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We address the problem of unambiguous discrimination among a given set of quantum operations. The
necessary and sufficient condition for them to be unambiguously distinguishable is derived in the cases of
single use and multiple uses, respectively. For the latter case we explicitly construct the input states and
corresponding measurements that accomplish the task. It is also found that the introduction of entanglement
can improve the discrimination.
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The study of open quantum systems is an important sub-
ject in the fields of quantum control and quantum-
information theory. Such systems can be generally described
in the quantum operations formalism. Specifically, the be-
havior of an open system can be represented by a linear,
completely positive, trace-preserving map E, which is written
in the Kraus operator-sum form �1�

E��� = �
k

Ek�Ek
†, �1�

where Ek are linear operators and satisfy the completeness
condition �kEk

†Ek= I in order to preserve the trace of �.
Now the following problem naturally arises: if we are

given a quantum mechanical black box that performs one of
the operations E1 , . . . ,En, how can we identify which one it
really performs? A natural idea is to input a probe state to the
black box and then distinguish between the possible outputs.
Moreover, if the black box can be accessed multiple times,
we can repeat the procedure and collectively discriminate the
output states of multiple uses.

Since this method relies on the discrimination of output
states, it is necessary to review the results about quantum
state discrimination at first. It is well known that a set of
quantum states can be perfectly distinguished if and only if
they are orthogonal to each other. How to distinguish a set of
nonorthogonal quantum states in an optimal way according
to some criterion has become an important problem and re-
ceived a lot of attention in the past years �2�. Two strategies
are widely used for this task. One is called minimum-error
discrimination, which allows mistakes but minimizes the
probability of giving an erroneous result. The other one,
named unambiguous discrimination �3–21�, may fail for a
nonzero probability, but when it succeeds the result is abso-
lutely right. To be specific, in the task of unambiguous dis-
crimination among �1 , . . . ,�n, we need to construct a
positive-operator valued measure �POVM� comprising n+1
elements �0, �1 , . . . ,�n such that the measurement outcome
i correctly indicates �i for any i=1, . . . ,n and the outcome 0

leads to no conclusion. Unambiguous discrimination cannot
be applied to an arbitrary set of states. It is proved �14� that
the states �1 , . . . ,�n can be unambiguously discriminated
if and only if for any i=1, . . . ,n, supp���1 , . . . ,�n��
�supp��� j : j� i��, or equivalently, supp��i��supp��� j : j
� i��, where supp��i� is the support of �i, and the support of
a set of density operators is defined to be the sum of each
one’s support �22�.

The two strategies above can both be extended to the case
of quantum operations. However, neither of them is well
studied so far. Most previous work was directed to the spe-
cial cases of unitary operations �23–25� and Pauli channels
�26,27�. Some measures were also defined to quantify the
distinguishability of general quantum operations �28–30�.
Only recently the problem of minimum-error discrimination
between two general quantum operations was addressed by
Sacchi �31�.

In this paper we consider the problem of unambiguous
discrimination among a given set of quantum operations. The
necessary and sufficient condition for them to be unambigu-
ously distinguishable is derived in the cases of single use and
multiple uses, respectively. For the latter case we explicitly
give a strategy. It is also found that the introduction of en-
tanglement can improve the discrimination.

We first consider the simple case when the black box can
be accessed only once. The problem can be formulated as
follows: if the possible quantum operations are E1 , . . . ,En,
can we find a state � in the input Hilbert space H such that
E1��� , . . . ,En��� are unambiguously distinguishable? More
generally, we can introduce an ancilla and make the main
system and ancilla entangled to improve our discrimination.
Denoting the ancillary Hilbert space by Ha, our task is to
find a state � in the composite space H � Ha such that �E1

� I���� , . . . , �En � I���� can be unambiguously discrimi-
nated, where I is the identity operator acting on the space
Ha. If such ancillary space and input state exist, we say that
E1 , . . . ,En are unambiguously distinguishable by a single use.

Since any mixed input state can be purified by appending
a reference system which can be viewed as a part of the
ancilla, we just need to consider pure input states. Further-
more we know from Schmidt decomposition that any ancil-
lary space has a subspace of dimension at most dim�H� that
really matters in the discrimination. Thus, in the following
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we only need to consider the pure states of the composite
space H � Ha where dim�Ha�=dim�H�.

Now we define the support of a quantum operation E,
denoted by supp�E�, to be the span of its Kraus operators
�Ek�, i.e.,

supp�E� � span�Ek� � 	�
k

�kEk:�k � C
 . �2�

It is proved that every two sets of Kraus operators describing
the same quantum operation E can be related to each other by
a unitary transformation �32�. This fact indicates that our
concept supp�E� is independent of the specific choice of
Kraus operators so it is well defined.

Furthermore, we define support of a set of quantum op-
erations �E1 , . . . ,En�, denoted by supp��E1 , . . . ,En��, to be the
sum of every operation’s support, i.e.,

supp„�E1, . . . ,En�… � �
k=1

n

supp�Ek� . �3�

It is found out that the above concept of support of quan-
tum operations plays a very similar role like the support of
quantum states in determining the possibility of unambigu-
ous discrimination, as the following theorem indicates:

Theorem 1. The quantum operations E1 , . . . ,En can be un-
ambiguously discriminated by a single use if and only if for
any i=1, . . . ,n, supp�Ei��supp�Si�, where Si= �E j : j� i�.

Proof. Suppose Ei has Kraus operators �Ei
k :k=1, .. ,ni�. If

the operation Ei � I acts on the input ����H � Ha, the cor-
responding output is

�Ei � I�������� = �
k=1

ni

�Ei
k

� I�������Ei
k

� I�†. �4�

It follows that its support is given by

supp„�Ei � I��������… = span��Ei
k

� I����:k = 1, . . . ,ni� .

�5�

If there exists an operation Ei satisfying
supp�Ei��supp�Si�, then we have that each Ei

k can be written
as the linear combination of the operators �Ej

l : j� i�. So for
any input state ���, �Ei

k
� I���� can also be written as the

linear combination of ��Ej
l

� I���� : j� i�. By Eq. �5�, this in-
dicates

supp��Ei � I��������� � supp„��E j � I��������:j � i�… .

�6�

So it is impossible to unambiguously distinguish the
output ��Ei � I��������� from other possible outputs
�E j � I���������j� i�. Therefore, we cannot unambiguously
distinguish the operation Ei from the others.

The proof of the converse needs a constructive method.
Now we assume that the E1 , . . . ,En fulfill the given condi-
tion. Let ��� be arbitrary pure state with full Schmidt num-
ber, i.e.,

��� = �
t=1

d

�t�t��ta� , �7�

where �t�0, t=1, . . . ,d, ��t� : t=1, . . . ,d� and ��ta� : t
=1, . . . ,d� are orthonormal bases for H and Ha, respectively.
We now prove that the set of output states ��Ei � I��������:
i=1, . . . ,n� are unambiguously distinguishable. Otherwise,
there exists one operation Ei satisfying

supp„�Ei � I��������… � supp„��E j � I��������:j � i�… ,

�8�

hence, by Eq. �5� we know that there exist coefficients �� jl
k �

such that for any

�Ei
k

� I���� = �
j�i,l=1,. . .,nj

� jl
k �Ej

l
� I���� . �9�

Taking Eq. �7� into Eq. �9�, we have

�
t=1

d

�tEi
k�t��ta� = �

t=1

d

�t �
j�i,l=1,. . .,nj

� jl
k Ej

l�t��ta� . �10�

Since ��ta�� are orthogonal to each other and �t�0, we have
that for any �t�,

Ei
k�t� = �

j�i,l=1,. . .,nj

� jl
k Ej

l�t� , �11�

which implies that

Ei
k = �

j�i,l=1,. . .,nj

� jl
k Ej

l . �12�

So we obtain supp�Ei��supp�Si�, which contradicts the as-
sumption. �

It should be noted that from the proof above, any en-
tangled pure state with full Schmidt number can be used as
input to universally distinguish arbitrary set of quantum op-
erations that fulfill the condition in theorem 1.

A corollary of theorem 1 is that two quantum operations
E1 and E2 can be unambiguously discriminated by a single
use if and only if supp�E1��supp�E2� and
supp�E2��supp�E1�.

For the case in which we are not allowed to introduce any
ancillary system, a similar argument shows that the condition
presented in theorem 1 is still necessary. But in general it is
not sufficient. Let us consider the following example. Sup-
pose we are going to discriminate two Pauli channels, the
bit-flip channel and the phase-flip channel, whose Kraus op-
erators are ��pI ,�1− pX� and ��qI ,�1−qZ�, respectively,
i.e.,

E1��� = p� + �1 − p�X�X , �13�

E2��� = q� + �1 − q�Z�Z . �14�

It is impossible to unambiguously distinguish these two
channels without use of ancilla. To see this, we notice that
two qubit states can be unambiguously discriminated only if
they are both pure. However, the inputs that make the output
of the bit-flip channel pure are �± �= 1

�2
��0�± �1�� but for the
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phase-flip channel such inputs are ��0�,�1��. So for any input
state ���, the outputs E1������� and E2������� cannot both
be pure and thus they are not unambiguously distinguishable.
On the other hand, from theorem 1 it is easy to see that when
using ancillary systems these two channels can be unambigu-
ously discriminated by a single use.

From the above example we see that the introduction of
entanglement between the main system and ancilla not only
increases the success probability but also in fact changes the
possibility of unambiguous discrimination between quantum
operations. It should be noted that for minimum-error dis-
crimination the use of entangled input can also increase the
efficiency �31�.

Now we consider a more complicated case in which the
black box can be accessed multiple times. We say that quan-
tum operations E1 , . . . ,En can be unambiguously discrimi-
nated by N uses if there exist an ancillary space Ha and a
state � in the composite space H�N � Ha such that �E1

�N

� I���� , . . . , �En
�N

� I���� are unambiguously distinguish-
able, where I is the identity operators acting on Ha. Still we
only need to focus on the case of �= ����� where ���
�H�N � Ha and dim�Ha�=dim�H�N�.

One may think that when a repeated use of the black box
is allowed, we can use quantum process tomography �33,34�
to identify it. However, this method depends on the statistical
data of measurement outcomes and thus requires consider-
able effort. Our method based on state discrimination ac-
cesses the black box a much smaller number of times, so it is
more efficient.

Now it is necessary to review some results about unam-
biguous discrimination between quantum states with mul-
tiple copies because they play a central role in the proof of
our following theorem. It is well known that a set of pure
states can be unambiguously discriminated if and only if they
are linearly independent. However, in Ref. �6� Chefles found
that even linearly dependent pure states can be unambigu-
ously discriminated if many sufficient copies of them are
distinguished collectively. A bound on the number of copies
needed was also obtained: for any n distinct pure states
��1� , . . . , ��n� in a d-dimensional space, ��1��c , . . . , ��n��c

can always be unambiguously discriminated if c�n−d+1.
Here we find a similar result for mixed states.

Lemma 1. If the mixed quantum states �1 , . . . ,�n satisfy
that for any i� j, supp��i��supp�� j�, then �1

�n , . . . ,�n
�n can

be unambiguously discriminated. Otherwise, for arbitrary N
�1, �1

�N , . . . ,�n
�N are not unambiguously distinguishable.

Proof. If there exist two states �i and � j such that
supp��i��supp�� j�, then we have that for any N�1,
supp��i

�N��supp�� j
�N�, so it is impossible to unambiguously

distinguish between the state �i
�N and � j

�N.
Now suppose that for any i� j, supp��i��supp�� j�. Then

we know that for any i� j, supp��i� is not fully orthogonal to
ker�� j�, where ker�� j� is the kernel of � j �35�. Denoting the
projection operators onto supp�� j� and ker�� j� by Pj ,Qj, re-
spectively, then we obtain

tr�Qj�i� � 0, �15�

for any i� j.

If we have n copies of the unknown state, numbered from
1 to n, we perform the projective measurement �Pi ,Qi� on
the ith copy individually. Equivalently, a projective measure-
ment consisting of all the projection operators ��1 � �2 . . .
� �n� is performed on the n-fold copies, where for any k
=1, ¯ ,n, �k= Pk or Qk.

Consider the probability of getting the measurement out-
come corresponding to Q1 � . . .Qi−1 � Pi � Qi+1 � ¯ � Qn. If
the unknown state is �i

�n, the probability is

tr„�Q1 � . . . Qi−1 � Pi � Qi+1 � ¯ � Qn��i
�n
…

= tr�Pi�i��
j�i

tr�Qj�i� � 0, �16�

where the last inequality is derived from Eq. �15� and
tr�Pi�i�=1.

Otherwise, if the unknown state is � j
�n for some j� i, the

probability is

tr„�Q1 � . . . Qi−1 � Pi � Qi+1 � ¯ � Qn�� j
�n
…

= tr�Pi� j��
k�i

tr�Qk� j� = 0, �17�

where the second equality holds because the formula of the
second step includes the item tr�Qj� j�=0.

Therefore, the measurement outcome corresponding to
Q1 � . . .Qi−1 � Pi � Qi+1 � ¯ � Qn correctly indicates the
state �i

�n for any i=1, . . . ,n. For any other measurement out-
come, we get an inconclusive result. This is an unambiguous
discrimination strategy among the states �1

�n , . . . ,�n
�n. �

Applying lemma 1, we find the necessary and sufficient
condition for a set of quantum operations to be unambigu-
ously distinguishable by multiple uses.

Theorem 2. If the quantum operations �E1 , . . . ,En� satisfy
that for any i� j, supp�Ei��supp�E j�, then they can be un-
ambiguously discriminated by n uses. Otherwise, for any N
�1, they cannot be unambiguously discriminated by N uses.

Proof. If there exist Ei and E j such that
supp�Ei��supp�E j�, then it is easy to see that for any N�1,
supp�Ei

�N��supp�E j
�N�. It follows from theorem 1 that Ei

�N

and E j
�N cannot be unambiguously discriminated by a single

use.
Now suppose that for any i� j, supp�Ei��supp�E j�. From

theorem 1 we know that for any i� j, Ei and E j are unam-
biguously distinguishable by a single use. Furthermore, it is
from the proof of theorem 1 that for any entangled input ���
with a full Schmidt number, the outputs �Ei � I�������� and
�E j � I�������� are unambiguously distinguishable. So the
set of states ��E1 � I�������� , . . . , �En � I��������� satisfy
the condition of lemma 1, we hereby conclude that their
n-fold copies (�E1 � I��������)�n , . . . , (�En � I��������)�n

can be unambiguously discriminated. Thus, E1 , . . . ,En can be
unambiguously discriminated by n uses with the input
����n. �

Combining the proof of lemma 1 and theorem 2, we have
explicitly constructed the input states and corresponding
measurements that unambiguously discriminate the given
quantum operations in the case of multiple uses. It should be
noted that the measurement presented in the proof lemma 1
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is actually separable so it is practically implementable.
Comparing the condition of theorem 2 with that of theo-

rem 1, we can see that the former is looser. So it is possible
that a set of quantum operations can be unambiguously dis-
criminated only by multiple uses. For example, consider
three Pauli channels E1 ,E2 ,E3 which have Kraus operators
��pI ,�1− pX�, ��qI ,�1−qZ�, and ��sX ,�1−sZ�, respec-
tively, i.e.,

E1��� = p� + �1 − p�X�X , �18�

E2��� = q� + �1 − q�Z�Z , �19�

E3��� = sX�X + �1 − s�Z�Z . �20�

Since supp�E3��supp��E1 ,E2��, we know from theorem 1
that they cannot be unambiguously discriminated by a single
use. However, they satisfy the condition of theorem 2 and
thus can be unambiguously discriminated by three uses.

It is also found that when distinguishing two quantum
operations, the conditions of theorem 1 and theorem 2 coin-
cide, which means that multiple uses do not change the dis-
tinguishability in this case. By theorem 2, the only scenario
in which unambiguous discrimination cannot be applied to a
given set of quantum operations is that one of them has
support totally contained in the support of another one.

Our discussions above mainly focus on the possibility of
unambiguous discrimination. It is certainly beneficial to con-
sider how to achieve the best efficiency. Specifically, we
should find the input state that maximizes the optimal suc-
cess probability of unambiguous discrimination between the
corresponding output states. But even for a set of known

states, the optimal success probability of unambiguous dis-
crimination between them has no analytical formulation in
general so far �13�. So our problem is difficult to solve ana-
lytically. Even so, since in most cases the quantum operation
to be identified is repeatable, we can repeat a nonoptimal
procedure to make the total failure probability exponentially
decrease, obtaining the result quickly. Because our strategy is
error-free, once we get a conclusive result it can be immedi-
ately accepted.

It is a surprising fact that the conditions for unambiguous
discrimination of quantum operations are in the form similar
to those for quantum states. This can be understood partially
from the point that our strategy has a natural dependence on
unambiguous discrimination of quantum states. A profounder
understanding is that there exist inherent relations between
quantum states and operations. Some previous work has been
devoted to this topic �36–38� and it deserves further research.

In conclusion, we consider the problem of unambiguous
discrimination among a given set of quantum operations. We
derive the necessary and sufficient condition for them to be
unambiguously distinguishable in the cases of single use and
multiple uses, respectively. In the latter case a strategy is
explicitly given. It is also found that the use of entanglement
can improve the efficiency and even change the possibility of
unambiguous discrimination between the given quantum op-
erations. We hope our work can stimulate further research on
discrimination of quantum operations.
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