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The conditional shift in the evolution operator of a quantum walk generates entanglement between the coin
and position degrees of freedom. This entanglement can be quantified by the von Neumman entropy of the
reduced density operator �entropy of entanglement�. We show analytically that for a Hadamard walk with local
initial conditions the asymptotic entanglement is 0.872 for all initial coin states. When nonlocal initial condi-
tions are considered, the asymptotic entanglement varies smoothly between almost complete entanglement and
no entanglement �product state�. An exact expression for the asymptotic �long-time� entanglement is obtained
for initial conditions in the position subspace spanned by �±1�.
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I. INTRODUCTION

Quantum walks in several topologies �1� are being studied
as potential sources for new quantum algorithms. Recently,
quantum search algorithms based on different versions of the
quantum walk, have been proposed �2,3�. These algorithms
take advantage of quantum parallelism, but do not make use
of entanglement, which has only recently begun to be ad-
dressed in the context of quantum walks. The first studies
�4,5� where numerical and considered walkers driven by two
coins which where maximally entangled by their initial con-
dition. More recently, Carneiro and co-workers �6� have con-
sidered the coin-position entanglement induced by the the
evolution operator. They quantified this entanglement as a
function of coin bias, using the von Neumann entropy of the
reduced von Neumann operator �entropy of entanglement�. It
was numerically established that for all coin initial states of a
Hadamard walk, the entanglement has the limiting value
0.872.

In this work we use the Fourier representation of the Had-
amard walk on a line to obtain this result analytically. Fur-
thermore, using the same techniques, we may show that
when nonlocal initial conditions are considered the
asymptotic entanglement changes smoothly between two
well defined limits, which we calculate exactly. In the long-
time limit, the dependence of the entropy of entanglement on
the initial conditions �which we restrict to a certain position
subspace� is given.

This work is organized as follows. In Sec. II, we briefly
review the discrete-time quantum walk on the line and define
the entropy of entanglement. To illustrate the general
method, the asymptotic value for the entanglement of a par-
ticular localized initial condition is obtained analytically.
Section III is devoted to the calculation of the asymptotic
entanglement induced by the evolution operator of a Had-
amard walk for a particular class of nonlocal initial condi-
tions. We show analytically that in this case, the asymptotic

entanglement varies smoothly between two well defined lim-
its. Finally, in Sec. IV we summarize our conclusions and
discuss future developments.

II. DISCRETE-TIME QUANTUM WALK ON THE LINE

The discrete-time quantum walk can be thought as a
quantum analog of the classical random walk where the clas-
sical coin flipping is replaced by a Hadamard operation in an
abstract two-state quantum space �the coin space�. A step of
the quantum walker consists of a conditional traslation on the
line. Of course, if the quantum coin is measured before tak-
ing a step, the classical walk is recovered �7,8�. The Hilbert
space H=HP � HC, is composed of two parts: a spatial sub-
space HP spanned by the orthonormal set ��x�� where the
integers x=0, ±1, ±2, . . ., are associated to discrete positions
on the line and a single-qubit coin space HC spanned by two
orthonormal vectors denoted ��R� , �L��. A generic state for the
walker is

��� = 	
x=−�

�

�x� � �ax�R� + bx�L�� �1�

in terms of complex coefficients satisfying the normalization
condition 	x�ax

2�+ �bx�2=1 �in what follows, the summation
limits are left implicit�.

A step of the walk is described by the unitary operator

U = S · �IP � C� , �2�

where C is a suitable unitary operation in HC and IP is the
identity in HP. A convenient choice is a Hadamard operation,
H �R�= ��R�+ �L�� /
2 and H�L�= ��R�− �L�� /
2. When C=H,
as in this work, one refers to the process as a Hadamard
walk. The shift operator

S = SR � �R��R� + SL � �L��L� �3�

with SR=	x�x+1��x� and SL=SR
† =	x�x−1��x�, conditionally

shifts the position one step to the right �left� for coin state R
�L�. Furthermore, it generates entanglement between the coin
and position degrees of freedom.

The evolution of an initial state ���0�� is given by
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���t�� = Ut���0�� , �4�

where the non-negative integer t counts the discrete time
steps that have been taken. The probability distribution for
finding the walker at site x at time t is P�x ; t�= ��x���t���2

= �ax�2+ �bx�2. The variance of this distribution increases qua-
dratically with time �9� as opposed to the classical random
walk, in which the increase is only linear. This advantage in
the spreading speed in the quantum case is directly related to
quantum interference effects and is eventually lost in the
presence of decoherence �8�.

One of the early papers on quantum walks, due to Nayak
and Vishwanath �10�, has shown that Fourier analysis can be
successfully used to obtain integral expressions for the am-
plitudes ax�t� and bx�t� for given initial conditions. The re-
sulting quadratures can be evaluated in the long-time limit.
The usefulness of this approach has been limited because the
detailed calculations are lengthy and must be individually
worked out for each initial condition. In this paper, we shall
use the dual Fourier space to obtain information about the
asymptotic entanglement, and so we review those results.

A. Fourier transform

The dual space H̃k is spanned by the Fourier transformed
kets �k�=	xe

ikx�x�, where the wave number k is real and re-
stricted to �−� ,��. The state vector �1� can then be written

��� = �
−�

� dk

2�
�k� � �ãk�R� + b̃k�L�� , �5�

where the k amplitudes ãk= �k ,R ��� and b̃k= �k ,L ��� are
related to the position amplitudes by

ãk = 	
x

e−ikxax and b̃k = 	
x

e−ikxbx. �6�

The shift operator, defined in Eq. �3�, is diagonal in H̃k
space: S�k ,R�=e−ik�k ,R� and S�k ,L�=eik�k ,L�. A step in the
evolution may be expressed through the evolution operator
Uk in k space as

��k�t + 1�� = Uk��k�t�� =
1

2


e−ik e−ik

eik − eik ���k�t�� , �7�

where ��k�= �k ��� is the spinor �ãk , b̃k�T. This operator has
eigenvectors ��k

�1,2�� given by

��k
�1�� = �k
uk

vk
�, ��k

�2�� = tak
uk

wk
� , �8�

where �k and �k are the real, positive functions,

�k �
1

2

�1 + cos2 k − cos k
1 + cos2 k�−1/2,

�k �
1

2

�1 + cos2 k + cos k
1 + cos2 k�−1/2, �9�

and

uk � e−ik,

vk = 
2e−i	k − e−ik,

wk = − 
2ei	k − e−ik. �10�

The frequency 	k, defined by

sin 	k �
sin k

2

, 	k � �− �/2,�/2� , �11�

determines the eigenvalues ±e
i	k of Uk. Using the spectral
decomposition for Uk, the time evolution of an initial spinor
can be expressed as

��k�t�� = Uk
t ��k�0��

= e−i	kt��k
�1���k�0����k

�1�� + �− 1�tei	kt��k
�2���k�0��

���k
�2�� . �12�

In principle, this expression can be transformed back to po-
sition space and the probability distribution P�x , t� can be
obtained. This approach requires evaluation of complicated
integrals which, for arbitrary times, can only be done nu-
merically. However, in the long time limit, stationary phase
methods can be used to approximate the resulting integrals
for given initial conditions, an approach illustrated in Ref.
�10�. In this work, we bypass these technical difficulties, be-
cause the asymptotic entanglement introduced by Uk

t , may be
quantified directly from Eq. �12�, without transforming back
to position space.

B. Entropy of entanglement

Consider the density operator �= ������. Entanglement
for pure states can be quantified by the von Neumann en-
tropy of the reduced density operator �c=tr���, where the
partial trace is taken over position �or alternatively, wave-
number k�. Note that, in general tr��c

2�
1, i.e., the reduced
operator �c corresponds to a statistical mixture. The associ-
ated von Neumann entropy

SE = − tr��c log2 �c� , �13�

also known as entropy of entanglement, quantifies the quan-
tum correlations present in the pure state � �11�. It is zero for
a product state and unity for a maximally entangled coin
state. It is also invariant under local unitary transformations,
a usual requirement for entanglement measures �12,13�.

The entropy of entanglement can be obtained after diago-
nalization of �c. This operator, which acts in HC, is repre-
sented by the Hermitean matrix

ABAL et al. PHYSICAL REVIEW A 73, 042302 �2006�

042302-2



�c = 
 A B

B* C
� , �14�

where

A � 	
x

�ax�2 = �
−�

� dk

2�
�ãk�2,

B � 	
x

axbx
* = �

−�

� dk

2�
ãkb̃k

*,

C � 	
x

�bx�2 = �
−�

� dk

2�
�b̃k�2. �15�

Normalization requires that tr���=1 and A+C=1. The real,
positive eigenvalues r1 and r2 of this operator are given by

r1,2 =
1

2
�1 ± 
1 + 4��B�2 − AC�� �16�

and the reduced entropy can be calculated from Eq. �13� as

SE = − �r1 log2 r1 + r2 log2 r2� . �17�

The entropy of entanglement has been used to quantify
entanglement in the quantum walk �6�. In the particular case
of a Hadamard walk, it was numerically established that the
reduced entropy approaches the well-defined asymptotic
value SE→0.872, . . ., for arbitrary initial coin states when
starting from �0�. In the rest of this work, we shall be con-
cerned with clarifying the asymptotic �long time� value of SE
for both local and nonlocal initial conditions.

C. Asymptotic entanglement from local initial conditions: A
simple example

As a simple application, consider the particular localized
initial condition

���0�� = �0� � �L� , �18�

which implies ak�0�=0 and bk�0�=1. For this simple case,
the spinor components at time t from Eq. �12�, have been
explicitly calculated in Ref. �10� as

ãk�t� =
ieik

2
1 + cos2 k
�e−i	kt − �− 1�tei	kt� ,

b̃k�t� =
1

2
1 +
cos k


1 + cos2 k
�e−i	kt

+
�− 1�t

2 
1 −
cos k


1 + cos2 k
�ei	kt. �19�

The relevant quantities for the entropy entanglement are A
and B, defined in Eqs. �15�. After some manipulation, from
Eq. �19� we obtain

A�t� = �
−�

� dk

2�

1 − �− 1�t cos�2	kt�
2�1 + cos2 k�

,

B�t� = �
−�

� dk

2�

ieik

2
1 + cos2 k
�1 − �− 1�t
 cos�2	kt�cos k


1 + cos2 k

+ i sin�2	kt��� . �20�

The time dependence of these expressions vanishes in the
long time limit and we obtain the exact asymptotic values

Ā = lim
t→�

A�t� =
1

2
�

−�

� dk

2�

1

1 + cos2 k
=


2

4
,

B̄ = lim
t→�

B�t� =
i

2
�

−�

� dk

2�

cos2 k

1 + cos2 k
= i

2 − 
2

4
. �21�

From Eq. �16�, the exact eigenvalues of the reduced density
operator are

r1 =
1

2

and r2 = 1 −
1

2

. �22�

These eigenvalues yield the asymptotic value for the entropy
of entanglement

S̄0 =
1

2
+ 
 1


2
− 1�log2�
2 − 1� � 0.87243 ¯ . �23�

This exact value agrees with the numerical observations
reported in Ref. �6� for the case of a Hadamard walk with
arbitrary initial coin states and a localized initial position.
The analytical procedure outlined above may be repeated for
arbitrary initial coin states, with the same result. We include
the details of such calculation, done for a generic initial coin
state, in the Appendix. The common feature of all localized
initial conditions is that their Fourier transforms ãk�0� and

b̃k�0� are uniform �i.e., k independent� and this determines

the asymptotic value of the entropy of entanglement S̄E
�0.872.

III. NONLOCAL INITIAL CONDITIONS

Most previous work on quantum walks has dealt with
initial wavevectors localized in a position eigenstate �0�.
When nonlocal initial conditions are considered, new fea-
tures emerge. Let us consider a quantum walk initialized in a
simple uniform superposition of two position eigenstates
such as

��±� =
�− 1� ± � + 1�


2
� ��� , �24�

where ���= ��R�+ i�L�� /
2. The entanglement induced by the
evolution operator when starting from the initial sates de-
fined in Eq. �24� is shown in Fig. 1. The asymptotic values

are S̄+�0.979 and S̄−�0.661, respectively. This rather large
difference is exclusively due to the phase shift ��+�→ ��−�
alone. On the other hand, a localized initial condition such as
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��0� = �0� � ��� �25�

yields the intermediate value for asymptotic entanglement
S0�0.872 as expected for any localized initial condition �see
the previous section, Eq. �23� and Appendix A�. Below, we
provide an analytical explanation for the observed values in
the nonlocal case.

As can be seen in Fig. 1, the rate at which the asymptotic
value for entanglement is approached is faster for higher
asymptotic entanglement levels. The inset in this figure
shows the first five steps in detail. The local initial condition
��0� is fully entangled �SE=1� after the first time step and
reaches its asymptotic level after �10 steps. The nonlocal
conditions ��±� have the same evolution for SE in the first
two steps, but the phase difference causes very different en-
tanglement levels after the third time step: ��+� reaches its
asymptotic level after three steps, while ��−� takes about 30
time steps to stabilize.

A. Asymptotic entanglement

Consider the problem of determining the asymptotic en-
tanglement for nonlocal initial conditions of the form

���0�� = 	
x

cx�0��x� � ��� �26�

with real cx�0�. The coin state ��� in Eq. �26� is such that

bx�0� = iax�0� =
cx�0�

2

or, equivalently, b̃k�0� = iãk�0� .

�27�

This restriction considerably simplifies the algebra, but it is
not essential and the method applies equally well to arbitrary
initial coin states.

The eigenvalues of the reduced density operator depend
on the real coefficients A ,C and on the complex one B, de-

fined in Eqs. �15�. Figure 2 shows the entropy of entangle-
ment as a function of these coefficients. Maximum entangle-
ment would be obtained for A=1/2 and B=0, when the
reduced operator corresponds to the minimum information
mixture �c= I /2.

In order to find expressions for Ā and B̄, we start by
rewriting Eq. �12� in the more explicit form

ãk�t� = �k
2Fkvke

−i	kt + �− 1�t�k
2Gkwke

i	kt,

b̃k�t� = �k
2Fkuke

−i	kt + �− 1�t�k
2Gkuke

i	kt. �28�

Here, �k and �k are the real, positive functions defined in Eq.
�9� and uk, vk and wk, the other part of the eigenvectors of Uk,
are defined in Eq. �10�. The dependence on the initial condi-
tions is contained in the complex factors

Fk � uk
*ãk�0� + vk

*b̃k�0� ,

Gk � uk
*ãk�0� + wk

*b̃k�0� . �29�

The required expressions for �ãk�2, �b̃k�2, and ãkb̃k
* are

�ãk�t��2 = �k
4�Fk�2�vk�2 + �k

4�Gk�2�wk�2

+ �− 1�t2�k
2�k

2 Re�FkGk
*vkwk

*e−2i	kt� ,

�b̃k�t��2 = �k
4�Fk�2 + �k

4�Gk�2 + �− 1�t2�k
2�k

2 Re�FkGk
*e−2i	kt� ,

ãk�t�b̃k
*�t� = �k

4�Fk�2vkuk
* + �k

4�Gk�2wkuk
*

+ �− 1�t�k
2�k

2�FkGk
*vke

−2i	kt + Fk
*Gkwke

2i	kt�uk
*.

�30�

In the long-time limit, the contribution of the time-
dependent terms in the k integrals of Eqs. �30� vanishes as

FIG. 1. Evolution of the entropy of entanglement for the initial
delocalized sates from Eq. �24� �up and down black triangles, re-
spectively� and for the localized sate from Eq. �25� �gray circles�.
The time evolution was calculated from Eqs. �30�. The horizontal
lines represent the asymptotic entanglement levels 0.661, 0.872, and
0.979 obtained from Eqs. �31� as explained in the text. The inset
shows the first steps in detail.

FIG. 2. Entropy of entanglement SE as a function of A and �B�,
defined in Eqs. �15�.
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t−1/2, as shown in detail in Ref. �10�. The asymptotic values

Ā, B̄, and C̄ can be obtained from the time-independent ex-
pressions

Ā = �
−�

� dk

2�
��k

4�Fk�2�vk�2 + �k
4�Gk�2�wk�2� ,

C̄ = �
−�

� dk

2�
��k

4�Fk�2 + �k
4�Gk�2� ,

B̄ = �
−�

� dk

2�
��k

4�Fk�2vkuk
* + �k

4�Gk�2wkuk
*� , �31�

which hold for arbitrary initial conditions.
Now we particularize these expressions for the initial

states defined in Eq. �24�. Using the symmetry condition,
�27�, the required squared moduli �Fk�2 and �Gk�2 can be ex-
pressed as

�Fk�2 = 4�ãk�0��2�1 − cos�k − 	k + �/4�� ,

�Gk�2 = 4�ãk�0��2�1 + cos�k + 	k + �/4�� . �32�

Since Ā+ C̄=1, we need only perform the integration for

C̄,

C̄ = �
−�

� dk

2�
�b̄k�2 � �

−�

� dk

2�
Q�k��ãk�0��2, �33�

where Q�k� is a real function,

Q�k� = 4��k
4�1 − cos�k − 	k + �/4�� + �k

4�1 + cos�k + 	k

+ �/4��� �34�

which, after some manipulation, can be simply expressed as

Q�k� = 1 +
sin k cos k

1 + cos2 k
. �35�

Note that this weight function satisfies Q�k��0 and
�−�

� �dk /2��Q�k�=1.

The asymptotic form for B̄ is pure imaginary, so it suffices

to calculate the imaginary part of B̄,

Im�B̄� = Im��
−�

� dk

2�
akbk

*� � �
−�

� dk

2�
R�k��ãk�0��2,

�36�

where R�k�,

R�k� � 4
2��k
4�1 − cos�k − 	k + �/4��sin�k − 	k�

− �k
4�1 + cos�k + 	k + �/4��sin�k + 	k�� �37�

simplifies to

R�k� =
sin2 k

1 + cos2 k
. �38�

This even function satisfies R�k��0 and �−�
� �dk /2��R�k�

=
2−1. The required quantity S̄E can now be evaluated from

Eqs. �33� and �36� for different initial conditions satisfying
Eq. �27�.

For the local initial condition from Eq. �25�, we have

�ãk�0��2=1/2 and, from Eq. �33�, Ā= C̄=1/2 results immedi-

ately. In this case, Eq. �16� reduces to r̄1,2= 1
2 ± �B̄� and the

asymptotic eigenvalues are determined by �B̄� alone. This
quantity can be trivially obtained from Eq. �36� as

B0 = �B̄��0�� =

2 − 1

2
. �39�

Thus, the asymptotic eigenvalues, r1=1/
2 and r2=1
−1/
2, characteristic of localized initial conditions are ob-
tained and the asymptotic entanglement, from Eq. �23�, is

S̄0�0.872.
We now return to the case of nonlocal initial conditions

��±� defined in Eq. �24�, for which

�ãk�0��2 = �cos2 k for ��+� ,

sin2 k for ��−� .
� �40�

Since �−�
� �dk /2��Q�k�cos2 k=�−�

� �dk /2��Q�k�sin2 k= 1
2 , we

obtain from Eq. �33�, A=C=1/2 and the eigenvalues are
determined by �B� alone. When inserted in Eq. �36�, these
initial conditions result in

B+ � �B̄��+�� = �
−�

� dk

2�
R�k�cos2 k =

�
2 − 1�2

2
,

B− � �B̄��−�� = �
−�

� dk

2�
R�k�sin2 k =

1

2
− �
2 − 1�2.

�41�

Note that these values are related by B0= 1
2 �B−+B+�. The

exact eigenvalues are

r1 = 2 − 
2, r2 = 
2 − 1 for ��+� �42�

and

r1 = 2�
2 − 1�, r2 = �
2 − 1�2 − 1 for ��−� , �43�

and the corresponding asymptotic entanglements are,

S̄+ �
1

2

− 1 − log2�
2 − 1� = 0.97866¯

S̄− � − 2�
2 − 1��1 + 
2 log2�
2 − 1�� = 0.66129 ¯ ,

�44�

respectively. These exact values are coincident with those
obtained numerically, see Fig. 1. These are the maximum and
minimum possible entanglement levels which can be ob-
tained when starting in the position subspace H1 spanned by
the kets �−1� and �1� with fixed coin. We show below that
starting from a generic state in this subspace, all intermediate
values of asymptotic entanglement are possible.
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B. Generic nonlocal initial state in H1

Consider a generic ket in H1 as the initial condition for
position. We keep the same initial coin ��� which leads to a
symmetric evolution in the local case. Thus, we consider
initial states of the form

����,��� = �cos ��− 1� + e−i� sin ��1�� � ��� . �45�

The parameters �� �−� /2 ,� /2� and �� �−� ,�� are real
angles. The initial amplitudes are ãk�0�= �eik cos �

+e−i�k+�� sin �� /
2, b̃k�0�= iãk�0� so,

�ãk�0��2 = �b̃k�0��2 =
1

2
�1 + sin�2��cos�2k + ��� . �46�

We use Eq. �33� to obtain,

C̄ =
1

2
+ sin�2��sin����

−�

� dk

2�
Q�k�sin�2k�

=
1

2
− B+ sin�2��sin��� . �47�

For arbitrary � and �=0, ±� /2 �indicating localized initial
positions� or for arbitrary � and �=0, ±� �indicating relative
phases zero or � between initial position eigenstates� we

have Ā= C̄=1/2 and the asymptotic entropy is determined by

the value of �B̄� alone.

�B̄� is obtained from Eq. �36�, which can be decomposed
as

Im�B̄� = B0 − B� sin�2��cos��� , �48�

with B0 defined in Eq. �39� and

B� �
B− − B+

2
=

3
2 − 4

2
. �49�

The range of variation of �B̄� is determined by B�. The maxi-

mum �B̄�max=B0+B�=B− results in minimum entanglement.
It is obtained either for �� ,��= �−� /4 ,0� or �� ,��
= �� /4 , ±��, both cases correspond to a uniform superposi-
tion of position eigenstates with a � phase difference, i.e.,
the case ��−�, discussed previously. The minimum value,

�B̄�min=B0−B�=B+, is obtained either for �� ,��= �� /4 ,0� or
�� ,��= �−� /4 , ±��, leads to the maximum entanglement
and corresponds to a uniform superposition with equal
phases, as in ��+�. For �=0, ±� /2, corresponding to local-

ized initial conditions, the intermediate value �B̄ � =B0, lead-

ing to S̄0�0.872, is obtained. The asymptotic eigenvalues
r̄1,2 can be obtained from Eq. �16�, as

r̄1,2��,�� =
1

2
± ��B0 − B� sin�2��cos����2

+ B+
2 sin2�2��sin2����1/2 �50�

and the asymptotic entanglement S̄E�� ,�� can be evaluated
exactly from Eq. �17�, as shown in Fig. 3.

A contour plot of this surface, Fig. 4, shows that there are

only two maximum and two minimum points �for initial con-
ditions ��+� and ��−�� for which the asymptotic entangle-

ments are S̄+�0.979 and S̄−�0.661, respectively. The verti-
cal dashed lines indicate initially localized positions, where

the entanglement is S̄0�0.872. The asymptotic entanglement
corresponding to initial conditions given by Eq. �50� with
�=0, is shown in Fig. 5. The relative phase between initial
position eigenstates can be chosen so that the asymptotic
entanglement is the same as in the localized case. This is the
case for relative phases �= ±� /2 corresponding to initial
positions of the form ��1�= �cos ��−1�± i sin ��1�� � ��� �in-
dicated by the horizontal dashed lines in Fig. 4�, as can be
seen by inspection of Eq. �50�.

FIG. 3. Asymptotic entropy of entanglement S̄E�� ,�� as a func-
tion of the initial state from Eq. �45�. The entropy is calculated from

the expressions for C̄ and �B� given in Eqs. �47� and �48�.

FIG. 4. Contour plot the surface shown in Fig. 3. Clear areas
indicate maxima and dark areas, the minimum values. The vertical
dashed lines correspond to localized initial conditions and the hori-
zontal dashed lines to states proportional to cos ��−1�± i sin ��1�. In

both cases, they result in an asymptotic entanglement S̄0�0.872.
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C. More general nonlocal initial states

In order to further illustrate the effects that the nonlocality
in the initial condition can have on the asymptotic entangle-
ment level, we consider an initial Gaussian wave packet with
a characteristic spread ��1 in position space with the same
coin state ��� as before. In this case, the Fourier transformed
coefficients ãk�0��
�e−k2�2/2 correspond to a well-localized
state in k space with lim�→��ãk�0��2=2���k�, where ��k� is
Dirac’s delta function. In this limit, the elements of the
asymptotic reduced density matrix can be trivially evaluated
from Eqs. �33� and �36�

C̄ = lim
�→�

�
−�

� dk

2�
Q�k��ãk�0��2 = Q�0� = 1,

Im�B̄� = lim
�→�

�
−�

� dk

2�
R�k��ãk�0��2 = R�0� = 0,

the eigenvalues are r1=1 and r2=0 and the corresponding
asymptotic entropy of entanglement vanishes.

This simple example shows that for a particular uniform
distribution in position space, a product state results in the
long time limit. Of course, this is not true for arbitrary rela-
tive phases between the initial position eigenstates. However,
it is clear that if more nonlocality is introduced in the initial
condition and the appropriate relative phases are chosen,
lower asymptotic entanglement levels may be obtained, until
eventually a product state is reached. A more detailed analy-
sis of this example shows that for ��1, the smaller eigen-
value approaches zero as �2��−4 and the asymptotic entropy

of entanglement decays as S̄E� log2 � /4�4+O��−8�. Thus,
for ��10 the asymptotic entanglement is already quite
small, SE�10−4. If many sites are initially occupied, the en-
tanglement level at long times becomes negligible.

IV. CONCLUSIONS

The long-time �asymptotic� entanglement properties of
the Hadamard walk on the line are analytically investigated
using the Fourier representation. The von Neumann entropy
of the reduced density operator is used to quantify entangle-
ment between the coin and position degrees of freedom. The
fact that the evolution operator of a quantum walk is diago-
nal in k space allows us to obtain clean, exact expressions for

the asymptotic entropy of entanglement, S̄E for different
classes of initial conditions.

The exact value of asymptotic entanglement for local ini-

tial conditions S̄0=0.87243. . ., is analytically obtained for
two different initial coins �L� and �R�+ i�L�. In Appendix A,
we apply the same method to generic initial coin states and
show that for local initial states they do not affect the
asymptotic entanglement level. This is consistent with the
results of the numerical exploration reported in Ref. �6�.

Asymptotic entanglement levels for nonlocal initial con-
ditions are reported for the first time in the context of the
Hadamard walk on the line. In order to show that the
asymptotic entanglement level is strongly dependent on
whether the initial condition is localized or delocalized in
position space, we apply our analytical method to consider in
detail the case of initial conditions in the position subspace
H1 spanned by �±1�, with a fixed coin ���= �R�+ i�L�. An
exact expression for the asymptotic entanglement entropy
has been obtained and it shows that the asymptotic entangle-

ment level varies smoothly between the extreme values S̄−

�0.661 and S̄+�0.979. As expected, for the localized initial

positions �±1� it reduces to S̄0=0.872. . ., but some superpo-
sitions with the particular relative phases ±� /2 also result in
this intermediate entanglement level. In order to explore the
effect of further nonlocality on the asymptotic entanglement
the case of an initial Gaussian profile in position space, with
characteristic spread ��1, is considered. For the particular
phase relation considered, the resulting asymptotic entangle-
ment decays fast with increasing initial nonlocality. Thus, if
many sites are initially occupied, negligible entanglement
may be obtained at long times.

The results presented in this work certainly need to be
extended to less simple systems. Most likely, quantum walks
with either more particles, more dimensions or both will be
needed to be useful for algorithmic applications. The prob-
lem of entanglement in such systems is more involved. For
example, in a quantum walk with two noninteracting par-
ticles there are four kinds of degrees of freedom and several
kinds of entanglement may coexist. At some point in the
evolution, a measurement of the position of one particle will
affect the probability distribution of the other in a way which
depends on the kinds and levels of entanglement present at
that time. Some initial work in this direction is presently
under way.
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APPENDIX: INDEPENDENCE OF THE ASYMPTOTIC
ENTANGLEMENT LEVEL OF INITIALLY LOCALIZED

POSITION EIGENSTATES ON THE INITIAL COIN

In this Appendix we provide an analytical proof of the
fact that the asymptotic entanglement level does not depend
on the initial coin state for initially localized position eigen-
states. As mentioned in the main text, a numerical study
reported in Ref. �6� has already reached this result.

Consider as an initial condition a position eigenstate,
which we take, without loss of generality, as x=0. Let us also
consider a generic coin

���0�� = �0� �
1

2

�cos ��R� + ei� sin ��L�� , �A1�

where � ,� are two real angles. The Fourier-transformed ini-
tial coefficients, Eq. �6�, are

ã0�0� = a0�0� = cos � ,

b̃0�0� = b0�0� = ei� sin � . �A2�

From expressions �29�, for this class of initial conditions
we obtain

�Fk�2 = cos2 � + �vk�2 sin2 � + sin�2��Re�uk
*vke

−i��

= Fe�k� + Fo�k� ,

�Gk�2 = cos2 � + �wk�2 sin2 � + sin�2��Re�uk
*wke

−i�� .

=Ge�k� + Go�k� , �A3�

where the even and odd parts are the real functions

Fe�k� � cos2 � + �vk�2 sin2 �

− �1 − 
2 cos�	k − k��sin�2��cos � ,

Fo�k� � − 
2 sin�	k − k�sin�2��sin � ,

Ge�k� � cos2 � + �wk�2 sin2 �

− �1 + 
2 cos�	k + k��sin�2��cos � ,

Go�k� � − 
2 sin�	k + k�sin�2��sin � . �A4�

The eigenvalues �16� of the reduced density operator,
which determine the entanglement level, depend only on its
determinant

� = AC − �B�2 = C − �C2 + �B�2� . �A5�

The asymptotic entanglement will be independent of the ini-

tial coin state if �̄ does not depend on � or �. From the
general asymptotic expressions �31� which are valid in the
long-time limit for arbitrary initial conditions, we obtain

C̄ = c1 + �c2 − c1�sin2 � + c3 sin�2��cos � ,

B̄ = b1 + �b2 − b1�sin2 � + sin�2���b3 cos � + ib4 sin �� ,

�A6�

where the real coefficients cj ,bj are explicitly

c1 = �
−�

� dk

2�
��k

4 + �k
4� = 1 −


2

4
,

c2 = �
−�

� dk

2�
��k

4�vk�2 + �k
4�wk�2� =


2

4
,

b1 = c3 = − �
−�

� dk

2�
��k

4�1 − 
2 cos�	k − k��

+ �k
4�1 + 
2 cos�	k + k���

=
1

2
−


2

4
,

b2 = − �
−�

� dk

2�
��k

4�vk�2�1 − 
2 cos�	k − k��

+ �k
4�wk�2�1 + 
2 cos�	k + k���

=

2

4
−

1

2
,

b3 = − �
−�

� dk

2�
��k

4�1 − 
2 cos�	k − k�2�2

+ �k
4�1 + 
2 cos�	k + k��2�

=

2

4
−

1

2
,

b4 = 2�
−�

� dk

2�
��k

4 sin2�	k − k� + �k
4 sin2�	k + k��

=

2 − 1

2
. �A7�

These coefficients can be conveniently expressed in terms of
one of them, i.e., b1, since they satisfy the relations

c1 = 1 − c2 =
1

2
− b1,

b2 = b3 = − b1,

b4 = 
2b1.

Thus, Eqs. �A6� can be written as
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C̄ = b1�3 + 
2 − 2 sin2 � + sin�2��cos �� ,

B̄ = b1�1 − 2 sin2 � + sin�2���− cos � + i
2sin ��� .

�A8�

Using these expressions in Eq. �A5�, it is simple to check
that the � and � dependence cancels out and only the inde-

pendent terms in C̄ and B̄ contribute to the eigenvalues. The
resulting exact determinant is, from Eq. �A5�,

�̄ = c1�1 − c1� − b1
2 = c2�1 − c2� − b2

2 =

2 − 1

2
. �A9�

From this simple expression we obtain the eigenvalues

r1,2 =
1

2
�1 ± 
1 − 4�� = �1/
2,

1 − 1/
2
�

which, as mentioned in the main text, produce the asymptotic

entanglement entropy S̄0=−r1 log2 r1−r2 log2 r2=0.872. . . .
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