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We investigate the Bell-type inequalities of graph states. In this paper, Bell-type inequalities can be derived
based on two kinds of the associated subgraphs of the graph states. First, the star subgraphs lead to the maximal
violation of the modified Seevinck-Svetlichny inequalities. Second, cycle subgraphs lead to maximal violation
of Bell-type inequalities. As a result, once the associated graph of a graph state is given, the corresponding Bell
operators can be immediatedly determined using stabilizing generators. In the above Bell-type inequalities, two
measurement settings for each party are required.
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I. INTRODUCTION

In their celebrated paper, Einstein, Podolsky, and Rosen
argue that quantum theory is incomplete �1�. Their premises
have quite plausible propositions on locality, reality, and
completeness �2�. Realism and locality constrain the correla-
tion in any local hidden-variable model. According to the
local realism hypothesis, measurement outcomes are prede-
terministic, and the measurement on one party of a multipar-
tite system does not affect the other parties. However, quan-
tum theory predicts that there are stronger correlations than
the correlations of local hidden variables because of the fact
that quantum theory is a nonlocal theory. The so-called Bell-
type inequalities are exploited to distinguish the differences
between classical correlation and quantum correlation. In
general, the Bell-type inequalities put the upper bound on
correlations based on local hidden-variable models. Certain
quantum states can violate these inequalities. On the other
hand, there are many recent alternative proofs of Bell’s theo-
rem without inequalities �3–5�.

In this paper, we investigate the nonlocal behaviors of
graph states. Graph states are defined as follows. Let G be a
graph with a set of n vertices and some edges connecting
them. For each vertex i the neighborhood N�i� denotes the
vertices that are connected to vertex i. In addition, each ver-
tex i is associated with a stabilizing operator gi,

gi = Xi �
j�N�i�

Zj . �1�

Here Xi, Yi, and Zi denote the Pauli matrices �x, �y, and �z,
respectively, acting on the ith qubit. The corresponding
n-qubit state �G� of the graph G satisfies

gi�G� = �G� " i � �1, . . . ,n	 . �2�

It is easy to verify that gi
2=I, where I is the identity operator.

Moreover, �gi ,gj�=0, where �¯ , ¯ � is a commutator. In
addition, �G�
G� can be written as

�
i=1

n
�I + gi�

2
. �3�

In this paper, we consider the connected graphs, i.e., graphs
that do not decay into two unconnected subgraphs. Graph

states are important in quantum-information science. For ex-
ample, the fully connected n-qubit graph states correspond to
n-qubit Greenberger-Horne-Zeilinger �GHZ� states. Special
instances of graph states are codewords for various quantum
error-correcting codes �6�. The linear cluster states are asso-
ciated with a graph where all neighboring vertices are con-
nected by their edges. It is demonstrated that cluster states
can constitute a universal resource for quantum computation
only when assisted by local measurements �7�. Scarani et al.
have investigated the nonlocality of cluster states �8�. In ad-
dition, some researchers discuss the nonlocality of graph
states. Plesch and Bužek considered the bipartite entangle-
ment in graph states �9�. Gühne et al. derived a family of
Bell inequalities �10�. Hein et al. characterized and quanti-
fied the multipartite entanglement in terms of the Schmidt
measure of graph states �11,12�.

Before proceeding further, we consider the simplest graph
state �G2� associated with only two interconnected vertices.
The two stabilizing operators g1 and g2 for �G2� are X1Z2 and
Z1X2, respectively. Then g1+g2 is equal to X1Z2+Z1X2 and
can be written as 1

�2
B2, where

B2 = AB + AB� + A�B − A�B�, �4�

and A=X1, A�=X1, B=
Z2+X2

�2
, B�=

Z2−X2
�2

. Here B2 is the Bell
operator of the Clauser-Horne-Shimony-Holt �CHSH� in-
equality. For local hidden variable models, �
B2� � �2. How-
ever, 
G2 �B2 �G2�= 
G2 ��2�g1+g2� �G2�=2�2. That is, �G2�
can maximally violate the CHSH inequality. Another ex-
ample is the graph state �G3

s� with the associated three-vertex
graph. Therein, vertices 2 and 3 are connected with vertex 1
but disconnected from each other. The corresponding
stabilizing operators are g1=X1Z2Z3, g2=Z1X2, and
g3=Z1X3. Consequently, g1g2=Y1Y2Z3, g1g3=Y1Z2Y3, and
g1g2g3=−X1Y2Y3. On the other hand, the Bell-Klyshko op-
erator for three qubits, denoted by B3, is

B3 = AB�C� + A�BC� + A�B�C − ABC . �5�

The Bell-Klyshko inequality for the three parties reads
�13–16�
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�
B3�� � 2. �6�

Equation �6� is based on the GHZ or “all versus nothing”
argument �3�. Obviously,

g1 + g1g2 + g1g3 + g1g2g3 �7�

can be recognized as B3, where A=X1, A�=Y1, B=Y2,
B�=Z2, C=Y3, and C�=Z3. B3 can then reach 4 when evalu-
ated on �G3

s�. Note that here we ignore the operators acting
on the jth qubits �j�3� in g1, g2, and g3. This is because the
operator acting on the jth �j�3� qubit in gi �i=1,2 ,3� is
either Zj or I j, which does not affect the Bell-Klyshko in-
equality �8�. As an example, let vertex 4 be connected to
vertex 3, but disconnected from vertices 1 and 2. In this case,
qubits 3 and 4 can be grouped. As a result, the Bell-Klyshko
operator B3 becomes g3+g3g1+g3g4+g1g3g4, where A=X1,
A�=Y1, B=Y2, B�=Z2, C=Y3Z4, and C�=Z3I4 �8�, and can
reach 4. More details have been discussed in �8�. On the
other hand, since vertex 2 is not connected to qubits 3 and 4,
we cannot construct a Bell-Klyshko operator B3 based on g2,
g3, and g4. In the above examples, the Bell-type inequalities
can be constructed as the linear combination of stabilizer
operators.

In this paper, we address the following problem. If the
associated graph and the corresponding stabilizing operators
are given, can we immediately derived the linear combina-
tion of the stabilizer operators as Bell operators? Or can we
derive nonlocal properties of the graph states by observing
the associated graphs? The main results are twofold. First, in
Sec. II, we study the star subgraph in Fig. 1, where the vertex
1 is connected with vertices 2 , . . . ,n. In the following dis-
cussion, the graph states associated with such n-qubit star
subgraph are denoted by �Gn

s�. We show that a given graph
state �G� associated with a star subgraph can maximally vio-
late some particular Bell-type inequalities. Second, in Sec.
III, we consider the graph states associated with odd-vertex
cycle subgraphs, where such states are denoted by �Gc

n�, as
shown in Fig. 2. It is shown that the nonlocality embedded in
odd-vertex cycle subgraphs can be obtained using the all
versus nothing argument �3,8,12�. In addition, some Bell-
type inequalities are derived, which are also linear combina-
tion of stabilizer operators. Finally, some conclusions are
made in Sec. IV.

II. VIOLATION OF BELL-TYPE INEQUALITIES
EMBEDDED IN THE STAR SUBGRAPHS

In this section, we consider the violation of Bell-type in-
equalities embedded in the star subgraphs of the graph states.
To proceed further, we introduce two alternative dichoto-
mous observables A1

�i� and A2
�i� for each of the particles. In

addition, we denote B3
+=A1

�1�A2
�2�A2

�3�+A2
�1�A1

�2�A2
�3�

+A2
�1�A2

�2�A1
�3�−A1

�1�A1
�2�A1

�3� and B3
−=A2

�1�A2
�2�A2

�3�−A1
�1�A1

�2�A2
�3�

−A1
�1�A2

�2�A1
�3�−A2

�1�A1
�2�A1

�3�. Here B3
− is derived by replacing

A1
�1� and A2

�1� in B3
+ with A2

�1�and −A1
�1�, respectively. As a

result, B3
− is an alternative Bell-Klyshko operator B3 in Eq.

�5�, where A=A2
�1�, A�=A1

�1�, B=A1
�2�, B�=A2

�2�, C=A1
�3�, and

C�=A2
�3�. Therefore, for any local hidden-variable model,

�
B3
±�� � 2. �8�

Now we introduce the recursive relations of the Bell opera-
tors Bn

±

Bn
± = Bn−1

± A2
�n� ± Bn−1

� A1
�n�, n � 3. �9�

Equation �9� is equivalent to the inequalities proposed by
Seevinck and Svetlichny �SS inequalities� �17�. Here we take
the n=4 case as our example. Since

�
Aj
�i��� � 1 �10�

for any i and j� �1,2	, for any local hidden-variable model,

�
B4
+�� � �
B3

+A2
�4��� + �
B3

−A1
�4��� � �
B3

+�� + �
B3
−�� � 4.

�11�

Therefore, for any local hidden variable model,

�
Bn
±�� � 2n−2. �12�

The proof of Eq. �12� is straightforward. According to Eqs.
�9� and �10�, it is easy to verify that

�
Bn
±�� � �
Bn−1

+ �� + �
Bn−1
− �� . �13�

Recursively,

�
Bn
±�� � 2��
Bn−2

+ �� + �
Bn−2
− ��� ¯ � 2n−4��
B3

+�� + �
B3
−���

� 2n−2. �14�

It should be noted that the upper bounds in Eq. �14� are
different from the original SS inequalities that were obtained
in �17�. This is because, in the original SS inequalities, the
recursive initial inequality is the CHSH inequality for the

FIG. 1. Star graph. FIG. 2. Cycle graph.
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bipartite system, rather than the Bell-Klyshko inequality for
the tripartite system.

In fact, it is the GHZ states that can maximally violate the
original SS inequalities. It should be noted that graph states
associated with the star graphs are equivalent to the GHZ
states under local unitaries �11�. In fact, Seevinck and Svetli-
chny have verified that fully connected graph states can
maximally violate the original SS inequalities �17�. However,
the length �the number of operator terms� of the proposed
n-qubit Bell operators in Eq. �9� is only half of that of the
corresponding Bell operators in the original SS inequalities.
Consequently, it is more efficient, in physical realization, to
test the proposed SS inequalities rather than the original SS
inequalities.

Now we consider the graph states associated with the
n-vertex �n�3� star subgraph. In the following, A1

�1�=X1,
A2

�1�=Y1, and the two alternative dichotomous observables
A1

�i� and A2
�i� for qubit i �i�2� in Eq. �9� are set as Yi and Zi,

respectively. For instance, in the n=4 case, g1+g1g2+g1g3

+g1g2g3=B3
+A2

�4� and �g1+g1g2+g1g3+g1g2g3�g4=B3
−A1

�4�.
Therefore, 
G4

s �B4
+ �G4

s�=8. We ignore the qubits that do not
belong to N�1�. Using straight calculation, for any �Gn

s� as-
sociated with the star subgraph as shown in Fig. 1,

Bn−1
+ Zn = g1 �

i�N�1�,i�n

�I + gi�

and

Bn−1
− Yn = g1gn �

i�N�1�,i�n

�I + gi� .

As a result,


Gn
s �Bn

+�Gn
s� = 2n−1. �15�

In this case, Bn
+ reaches the maximal value when evaluated

on �Gn
s�. In addition, the Bell operator Bn

+ can be expressed in
terms of the stabilizing operators.

III. VIOLATION OF BELL-TYPE INEQUALITIES
EMBEDDED IN THE CYCLE SUBGRAPHS

In this section, we consider the graph states associated
with odd-vertex cycle subgraphs. As for �Gc

3�, the corre-
sponding stabilizing operators g1, g2, and g3 are X1Z2Z3,
Z1X2Z3, and Z1Z2X3, respectively. Then g1g2g3=−X1X2X3.
Again, we ignore the operators acting on the jth �j�3� qubit
in g1, g2, and g3. It is easy to verify that

g1 + g2 + g3 + g1g2g3 �16�

is another Bell-Klyshko operator in Eq. �5�, where A=X1,
A�=Z1, B=X2, B�=Z2, C=X3, and C�=Z3. It is worth noting
that Bell-Klyshko operators in Eqs. �7� and �16� are built in
different stabilizing operators. Now we consider the graph
states with n-vertex �n�3� cycle subgraphs. Note that any
n-vertex cycle subgraph can comprise n three-vertex star
subgraphs. That is, �Gc

n� contains n Bell-Klyshko inequalities
in Eq. �5� where the ith Bell-Klyshko operator corresponds
to

gi + gigj + gigk + gigjgk, �17�

where i� �1, . . . ,n	, j, k�N�i�, and j�k. In addition, the
GHZ-type or all versus nothing argument has been verified
in considering the nonlocality of the cluster state �8�. Fur-
thermore, the all versus nothing argument can be exploited
for the odd-vertex cycle subgraph. Now consider the graph
state �Gc

n� with n being odd. In this case, gk=ZjXkZj�, where
j� j� and j , j��N�k�. In addition,

gk�Gc
n� = �Gc

n�, k = 1, . . . ,n . �18�

With straight algebra, we have

�
k=1

n

gk = − �
k=1

n

Xk. �19�

That is,

�
k=1

n

Xk�Gc
n� = − �Gc

n� . �20�

According to the local hidden-variable theory, since Eqs.
�19� and �20� contain only local operations, classical com-
munication is allowed, and the values of the elements of
reality can be assigned as follows:

v�X1�v�Z2�v�Zn� = 1, �21�

v�Zi−1�v�Xi�v�Zi+1� = 1, i � �2, . . . ,n − 1	 , �22�

v�Z1�v�Zn−1�v�Xn� = 1, �23�

�
k=1

n

v�Xk� = − 1. �24�

However, it is impossible to assign values, either 1 or −1,
that satisfy Eqs. �21�–�24�. This is because when we take the
product of Eqs. �21�–�24�, each of v�Zi� and v�Xi� for any i
appears twice in the left-hand side, while the right hand side
is −1. Therefore, any local hidden-variable model cannot re-
produce the prediction of the quantum theory for the graph
states �Gc

n�.
However, there are other Bell-type inequalities if n is odd

with Bell operator Bn,

Bn = A1A2�An� + An−1� AnA1� + �
i=1

n

Ai−1� AiAi+1� − �
i=1

n

Ai. �25�

Now Ai and Ai� are set as Xi and Zi, respectively. In this case,
Bn can be written as

�
i=1

n

gi + �
i=1

n

gi, �26�

where n stabilizing operators are involved in Eq. �26�. In Eq.
�17�, three stabilizing operators are involved. As a result,
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Gc
n�Bn�Gc

n� = 
Gc
n��

i=1

n

gi + �
i=1

n

gi�Gc
n� = n + 1. �27�

Bn in Eq. �26� can reach n+1 when evaluated on �Gc
n�. On the

other hand, for any possible assignment of each v�Zi� and
v�Xi� of the elements of reality in the local hidden-variable
theory,

�
Bn�� � n − 1. �28�

Therefore, the local hidden-variable theory contradicts the
prediction of the quantum theory given by Eq. �27�.

IV. CONCLUSION

In conclusion, this paper studies the nonlocality of graph
states that is embedded in subgraphs. Therefore, once the
associated graph G of the graph state �G� is given, the cor-
responding stabilizing operators are immediately known. We
can analyze their nonlocality by decomposing G into star and

cycle subgraphs. As for graph states associated with an
n-vertex star subgraph, the modified SS inequalities, where
the corresponding n-qubit Bell operator is Bn

+, are proposed
to describe their nonlocality. As for graph states associated
with an n-vertex cycle subgraph, the all versus nothing argu-
ment is exploited. In addition, the corresponding n-qubit Bell
operator is Bn. Bn

+ or Bn can be maximally violated when
evaluated on �Gs

n� or �Gc
n�, respectively, in which the corre-

sponding operators can be expressed in terms of stabilizing
operators and their products. It is worth noting that each of
the Bell operators Bn

+ or Bn requires only two measurement
settings for each party. Recently, Gühne et al. derived a fam-
ily of Bell inequalities for graph states. However, three mea-
surement settings are required for each party �10�.
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