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We present a simple information-disturbance tradeoff relation valid for any general measurement apparatus:
The disturbance between input and output states is lower bounded by the information the apparatus provides in
distinguishing these two states.
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Extraction of information from a quantum system cannot
always be without feedback. This was clear since the early
days of quantum mechanics: It was the spirit of the original
form of the Heisenberg uncertainty “principle,” as derived
from the gedanken-experiment of the Heisenberg microscope
�1�. Since then, much more refined descriptions of allowed
quantum measurements have been put forth �2�, so that we
now know that the Heisenberg principle can be easily cir-
cumvented �2,3�, and that its correct interpretation must be
carefully adjusted �see Ref. �4� for a recent review on the
subject�. The upshot is that there is no “unavoidable dynami-
cal disturbance” attached to all measurements. The debate on
the uncertainty is no longer confined to the realm of theory
�2–5�, but experiments have also been carried out �6� con-
firming that a feedback on the state of the system �due to
information extraction� is present even when all the possible
dynamical disturbances have been carefully eliminated. In a
sense, this is to be expected since the state of a system does
not have a physical reality per se, but it is a conceptual
construct expressing the information the experimenter has on
the system �7�. What is most astonishing, is that such “infor-
mational feedback” can have dynamical consequences: The
subsequent evolution may drastically change depending on
the information extracted.

Is this feedback always present? If the initial state of the
system is known, then a measurement which extracts any
kind of information without changing the system state �2� is
always possible �24�. Thus, it would seem that no
information-disturbance tradeoff relation can exist. In this
paper, however, we show that any informative measurement
will affect at least one state of the system. An information-
disturbance tradeoff concerning such a state can then be con-
ceived: The amount of disturbance on that state is lower
bounded by the amount of information that the measurement
would return in distinguishing such input from its corre-
sponding output, see Eq. �5�.

Various different information-disturbance tradeoffs have
been proposed previously �4,8–13�, which explore different
measures of information and of disturbance. In this paper we
use the most intuitive notions for these quantities: Informa-
tion is measured in bits through mutual information and dis-
turbance is measured using fidelity, which is the natural dis-
tance measure for quantum states �14,15�.

In the following, we start by introducing the notation. We
show that at least one state must be modified by the mea-
surement and then we give a bound on such modification.

For the sake of clarity, we give proofs of a very simple case,
and postpone the general derivation to the Appendix.

Before attempting a derivation of an information-
disturbance tradeoff, we have to appropriately define these
two quantities.

Information. Intuitively, one would expect that the infor-
mation extracted from a measurement should be defined as a
function of the outcome statistics only, such as the entropy of
the probability of the outcomes. This is easily shown to be
inadequate: Think of a measurement device that returns ran-
dom outcomes �according to a well defined probability�
without yielding any information on the system. A “good”
measurement should have outcomes in some way correlated
to the initial state of the system, so to provide information on
the system. Thus, a suitable expression for the information-
part of our tradeoff is through the mutual information I the
measurement provides on which of two equally probable in-
put states the system is in �4�. It supplies the fraction of a bit
the measurement tells us on which one is the input state, and
varies continuously between I=0 �no knowledge� and I=1
�complete knowledge�. Alternatively, we can employ the bi-
nary entropy H2�pe� of the probability pe of making an error
when determining which state: It is a measure of the uncer-
tainty on the determination of which state. The two quantities
are simply related as I=1−H2�pe�. Information is measured
in bits. To obtain an adimensional quantity �in order to relate
information and disturbance�, we will consider the ratio be-
tween information I �or uncertainty H2� and the maximum
information �or maximum uncertainty� that can be obtained,
i.e., one bit in this case.

Disturbance. A system is disturbed by a physical process
when its initial and final states do not coincide. The fidelity
F�� ,����Tr���������2 �14�, a simple function of the
Bures distance, is the most appropriate measure of the “dis-
tance” between the two states � and ��. As such, 1−F can be
taken as a measurement of the disturbance �8�: 1−F�� ,���
=0 if there is no disturbance �the output state �� coincides
with the input �� and 0�1−F�� ,����1 if the input has
been modified. With this choice, a unitary evolution counts
as a disturbing process, even though it can be easily undone.
This might seem unfortunate �4�, but a unitary evolution can-
not provide any information on the state, so its effect does
not contrast the information-disturbance tradeoff �according
to which a disturbance without information gain is possible�.

Before deriving the tradeoff, we quickly review the nec-
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essary concepts regarding quantum measurements. The pos-
tulates of quantum mechanics �2,7,10� assert that the out-
comes statistics of any measurement is described by a
positive operator-valued measure �POVM�, a set of positive
operators ��k� acting on the system Hilbert space H such
that 	k�k=1 �1 being the identity on H�: The probability of
the kth measurement outcome is pk=Tr���k�, where � is the
state of the system prior to the measurement �Born rule�. If
the kth measurement outcome occurred, the state evolves ac-
cording to the following state-reduction rule �2,10,16�

�� = 	
j�Ik

Kj�Kj
†/pk, �1�

where the operators Kj and the set of indices Ik are such that
	 j�Ik

Kj
†Kj =�k. This implies that both the sets Kj and UjKj

�with arbitrary unitary operators Uj� give rise to the same
POVM ��k� and thus to the same outcome statistics: The
postmeasurement state is in general not determined by the
POVM elements. This is the reason why it is impossible to
obtain an information-disturbance tradeoff relation which is
independent on the system state. In fact, if we know the input
state �, we can always tune the operators Uj to reobtain the
same state at the output �if � is a mixed state, some addi-
tional classical randomness might also be necessary�. For
example, we can measure the value of a qubit in the compu-
tational basis �using the POVM ��0= 
0��0
, �1= 
1��1
�� and
always get as output state 
+ ���
0�+ 
1�� /�2, by choosing
K0= 
+ ��0
 and K1= 
+ ��1
. A striking example of the same
sort is a measurement of position which leaves a particle in
an eigenstate of the momentum �3�. The physical interpreta-
tion of the operators Uj is clarified by considering a simple
Stern-Gerlach measurement. No sane experimentalist who
possesses a Stern-Gerlach apparatus oriented in the x direc-
tion rotates all his laboratory if he needs to measure a 1

2-spin
along the y axis. He applies a unitary transformation to rotate
the spin with a magnetic field �16�. In this case the postmea-
surement state �if the spin is not absorbed� is an eigenstate of
�x, even though �y was measured.

Any evolution of the type �1� can be derived from a uni-
tary evolution through the so-called indirect measurement
model �10,17� �see Fig. 1�. The measured system interacts
unitarily with an external ancillary system describing the
measurement apparatus. The ancillary system then undergoes

a Lüders-type projective measurement M, i.e., such that its
POVM elements are orthogonal projectors ��k= 
k��k
�. The
system output state is then the partial trace �over the ancil-
lary Hilbert space A� conditioned on obtaining the result k
on the ancilla, i.e., �10,17�,

��k�� =
TrA��1H � 
k��k
�U�� � ��U†�
Tr��1H � 
k��k
�U�� � ��U†�

, �2�

where � is the initial state of the ancilla and U is the unitary
interaction that correlates the system to the apparatus, acting
on H � A. Notice that there is no assumption on the joint
post-measurement state in Eq. �2�, which combines the Born
rule on the ancillary space A with the rule to obtain the state
of a subsystem from a partial trace on the joint state.

For the sake of clarity, we will start analyzing the simple
case in which the input states of the system � and of the
apparatus �= 
0��0
 are pure and no entanglement is gener-
ated by the unitary U. The general situation will be analyzed
subsequently. The unitary will thus evolve two different in-
put states 
�1� and 
�2� according to the evolution 
�1��
a1�
=U
�1�
0� and 
�2��
a2�=U
�2�
0�. A unitary does not change
the scalar product, hence, ��1 
�2�= ��1� 
�2���a1 
a2�. We as-
sume that the measurement is informative, i.e., the apparatus
is able to correlate to the system somehow. This implies that
there must exist some 
�1� and 
�2� that give rise to different
states in the apparatus, i.e., 
a1�� 
a2�. Thus, 
�a1 
a2�
�1 so
that 
��1 
�2�
� 
��1� 
�2��
, i.e., the output states are less dis-
tinguishable than the input: their fidelity has increased. In the
general case �see the Appendix�, this can be formalized in the
following way. For any informative measurement, there exist
at least two system states �1 and �2 such that

F��1,�2� � F��1�,�2�� , �3�

where �1�, �2� are the output states corresponding to �1, �2
when the measurement results are the same. This implies that
for any measurement there exists at least one state that is
modified.

Call such a state 
��. The scalar product between 
�� and
its evolved counterpart 
��� is 
�� 
���
= 
��� 
����a 
a��

� 
�a 
a��
, where 
a� and 
a�� are the apparatus states corre-
sponding to system inputs 
�� and 
���, respectively, and
where 
��� is the system output corresponding to input 
���.
�In general the evolution U will generate entanglement be-
tween system and apparatus so that the system output state
will be a mixed state �see the Appendix��. The probability of
error pe in discriminating between two states 
a� and 
a�� can
be calculated from state discrimination theory �18� as
pe= �1−�1− 
�a 
a��
2� /2, hence, 
�a 
a��
2=4pe�1− pe�. The
uncertainty in this discrimination is given by the Shannon
entropy of the related probability distribution �pe ,1− pe�,
i.e., the binary entropy H2�pe�. It measures the bits of infor-
mation one would gain by discovering which of the two
states the apparatus is in after the unitary interaction. Since
4pe�1− pe��H2�pe�, we find that 
�� 
���
2�H2�pe�: the fi-
delity between the input and output states is upper bounded

FIG. 1. Indirect measurement model. The system, initially in a
state � impinges in the measuring apparatus �dashed line� which is
initially prepared in the state �. A unitary U correlates the system
and the apparatus. A projective measurement M is then performed
on the apparatus and yields the classical result k, which conditions
the output state of the system ��.
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by the binary entropy related to the discrimination of the two
states by the apparatus. This can be restated in the form of a
tradeoff relation as

1 − 
��
���
2 � 1 − H2�pe� . �4�

In the general situation �see the Appendix�, this information-
disturbance tradeoff takes the equivalent form

1 − F��,��� � 1 − H2�pe� . �5�

The disturbance 1−F between input � and output �� is lower
bounded by the mutual information 1−H2�pe� on which of
the two states � and �� is present at the input. This is the
main result of the paper. By rearranging the terms of �5� as
1−F�� ,���+H2�pe��1, we can also give it a different inter-
pretation: The disturbance 1−F between input and output
plus the uncertainty H2�pe� in the discrimination by the ap-
paratus of these two states cannot be made arbitrarily small.
Equivalently, we can say that the mutual information on
which state plus the fidelity of these two states are upper
bounded by one.

Since the inequality 4pe�1− pe��H2�pe� is tight only for
pe=0, 1 /2, and 1, the bound �5� is not tight in general. It is
achieved only if the apparatus cannot discriminate between �
and �� at all, or if it can discriminate between them exactly.

Even though the state reduction rule is not a quantum
prerogative, the tradeoff we derived is a purely quantum ef-
fect. In classical mechanics, an informative nondisturbing
measurement which perfectly correlates the outcomes with
the state of a system will collapse a mixed state into a pure
state: The effect of such a measurement is to reduce the
“volume” that the state of the system occupies in phase space
�a sort of “classical state reduction”�. In classical mechanics
there is no lower bound to such volume and two pure states,
which occupy zero volume, can always be distinguished
without disturbance. In contrast, in quantum mechanics the
volume a state must occupy in phase space is lower bounded
by � /2. On one hand, two nonidentical pure states may over-
lap and their conclusive discrimination may not be possible.
On the other hand, if the postmeasurement state is perfectly
correlated with the outcome �Lüders or von Neumann type
apparatuses� and the measure is sharp enough to sufficiently
constrain the volume in one direction of the phase space, the
postmeasurement state must “expand” in other directions to
preserve the minimum volume. For other types of appara-
tuses the situation is not as clear-cut, but as we have shown,
at least one pure state of the system must be modified by any
informative measurement. So, while in classical mechanics
the system will evolve compatibly with its pre-measurement
trajectory in phase space �only the “thickness” of the trajec-
tory may be reduced�, in quantum mechanics the phase-space
expansion might have observable consequences and the sys-
tem might not evolve compatibly with its pre-measurement
trajectory.

In conclusion, we have derived an information-
disturbance tradeoff which is valid for any measurement de-
vice: Any measurement modifies at least one state of the
system, and the fidelity between input and output states is
upper bounded by the information the apparatus is able to
extract when discriminating between input and output. The

concept of conservation of quantum information �19� was
inspirational: one can interpret the measurement as a corre-
lation between the initial state of the system and the mea-
surement apparatus.
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APPENDIX

Proof of Eq. (3). Define the CP-map Lk as the transfor-
mation described by the measurement with result k, see Eq.
�1�: Lk����	 j�Ik

Kj�Kj
†. From the monotonicity of the

fidelity under maps �20�, we know that F��1 ,�2�
�F(Lk��1� ,Lk��2�). The equality holds for any couple of
input states �1, �2 only if the map Lk is unitary �21�, and
such a map cannot convey information on the system. In
fact, a unitary Lk on the system is obtained from a factorized
operator U=US � UA in the indirect measurement model of
Eq. �2�. Any action on the system by such map will be inde-
pendent on the action on the probe, so that no information on
the system can reach the probe: The only maps which leave
unchanged the fidelity of any couple of input states are the
unitaries, which give no information. This can be stated
equivalently in the following manner. For any informative
measurement, two states �1, �2 exist such that Eq. �3� is true.

Incidentally, note that the converse also partially holds: If
a measurement decreases the fidelity, then all unitaries U
corresponding to its indirect measurement models will trans-
fer some information to the probe state �this does not auto-
matically imply that the measurement is informative, since
the modification of the probe state may be ignored the last
stage of the apparatus, the von Neumann measure M of Fig.
1�. In fact, the no-signaling property of factorized unitary
maps �22� implies that any non-factorized unitary U of the
indirect measurement model can send a signal from the
system to the probe, i.e. U�UH � UA implies that there
exist two states �1, �2 such that F��1� ,�2���1, where
�i�=Tr�U��i � ��U†� is the final state of the probe, � is its
initial state, and UH and UA are arbitrary unitaries acting
only on the system and on the ancillary Hilbert spaces re-
spectively.

It is possible to evaluate which states are modified by the
measurement process for each outcome k, by considering the
map Lk as a linear operator on the operator space of the
states of the system. One then immediately sees that only the
eigenstates of Lk are not altered, while superpositions of
eigenstates with different eigenvalues are.

Proof of Eq. (5). In general, the input states to the appa-
ratus may be mixed. The probability of making a mistake
when discriminating two mixed states �1 and �2 is given by
pe=1/2−Tr�
�1−�2
� /4 �15,23�. By using the property

Tr�
�1−�2
� /2��1−F��1 ,�2� �15�, we can write

pe� �1−�1−F��1 ,�2�� /2, where the equality is attained for
pure states �18�. The binary entropy H2�x��−x log2 x
− �1−x�log2�1−x� for x� �0,1� satisfies the inequalities
x�H2�1/2−1/2�1−x� and x�H2�1/2+1/2�1−x�. More-
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over, for x�1/2, it is monotonically increasing so that we
can write

x � H2
1

2
−

1

2
�1 − x� � H2�y� , �A1�

for any y such that 1
2 − 1

2
�1−x�y�

1
2 . Choosing x

=F��1 ,�2� and y= pe, we obtain F��1 ,�2��H2�pe�, i.e., Eq.

�5� from �A1�, which is valid when pe�1/2. If pe�1/2
instead, we proceed analogously starting from

x � H2
1

2
+

1

2
�1 − x� � H2�y�� , �A2�

valid for 1 /2�y�� 1 	 2 + 1 	 2�1−x. Choosing x
=F��1 ,�2� and y�=1− pe, we obtain Eq. �5� for pe�1/2, by
recalling that H2�1− pe�=H2�pe�.
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