. The final
section, Sec. VI, is devoted to discussion and conclusion.

II. MEASUREMENT-INDUCED NON-GAUSSIAN
OPERATION

The schematic of the measurement-induced non-Gaussian
operation on the two-mode squeezed state is shown in Fig. 1.
The primary sources are two identical, single-mode squeezed
vacuum states

)= Su(r)|0). (1)
where S,(r) is the squeezing operator at path &,
& P2 a2
50 =exp{— S -a } e

and r is the squeezing parameter. These are combined via a
balanced beam splitter to generate the two-mode squeezed
vacuum state,
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FIG. 1. Measurement-induced non-Gaussian operation on the
two-mode squeezed vacuum state. BS, PS are beam splitter, photon
detector, respectively.
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where
Vi) = expl 6(ajd; - dxa])] 4)

is the beam splitter operator, and the parameter 6 is related to
the transmittance 7 as

1-T
T )

tan 6=

and f=m/4 corresponds to the balanced beam splitter. The
operator S‘fj)(r) is the two-mode squeezing operator

$i7(r) = expl- r(afa] - d,a)). (6)
Introducing A=tanh r, the Schmidt coefficients are given by

a,=\1—N\2\". (7)

The beam at path C (D) is then tapped off from path A (B)
by a beam splitter of transmittance 7. The resulting four-
mode state just after the second beam splitters is

| ¢>ABCD = ‘A/BD( 0) ‘A/AC( 6) | r(2)>AB|O>CD

=> @, Eibjln = aln = pelidcldp.  (8)

n i,j=0

Eu= (=1 (Z )(\'?)”"‘(\’E)k, )

and ( }) is the binomial coefficient and R=1-T is the reflec-
tance.

where
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A. Photon number resolving detector case

When k photons are detected in the beam at path C and /
are detected in path D by ideal photon number resolving
detectors, the conditional state is given by

|'r//1(\11(8 AB & D<l|c<k|'//>ABCD

oo

= 2

n=max{k,l}

angnkgnl|n - k>A|n - l>B’ (10)

where |¢ng)ap is still a pure state. In the case of k=I=1,

1 e

1 2

|lr//1<\lg}>AB = /—(1)2 an+1§(n+1),1|n>A|n>B
Vszet”=0

=E CS,”|”>A|”>B» (11)

n=0

where

- 2\y 272 272 2
det e n+ (n+1),1 (1—)\2T2)3 T

(12)
is the probability of detecting one photon in each arm. The

state (11) is not Gaussian any more.

B. On/off type detector case

An ideal on/off type detector is described by a positive
operator-valued measure (POVM) with elements

1 = 0],
) . (13)
O = [1(1] + [2)(2] + -+ = T = [0)X0).

The two-mode squeezed state is transformed into a mixed
non-Gaussian state

Trepl |4 apcp) (Y] © (" ® TI™)]

phar 7)det
1 o0
= K‘ZI |q)ij>(AB)<q),;j|, (14)
eti,j=
where
RR D P R T

n=max{i,j}

and Py, is the probability of detecting at least one photon in
each of the paths C and D,

Paec=Trapepl [ apcp) (¥ © (ﬂg) " ® ﬁ%’“))]
CN(1L-TP(1+ND)
T 1-NT)(1-NTY)

(16)

The mean photon number of the state pyg is expressed as

PHYSICAL REVIEW A 73, 042310 (2006)

NOY
=)

(T=09) |
107 PS squeezed state (mixed) ——
5 . Squeezed vacuum state -~

0 0.2 04 0.6 0.8 1
A

FIG. 2. Mean photon number of the photon-subtracted mixed
state (thick solid line) and original two-mode squeezed vacuum
state (dotted line).
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In Fig. 2, the mean photon number Nyg is shown as a
function of A, with that of the two-mode squeezed vacuum

state, ]\_JSQ=2)\2/ (1—\?2), for comparison. The transmittances
of the tapping beam splitters are chosen as 7=0.9.

The increase of the mean photon number for the photon-
subtracted squeezed state is due to the fact that the genera-
tion process is based on the event selection of the compo-
nents of higher numbers of photons by excluding the original
vacuum component of the input two-mode squeezed state.

III. COMPUTABLE ENTANGLEMENT MEASURES

In this section, we briefly review the negativity and the
logarithmic negativity as computable entanglement measures
that possess the properties of an entanglement monotone
[30]: (i) The entanglement measure E is a non-negative func-
tional, E(p) =0, (ii) if p is separable, E(p)=0, and (iii) E(p)
does not increase on average under LOCC.

The negativity of a bipartite mixed state p, denoted by
N(p), is defined as the absolute value of the sum of the
negative eigenvalues of pf7, the partial transpose of p with
respect to either subsystem. We may write this as

P
—_— -

N = @R ==
where ||| denotes the trace norm. It is quite easy to prove that
N=0. For a separable state, p=2;p;pn;® pg;» the partial
transpose with respect to either subsystem, say B, is given by
P=Zpipai® f)gi. This is also a state, and it therefore has zero
negativity. Furthermore, under LOCC, N does not increase

on average [30,35]. It is also convex, i.e.,
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2 pN(p) < Mp). (19)

where p=2p;p;. The logarithmic negativity is defined as

E\(p) =log,[1 +2N(p)]=log, (6] (20)

In addition to the properties (i), (ii), and (iii), this quantity is
additive because ||p , which is also a
desired property of a good entanglement measure.

For a pure entangled state

|X>AB = E

n

Cn|n>A|n>B9 (21)

the negativity and the logarithmic negativity can be calcu-
lated analytically, where, without loss of generality, we take
the Schmidt coefficients ¢, to be non-negative. We use the
fact that

||{|x>(AB><X|}Pq|=(Ecn)z, (22)

n

and we can obtain [30]

(En cn)2 -1

5 ; (23)

Mx)) =

Exx) =2 logz<2 cn>. (24)

n

For example, one can calculate those of the squeezed
vacuum state (3) as

A
M (2)y) = —_ 25
(r2)) = (25)
Ep([r?)) =logy(1 +X) = logy(1 = \), (26)
where we have used the Schmidt coefficients described in

Eq. (7).

As another example, we here consider the ideal limit of
photon-subtracted squeezed state (T— 1). In this limit, the
photon-subtracted squeezed state with on/off detector pyg is
exactly identical to the pure state case |¢Sg})

the detection probability Pde)[ approaches zero. From Eq.

(11),
1im§cf,”= ( 2)327\”(“)
T—1 p=0
N (111:2)3()‘&%)‘“%”)

and thus we have

M2+ N+2\2)

(T+M)(1=N)’ 28)

lim M(|yAiy) =
T—1
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(1+)N)°

hm EN(| m

G>) =log, (29)
As a consequence, we find that the logarithmic negativity of
the photon-subtracted squeezed state is always better than
that of the original squeezed vacuum for nonzero squeezing,

ie.,

Ex(|r®)) < Jim En(| A5 (30)

where the equal sign is valid for A=0.

In realistic situations, on the other hand, the photon sub-
traction would be done by on/off detectors and the tapping
beam splitters with T7<<1. Then the generated states are in-
evitably reduced to mixed states and it is typically not pos-
sible to obtain analytical expressions for their negativity and
logarithmic negativity. However, as shown in the next sec-
tion, one can often compute them numerically using only
linear algebra packages.

IV. NUMERICAL EVALUATION OF NEGATIVITIES

In this section, we explain the procedure for numerical
evaluation of the negativities of the photon-subtracted
squeezed state with the on/off detectors. First, we expand the
output non-Gaussian state (14) in the Fock basis

fA)NG= E pmlmznlnz (31)
my,my,ny,ny
where
pm1m2"1”2 = B<n1 |A<ml |ﬁNG|m2>A|n2>B
= Pdet,jzl am1+iam2+i§(m1+i),i§(ml+i),j
X Emyri),i€myti) jOm,=n ). (i) Omyno) (=i
(32)

which means that the density matrix elements are zero unless
my—ny=my—n,.

The partial transpose of this state, with respect to mode B,
is

o= >

my,Mo,ny,ny

(33)

where the elements are zero unless m;+n,=m,+n,=K. The
parameter K is the total photon number of both beams at
paths A and B, and the partially transposed density operator
is block diagonal in Fock state basis, where the blocks cor-
respond to K=0,1,2,...:

ARG = EB ﬁﬁém. (34)

Here, f)gé(l{) is the Kth submatrix which is a (K+1)
X (K+1) real matrix (Fig. 3).

The eigenvalues are obtained by numerically diagonaliz-
ing the partially transposed density matrix
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FIG. 3. Partially transposed density matrix of the photon-
subtracted mixed state with the cutoff K,,,, which is block diagonal
in Fock state basis.

0=U"pLGU. (35)

which can separately be done for every submatrix one by one

él( = U,T(ﬁﬁg(K) 01(-

. (36)

K
=S WA

=0

where wf is the /th eigenvalue of the Kth submatrix, and

In the numerical calculation, we introduce a cutoff K.,
which must be large enough compared with the mean photon
number. Then, we sum up all the negative eigenvalues,
which gives the negativity

Kmax
Mpo) = E > (38)
x K=0 K<
where
Kle
Ag (N)= 2 Trphs(K) (39)

is the trace of the truncated density matrix. With this result,
we can obtain the logarithmic negativity straightforwardly
using Eq. (20).

Throughout this paper, we set 7=0.9 unless otherwise in-
dicated. In our computations, we chose a cutoff of K,
=50. The trace (39) could be used as a measure of the valid-
ity of our chosen cutoff. For A=0.78 and 0.88, which corre-

sponds to Nyg=7.71 and 14.7, AKmaxzsoz 1.000 and 0.995,
respectively. For the latter case, indeed, it still misses 0.5%
of the support, but this precision suffices for our analysis. In
this connection, with K, =50, it takes 3.5 days to calculate
the negativity for a certain N\, by means of a MATHEMATICA
program on Pentium 4 3.2E GHz personal computer (PC)
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FIG. 4. Negativity of the photon-subtracted squeezed states, in
pure state case (thick dashed line) and mixed state case (thick solid
line). The dotted line corresponds to the input squeezed vacuum.

(including the generation of matrix components). It is neces-
sary to reach a satisfactory compromise between the preci-
sion of the numerical calculation and the calculation cost.
The numerical calculation becomes progressively time con-
suming with increasing K.

Figures 4 and 5 show the numerical values of the nega-
tivity and the logarithmic negativity, respectively. The thick
dashed line represents the photon-subtracted squeezed state
of the pure state case (11), while the thick solid line corre-
sponds to the mixed one (14). The dotted line is for the input
two-mode squeezed vacuum state (26). As can be seen in
the figures, the photon subtracted non-Gaussian states have
a larger amount of entanglement than the input two-mode
squeezed vacuum state in a practical squeezing range,
AN=<\{x=0.897 for the pure state case, and A <\}p=0.772
for the mixed one, which correspond to 8.9 and 7.1 dB ideal
squeezing. Exceeding these | \’s, however, the merit of non-
Gaussian operation disappears. This is in contrast to the case
of T— 1, where the curve for the photon-subtracted squeezed
state is always upper than that of the squeezed vacuum state,

as mentioned in Eq. (30). For A <0.2, that is, Nyg=<0.28, the
difference between the cases of the photon number resolving
detector and the on/off type detector is almost negligible

5 . . . —
PS squeezed stdte (pure) ------------ Iy
PS squeezed state (mixed) ——
>4 Squeezed vacuum state -
= (7=0.9)
-
S
=
L0 e
R R
<2 = i
s P
80
)
=1t ]
M p
ok 0 ki Ry
0 01 02 03 04 05 06 07 08 09

A

FIG. 5. The same plot as Fig. 4 of the logarithmic negativity.
The values of each intersection are \jy=0.897 and A} =0.772.
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state

FIG. 6. CV teleportation scheme. BS and HD mean the beam
splitter and homodyne detection, respectively.

compared with the difference between them in the case of
ideal two-mode squeezed state. This means that the photon
subtraction by a beam splitter of transmittance 7=0.9 and the
on/off detectors emulate the single photon subtraction well.

V. OPERATIONAL ENTANGLEMENT MEASURES

In this section, we review the previous results on the op-
erational entanglement measures, and compare them with the
above results of logarithmic negativity.

A. CV teleportation fidelity

The first operational measure is the CV teleportation fi-
delity [20]. In quantum teleportation, an unknown quantum
state can be transferred using entanglement and a classical
channel. The schematic is shown in Fig. 6. First, the sender
Alice and the receiver Bob share the entangled state ﬁg.
Alice then performs the Bell measurement, that is, a projec-

tive measurement in the maximally entangled basis
1 (" .
ITT(x,p))s = e dye™x +y)ly) (40)
N2TJ

upon the unknown state f#”) and her fragment of entangled
state (A). She obtains a couple of measurement results (x, p),
and Bob’s part of the initial state (B) is correspondingly
transformed into

. a1 p)|[AE © PRallll(x, p))ra
O-B(xvp) = P([]p)(x p) > (41)
where
P (x, p) = Trg{ 2T, p) [ @ PEa]ITI(x, p))rat
(42)

is the Bell measurement probability distribution. Finally, Bob
corrects his state with the unitary transformation, that is, the
displacement operation D(a) =exp[ad’—a’ad] according to
Alice’s measurement result
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(ou A [x+ip) Ao X+iIp
Pfao t)(x’P)zDB( 5 )‘TB(X,P)DB< h ) (43)
AY

v

The average fidelity between the input and output is
F= f dx f dpP"™(x,p) T 5™ (x,p)],  (44)

which depends upon the input state f)gn). Let us consider that
the input state is the coherent state

ﬁ¥n> = |a’0>T< Qag

; (45)

which is one of the unaffected state. With the two-mode
squeezed vacuum state (3), the average fidelity is

— I+A

Foo =2, (46)

and, with the non-Gaussian pure state (11) and mixed one
(14),

22

(1- )\Z)AZTZ(I —-AT+ —

[
A0 = (’3) @

2P(1 - \T) T

FngN) =F1i(N) = FroN) = For(N) + Foo(N),  (48)
respectively, where
1 1-\?

2 det

Fii(N) = 3 (49)

)
L -\T =Ny, - — ity

and y;=R, v,=0. See appendices A and B for more detailed
derivations.

In the limit as 7T— 1, fNG()\)=IT"1(\%()\) and
Fgo(\) < lim FRA(N), (50)
T—1

where the equal sign is valid when A=0 and 1. For T<1,
however, the average fidelities (47) and (48) do not attain
unity even as A — 1. Figure 7 shows the average fidelities for
T=0.9. We can see that the photon-subtracted squeezed
states, in both the pure and mixed state cases, are superior to
the original squeezed vacuum state for A<\5=0.815 and
ASA¥=O.708, respectively. In the range of N <<\, on the
other hand, the squeezed vacuum state shows the best per-
formance, which is quantitatively consistent with the loga-
rithmic negativity result. As seen by comparing the results of
Figs. 5 and 7, whenever the fidelity is improved by the pho-
ton subtraction, so is the logarithmic negativity, i.e., At
<A\ n- We cannot, however, exclude the possibility that this
is not true for the other input states to be teleported. To
clarify the exact relation between the improvements of the
logarithmic negativity and the teleportation fidelity, one has
to optimize every component of teleportation protocol, such
as measurements, etc., for the photon-subtracted entangled
resource over all possible input states. This might be a highly
nontrivial task.
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FIG. 7. Average fidelity of CV teleportation of coherent state,
with the photon-subtracted pure state (thick dashed line), mixed one
(thick solid line), and original squeezed vacuum state (dotted line).
The values of each intersection are \%.=0.815 and \Y'=0.708.

B. Mutual information in CV dense coding scheme

The second operational measure relates to the CV dense
coding scheme [24]. The schematic is illustrated in Fig. 8. In
this scheme, Alice and Bob share the entangled state ﬁg
initially. Then, Alice encodes a classical message by a modu-

lation on the beam path A,

X+ Ipg
_

0A(xs’ps) = e‘(i/z)xs/’sﬁ< ) = e_ipszeiXs'ﬁA, (51)

/

where x,; and p, are related to the power of signal modu-
lation «, For the sake of simplicity, we consider the
quaternary phase-shift keying (QPSK), with equal likeli-
hOOd:_ a(’)g=(xs=\‘§2ﬁ7ps_= \2,8)’ Cl()1=(\““‘2,8,—\5“‘2ﬁ), ao
=(=\2B,\2B), a,,=(=\2B8,-\2B) for some real B, and
P(ay)=1/4. Bob decodes the signals by the Bell measure-
ment (40), and the decision rule is as follows: [byy=(x
=0,p=0), by=(x=0,p<0), b;p;=(x<0,p=0), b =(x
<0,p<0)]. The channel matrix of CV dense coding PM
X (b, | ar;), whose elements are the conditional probabilities,
is calculated with the homodyne probability distribution

aS
[ coTTT &
1H) X, Tip, J'
Entangled [ ( NG :A M
state A T : N
Encode
B ( ) (Decode)
i BS(50:50) . HD i
X X
M i A etz
H 1
\ 1
b 1
. 1

FIG. 8. CV dense coding scheme scheme, with power of signal
modulation ¢, BS, M, and HD mean beam splitter, mirror, and
homodyne detection, respectively.
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P(HD) (‘x’p

xssps)

= AB<H(x’p) | I}A(xs’px)ﬁffl% [A]L(x.wpsnn(x’p»AB .
(52)

For example, PM(b|ay) element of the channel matrix is

\28.\28), (53)

PN (bgglag) = f dx J dpP"P)(x, p
0 0

and the other components are calculated similarly. With this
4 X 4 channel matrix, the mutual information is calculated as

I(A;B)= 2 P(ag)PY(b,,lan)

kJ.m.n
P(Ch)(bmn|ak1)
Ekf,[l P(ak/[')P(Ch)(bmn|ak’l’)

X log, (bit).

(54)
With the two-mode squeezed vacuum state (3),

Iso(A;B)

( [T+\ ) ( L+A )
=|1+erf m,@ log,| 1 +erf :,8
( 1+ ) ( 1+ )
+ | I —erf E'B log,| 1 —erf mﬁ ,

(55)

where

X

2
erf(x) = — | dte™ (56)
NTTJ 0

is the error function. With the non-Gaussian pure state (11),

1
Igé(A,B) = Z(Il 10g2 11 +12 10g2 12 + 13 10g2 13 +I4 10g2 14),

(57)
and
2
L= D 1[1+ rf(\/l-”\T ,8)] (58)
= — e s
1= Py, 17" -
L=l= D, |1 f(ﬂ“” 3)2 (59)
2—=43= ,uM er I—RTM ,,;1,
2
L= D1 rf( LAAT ﬁ) (60)
4= o € 1—)\Tlu M:l’
where

~ (1_)\2))\27*2 (5)2
P PO N2 - NPT\ T

AT \? & INT 9
X —+ —+1], (61)
1+NT/) dp~ 1+ANTou

containing the differential operation with respect to the aux-
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I(A;B)[bit]

1.8 r .,-": PS squeezed state (pure) -
3 PS squeezed state (mixed) ———
Slqueezled vacuum state -«

0 01 02 03 04 05 06 07 08 09 1
A

FIG. 9. Mutual information in dense coding scheme with the
photon-subtracted pure state (dashed line), mixed one (solid line),
and squeezed vacuum state (dotted line) at B=1.5.

iliary parameter . With the non-Gaussian mixed state (14),

1
ING(A’B) = Z(Il 10g2 I] + Iz 10g2 12 + I3 10g2 I3

+ I4 10g2 I4) N (62)
where
1
Iy= 2 (- DMC {1 +erf(Q;B) 1, (63)
ij=0
1
I,=T;= 2, (- )™C,[1 -erf(Q;8)], (64)
i,j=0
1
Iy= E (= 1)i+jcij[l - erf(Qij,B)]z, (65)
ij=0
and
- 1 1-\? (66)
U AP L =N T+ y)(T+ )
1=-NAT+y)(T+y,)
Q.= \/ ! L 67
Y (1 —)\T)z—)\z')’ﬂj (©7)

where y;=R and y,=0 as before. See appendices A and B
for more detailed derivations.

In the limit as T— 1, Zyg(A;B)=1{ (A ;B) which has no
intersection with I5o(A ;B) unless =0, therefore

Iso(A;B) < lim Ig4(A;B). (68)
T—1

For T<1, however, the above inequality cannot hold for
larger \. In Figs. 9 and 10, the mutual information with the
photon-subtracted squeezed states (7=0.9) and the squeezed
vacuum state are shown, at S=1.5 and 0.7, respectively.
From these results, we can see that the range of N for which
the non-Gaussian operation brings the gain to the mutual
information becomes wide as 8 becomes small. When S gets
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2
181 e e
_ ler
= 14t
@
<
_:‘/ 1.2 r
Lr B=0.7
PS squeezed state (pure) -
038 ¢ PS squeezed state (mixed) ———
06 . . . Slqueezled vacuum state - .
"0 01 02 03 04 05 06 07 08 09 1

A

FIG. 10. The same plot as Fig. 9 at 8=0.7.

smaller, the overlap between the probability distributions of
different signals increases, and the distinction of encoded
signals becomes more difficult. In this situation, we can see
the bona fide effect of entanglement in CV dense coding
scheme. As B—0, the intersections of the curves for the
non-Gaussian states and the squeezed vacuum state approach
)\E:O.894 and )\11‘342 0.762, respectively (Fig. 11). These in-
tersections are quite close to those of the logarithmic nega-
tivity. This is consistent with the logarithmic negativity result
in the sense that the mutual information indicates the range
for which non-Gaussian operation enhances the entangle-
ment.

VI. DISCUSSION AND CONCLUSION

In this paper, we have studied how to quantify the en-
tanglement of the non-Gaussian mixed state which is gener-
ated by the photon subtraction from the two-mode squeezed
vacuum state. In order to enhance the entanglement of a
Gaussian state, shared by spatially separated parties, using
LOCC, then non-Gaussian operations are necessary. When
the photon subtraction is carried out using on/off detectors,

0.9 frmrsr s 1
0.8 o

0.7 FAY
06 f
05t
04 |
03 |

02 With PS squeezed state (pure) ==
01 (7=0.9) With PS squeezed state (mixed) -

0.001 0.01 0.1 1
B

Ap

FIG. 11. Intersections of the input squeezed state curve and
photon-subtracted squeezed state curves. It converges to )\E
=(.894 for the pure state case, and )\}\)’IZO.762 for mixed one, as
B—0.
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the resulting state is generally a mixed state. Evaluating the
entanglement of such a state is far from trivial.

We have applied the negativity and the logarithmic nega-
tivity, which are known to be entanglement monotones, to
this problem. We have compared the gain in terms of these
measures with the one in terms of certain protocol-specific
operational measures, namely the teleportation fidelity and
the mutual information of the dense coding.

In the asymptotic limit 7— 1, one would have an ideal
single photon subtraction even with on/off detector and
hence have an pure non-Gaussian state, although the success-
ful probability of event selection approaches zero. This ideal
non-Gaussian state is always superior to the input squeezed
vacuum state for all the measures. For T<<1, on the other
hand, up to a certain point of A, the photon-subtracted
squeezed states, both the pure and mixed states, are superior
to the input squeezed state with respect to all the measures.
Exceeding this point A, the non-Gaussian operation brings no
gain, and the entangled squeezed state shows the better per-
formance. When N\ approaches unity, the effect of the non-
Gaussian operation for entanglement enhancement gets lost.
This is because the initial squeezed state approaches the
maximally entangled Einstein-Podolsky-Rosen (EPR) state,
as A— 1, whose entanglement cannot be enhanced by any
physical process.

While the operational measures have clear physical mean-
ings, they directly depend on the input state characteristics,
and the evaluation based on them vary for the protocols. The
(logarithmic) negativity is, on the other hand, independent of
any such external parameters. This quantity reflects the en-
tanglement as an intrinsic property of the state of interest,
namely the final output state. We have found that whenever
the enhancement is seen in terms of the operational mea-
sures, the negativity and the logarithmic negativity are also
enhanced. For the dense coding scheme, in particular, the
upper limit of A below which the non-Gaussian operational
gain can be seen, )\PD (pure state case) and )\I\DA (mixed state
case) approach the ones measured by the logarithmic nega-
tivity A{y and Ay, respectively, as the modulation signal
power S gets smaller. It would be interesting to investigate
whether the intersections Ap in the dense coding as well as
At for the teleportation are identical to Ay or not after the
operational measures are further optimized with respect to all
the possibilities for external parameters of input states. In
other words, the logarithmic negativity, not containing any
additional parameter, might give the universal upper limit for
the region of \, where the gain by the non-Gaussian opera-
tion can be seen.

The operational meaning of the logarithmic negativity has
not completely been clear yet. The relationship between the
logarithmic negativity and other entanglement measures,
such as the entanglement of formation, has not yet been fully
elucidated. Restricted to the case of symmetric Gaussian en-
tangled states only, they always indicate the same ordering
[36]. Generally, however, they could give the different order-
ing for a few cases [36,37]. Our findings will provide some
insight into further studies of the evaluation of the perfor-
mance of the non-Gaussian operations.

PHYSICAL REVIEW A 73, 042310 (2006)

For practical application of our results to the laboratory
experiment, various imperfections should be considered,
such as the limited quantum efficiency and nonzero dark
count rate of the photodetector, and linear loss in the optical
paths. Then the logarithmic negativity evaluation in consid-
eration of these imperfections is the important issue. How-
ever, those effects cause the complex mixing between two
modes A and B. Therefore, it is not obvious whether the
partially transposed density matrix ﬁﬁg can be split into se-
ries of submatrices, as in the case of the ideal setup. This
would make the analysis much harder even by numerical
simulation. Such analysis for more practical situations is a
future problem.
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APPENDIX A: DERIVATION OF (47) and (57)

Let us describe the non-Gaussian pure state in terms of
coherent states, which is suitable for inner products with
both the Fock state basis and continuous-variable basis

5 aﬂ
(n|ay= el /2_/_" (A1)
\n!
1 X - o’ |a|2
<x|a>:@exp{—3+\2xa—?—7 (A2)

First, we consider the average fidelity of CV teleportation.
With the coherent state basis, the non-Gaussian pure state
(11) is expressed with an auxiliary parameter wu,

NG AB

2

L f Pa f ~BRaf

==
VP

1+R w ok [ I
X exp[— ) (ol +18) +Na'B }|\’Ta>A|\"T,8>B

RVI-M\ 9 fdz fdzﬁ
= a
P, u

X exp [— 1+TR(|C¥|2 +1BP) +Na' B+ Maﬁ}

X | \Ea>A| V’Fﬁ>B > (A3)

=0

where Pglei is given by (12), and the auxiliary parameter u
should be set to zero after all integration and differential
operations. The inner product between the input state |ay)

and unnormalized output state after teleportation operation is
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<a0|\ |¢oul>B
= B<a0|\/TpDB(§)[AB<H(X P)|ao>T| G>AB]
RV 1-\2 9 1

2 WP&Q opl—Nu

AT 5
xXexp |=|1- 07 + Sap . (A4)
1- )\/.L 2 =0
where
x+ip
Q0= —ap=§&- (A5)
B 0=E&—ag
Therefore, the (x,p) component of the fidelity is
Pl\[Ilg)F(lG(x p)
~ R*(1-\%) & 1
2mPSY Ay (1= M) (1 = Npao)
T AT\
Xexp |-(2- - |0
I=Npyp 1=Apy =y =0
(A6)

By integrating Eq. (A6) with respect to x and p, we obtain
the average fidelity

Fg}();()\ f de dpPy (tp) F(lG(x,p)

N2T?
(1- )\2))\2T2<1 —-\T+ —)
2 (R

2
=], (a7
2P(1 - AT)? T) &0

which is independent of the parameter «,.
Then, we consider the mutual information of CV dense
coding channel

AL P) Up (s p) [ 9R) Ape™ 7557

1—>\2J f .
—1 | La dzBeXP[—(IaI2+|BI2)+>\a'B*
2P
[ X2 5’2
+TaB+\TE a- \'Tfﬂ E ) Rap
1—>\2 f f
d*a dzﬁexp[ (la*+18P)
Pd]e)l o'
R ’ [ e .X2 §’2
+Aa B +u aB+\NTE a- ’T§B——+—
2 I per
1-NMR AT AT s
= ) 2| — |§| +1
20PO T (1= 2(1-\T)
(x_xv)z §,2:|
X Bl - A8
eXp[ 2(1 - )\T)|§| 2 2 (A8)

where we use the relation
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OA(xssps)|H(x7p)>AB = e—ips(x—x_q)“‘[(x —XeP — ps)>AB’
(A9)

and

g O x)+;<p P, e

(A10)

The auxiliary parameter u'(=u+T) should be set to T after
all integration and differential operations. From above, we
obtain the homodyne probability distribution

X, Py)
= |AB<H(X p)|UA(x5,pé)| G>AB|2
~ 1_)\2 )\ZTZ (5)2|: |§ |2 :|2
T 2aPV) (1A T 2(1 - )\T)
L+N\T
X exp| - ————|¢|
2(1=\T)
1=\ NP (5)2
2PV (1 -7\ T
( AT )2 > INT 9
X 2 /r+
1+\T/) du"= 1+ NTou
1+ AT
Xexp [—,u," & 2} , (AL1)
( )\T)| | /J,”:]

where the auxiliary parameter w” should be set to unity after
all differential operations. With Eq. (A11), the components
of channel matrix can be calculated. For example,

28.\2p)

P (boolago) = f dx J dpPE (x|
0 0

Lyl f( [T+ 2T ”B) ’
= - /A +¢e -
47 TN T

bl

,u/’:l
(A12)
where
D B (1_)\2))\2712 (I_e>2
# PO - AD2(1 = N2 T\ T

N \? & N
X — + —+1], (A13)

1+\T/) du 1+ T o

containing the differential operation with respect to the aux-
iliary parameter u”. Other components can be derived simi-
larly. With these results, we can obtain the mutual informa-
tion (57).

APPENDIX B: DERIVATION OF (48) and (62)

Similar to the Appendix A, we describe the non-Gaussian
mixed state with coherent basis
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1=\?

PHYSICAL REVIEW A 73, 042310 (2006)

R 1+R o s
PNG = P szalfdzazjdzﬁlfdzﬁz exp[— B (|a]|2+|a2|2+|B]|2+|,82|2)+)\(a1,81+a2ﬁ2)
det

% O s
X (eRl@ragtbify) _ gRajay _

= E (- 1)’”

i,j=0 ™ 7Ddf:t

o [ r’_ /_
+ 7.1‘31132] |\’FTCV1>A<\"TC¥2| @ NTB)s(NTB,.

where P, is give by Eq. (16), and y,=R, 7,=0.

BB 4 1)\Tay) s (\Ters| ® NTB,) (T,

fdzalfdzazfdzﬂlfdzﬁz exp[ _(|C“1|2+|a2|2 |,31|2 |,82|2)+)\(a1,81+a2,82)+y,alaz

(B1)

With the representation (B1), the unnormalized state after teleportation operation is

PRE (x.p) AR (x.p) = DB(f)TA<H(x,p)I[ 51" @ PRI, p))raDp(d),

E (- 1)'”2 7P, fdzﬁlfdzﬁz CXP{—_(|B1|2 1Ba) + )’,/31,32"‘7\2%/3132 MTQ,31
i,j=0 et
% "T e * 5 .
- )\\EwQﬂz - |Q|2 + \7(531 - 5,31 +& B, - §ﬁ2)] NTB, + §>B<V/}BZ + &, (B2)

where Q and ¢ are similar to the definition in Eq. (A5).
Therefore, the (x,p) component of the fidelity is

(ﬂp)(x,P)}- NG(x p)
1-\2
- iy A
i,j=0 2'77-,Pdet A Yivi

X expl{— K0l (x = \2a)* + (p - \2ai))1},

(B3)
where
I=N\T- )\2%‘3’]‘— g(’)’i +7))
Kij= Ny, (B4)

and ay= aé)+la8)

By integrating Eq. (B3) with respect to x and p, we obtain
the average fidelity,

1

" 1-\°
FrnoN) = 2 (1) 3
i,j=0 27Ddet 2 )\_T
1 =ANT=Nyy;— > (vi+v)
1
= > (- DF;(N). (B5)

i-j=0

For the mutual information of dense coding, we calculate
the homodyne probability distribution

s’ps) AB<H(x9p)|UA 59p5)

X pnGUA G p ) TL(x,p) ag
1 1-\2
T 27 Pg (1= NI =Ny,
L= N(T+ ) (T+y)
2{(1 =\T)* = Ny}

€

X ex

1

= E (- 1)i+j7)ij(x,p

0,j=0

XoDs) s (B6)

where & and &' are given in Eq. (A10).
With (B6), the component of channel matrix can be cal-
culated. For example

PR (boolagy) = f dx J dpPy

2,8 \2,8)

2 (= 1) 1-\?
i,j=0 47Ddet 1- )\Z(T'i' %)(T‘i' 7])

1= NAT+7)(T+7,) ] 2
X{1+erf{\/ (I—AT)Z—)\Z%)/J-] B }

1
= E (- 1)i+jcij[1 + erf(‘Q'ijB)]z' (B7)

i,j=0

Other components can be derived similarly. With these re-
sults, we can obtain the mutual information (62).
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