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The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical
periodic rays. The required subtractions in the spectral density are determined explicitly. The semiclassical
Casimir energies so defined coincide with those of zeta function regularization in the cases studied. Poles in the
analytic continuation of zeta function regularization are related to nonuniversal subtractions in the spectral
density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the
contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small
deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless
scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the
boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy
due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary. In
favorable cases its sign can, contrary to conventional wisdom, be inferred without calculation of the Casimir
energy.
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I. INTRODUCTION

Classically, the energy of a field is always positive. That
need not be so for a Casimir energy E, generally thought to
have its origin in the vacuum fluctuations of the field �1�. The
possibility of E being negative can be understood from the
fact that it is the difference in the infinite zero-point energies
of the field for two systems. For parallel plates, for example,
one considers the energies in the presence and absence of the
walls. Most calculations in the past were performed by di-
rectly evaluating this difference of infinite zero-point ener-
gies. There are many articles and texts that consider Casimir
effects in this manner. See, for instance Refs. �2–4� for an
overview.

The ultraviolet divergence of the zero-point energy in
general reflects local properties of the system. From a path-
integral point of view the divergence is due to contributions
from arbitrarily short paths that begin and end at the same
point. These zero-length paths probe the local radii of curva-
ture or, for paths touching boundaries, local properties of the
boundary �5–10�. In a few favorable situations, ultrashort
paths do not contribute to the difference of zero-point ener-
gies. This in particular is the case for rigid disjoint bound-
aries that are moved relative to each other �11�. One some-
times also considers idealized boundaries whose local
deformation does not cost energy. An example of the latter
are smooth, perfectly conducting metallic surfaces of vanish-
ing thickness �12� in three dimensions. The �local� surface
tension of such an ideal surface vanishes �13,14� and no
energy is required to deform it locally.

To be measurable, a Casimir energy should not be ex-
tremely sensitive to the �sometimes implicit� ultraviolet cut-
off and should depend on global characteristics of the system
only. It otherwise is difficult to disentangle the energy re-
quired to change the system as a whole from purely local
effects, for instance, due to changes in the local curvature of
the space or in the reflectance of a boundary.

There thus either is no contribution from ultrashort paths
to a measurable Casimir effect or it must be possible to un-

ambiguously isolate these local contributions to the vacuum
energy. Most calculations of the Casimir energy based on
spectral properties and Green function methods do not sepa-
rate length scales explicitly. The regularization and subse-
quent subtraction of divergent contributions often are diffi-
cult to motivate physically and it is not always apparent how
Casimir energies of different systems can be compared.

The semiclassical evaluation of Casimir energies advo-
cated in Ref. �15� relies on an ab initio separation of scales.
The approach separates the semiclassical contribution to the
Casimir energy due to quadratic fluctuations about classical
periodic rays �paths� from all others. Classical periodic rays
are of �finite� extremal length and give a semiclassical ap-
proximation to the Casimir energy that depends on global
characteristics of the system only. This part of the vacuum
energy is naturally finite and does not include ultraviolet
contributions from length scales that are much smaller than
the shortest classical periodic ray. This is one of the principal
conceptual differences to the “optical” approximation to Ca-
simir energies �16�. The latter �in principle� takes all closed
classical paths �not just periodic ones� into account.1 Closed
paths can be ultrashort in the vicinity of surfaces and lead to
divergent Casimir self-energies. The optical approximation
therefore has mainly been used to obtain a numerical esti-
mate of the interaction energy between rigid bodies.

In Ref. �15� it was argued that a semiclassical evaluation
of the Casimir energy is often particularly simple and gives

1Although this appears to be an improvement over the semiclas-
sical treatment, the optical approximation to Casimir energies also
only includes quadratic fluctuations about classical rays. The optical
approach in principle could provide a more uniform approximation
in some cases �but not in all�. It, in general, is no more accurate
than the semiclassical approach and furthermore difficult to imple-
ment for chaotic systems. An objective comparison of the two
methods �17,18� is complicated by the numerical limitations and
approximations of this approach.
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the leading asymptotic behavior when the Casimir energy is
large. This is the experimentally most accessible region of
parameter space �19�.

However, the desired separation of length scales may not
always be possible: changing the radius of a spherical shell
invariably changes the local curvature of the surface as well.
The energy required to achieve a change in radius in this
case will include a possibly divergent contribution from the
local change in curvature.

This suggests dividing systems into classes: the difference
in vacuum energy of any two systems within the same class
being finite. It would require an infinite amount of energy to
compare systems belonging to different classes. Within a par-
ticular class, the finite Casimir energy has the universal in-
terpretation of a vacuum energy: differences in Casimir en-
ergies are finite differences in vacuum energies.

The spectral density ��E ; . . . � is assumed to be a well-
defined quantity for any system �at least for “free,” noninter-
acting fields�. The ellipsis here stands for the space M, the
types of field, the boundary conditions that are satisfied and
any other qualifiers of the system. For systems A and B of
the same class, the difference of spectral densities

��E;A − B� ª ��E;A� − ��E;B� , �1�

by definition has a finite first moment,

− � � EA−B ª
1

2
�

0

�

��E;A − B�EdE

= Evac�A� − Evac�B� � � . �2�

EA−B could be called the Casimir energy of system A with
respect to system B. There evidently are many equivalent
definitions of the Casimir energy of a system within a par-
ticular class—they are distinguished by the spectral density
used as reference. The Casimir energies determined by two
such subtraction schemes, differ only by a finite amount that
is the same for any system of a class. Such subtraction
schemes are equivalent in all physical respects.

The semiclassical Casimir energy �SCE� is defined by a
particular subtraction �0�E� in each class. I will take advan-
tage of the fact that the semiclassical spectral density ��E� is
the sum of a part �̃�E� determined by contributions from
periodic rays and a �often classical� remainder �20� �0�E�,

�̃�E; . . . � = ��E; . . . � − �0�E;class�

= −
1

�
lim

�→0+
Im g̃�E + i�; . . . � . �3�

Here g̃�E� is the part of the response function due to classical
periodic rays. For a scalar field the remainder �0�E� at least
includes the Weyl contribution to the spectral density propor-
tional to the volume of M. In addition �0�E� may depend on
the type of field, the curvature, boundary conditions as well
as other characteristics �5,6,14�.

The SCE Ec then is defined as

Ec�M� = �
0

� E

2
�̃�E�dE = −

1

�
lim

�→0+
�

0

� E

2
Im g̃�E + i��dE .

�4�

Since the length of a periodic ray is finite, this contribution
to the vacuum energy is free of ultraviolet divergences and in
general is finite �15�. The SCE of Eq. �4� may be taken to �at
least approximately� represent the vacuum energy within a
class of systems for which the subtracted spectral density
�0�E� is the same. It may happen �see the example of the
Laplace-Beltrami operator on a half-sphere of Appendix A�
that a particular class has just one member. The subtraction
�0�E� in this case is not universal to several systems. The
finite Casimir energy one extracts in this case is peculiar to
the particular system and it is physically quite irrelevant: any
�small� change in the system requires infinite energy. In the
examples studied in Appendix A such nonuniversal subtrac-
tions are seen to be associated with poles in zeta function
regularization �8,21,22�. The SCE of Eq. �4�, on the other
hand, coincides with the Casimir energy of zeta function
regularization in those systems considered for which the sub-
traction has a more universal meaning.

Although Eq. �4� does not directly refer to �0�E�, this
implicit subtraction in the spectral density determines the
class of systems and thus, in effect, the usefulness of the
SCE. Other approaches, such as zeta function regularization
often give finite answers without explicitly specifying what
has been subtracted. Still other approaches, such as heat ker-
nel expansion, subtract terms whose physical implications
are not entirely clear �6,10� and the question whether one
gains or looses vacuum energy by transforming an elongated
ellipsoid into a sphere becomes difficult to answer. To escape
this conundrum in the interpretation of a Casimir energy,
Power �23� long ago considered a large rectangular box with
a moveable wall to unambiguously define the original Ca-
simir energy �1� for two parallel conducting plates. He in
effect was considering a class of systems that all have the
same total volume, total surface area, edge length and num-
ber of corners. We will see in Sec. IV B that the implicitly
subtracted spectral density �0�E� for a three-dimensional par-
allelepiped in fact only depends on these characteristics. �̃�E�
of a parallelepiped can again be expressed in terms of peri-
odic orbits �24–27�.

Restricting the validity of a Casimir energy to a certain
class of spaces for which the same subtraction in the spectral
density gives a finite Casimir energy generalizes Power’s
procedure to slightly less obvious situations. As the example
in Appendix A of a massless scalar field on S4 demonstrates,
�universal� subtractions can go beyond Weyl terms and for
instance include contributions proportional to the integral of
the �local� curvature over the whole space. These curvature
dependent subtractions in the spectral density are propor-
tional to coefficients that describe the short �proper-�time be-
havior of the heat kernel �10,28�.

As emphasized in a perturbative setting by Barton �29�,
the physical interpretation of a Casimir energy depends al-
most entirely on the �implicit� subtraction. This is readily
illustrated by a spherical cavity of radius R in three dimen-
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sions. For dimensional reasons the Casimir energy is propor-
tional to �c /R and apparently only the proportionality con-
stant is of physical interest. However, the significance �30� of
the electromagnetic Casimir energy �which was found to de-
crease with the radius of the cavity �12��, relies on the fact
that this Casimir energy actually determines the physical
pressure on the spherical surface of the cavity. This conclu-
sion is possible only if the �implicit� subtractions in �0�E� do
not depend on the surface area of the boundary. The finite
Casimir energy otherwise could only be used to obtain the
vacuum energy difference between cavities of the same sur-
face area and would not determine the pressure on the cavity
surface. That a subtraction proportional to the surface area is
not required in the electromagnetic case is due to the ideal
metallic boundary conditions �13,14�. The situation is less
favorable for a scalar field �8,9� satisfying Dirichlet bound-
ary conditions on such a spherical surface. The nonuniver-
sality of the required subtraction was emphasized in Ref. �7�.

A similar interpretational challenge arises when one con-
siders De Sitter space as a conformal transformation of the
Einstein universe. The Casimir stresses of these two spaces
are not conformally related because the required subtractions
are not �26�. De Sitter space and the Einstein universe belong
to different classes and the classical periodic orbits of the
two spaces are not mapped onto each other by the conformal
transformation �31�.

Defining the Casimir energy in terms of contributions due
to periodic orbits rather than by any other subtraction of the
spectral density has the advantage that this finite part of the
vacuum energy may often be evaluated approximately. This
is of practical use in situations where the exact spectrum is
not, or is only numerically, known. A rather crude approxi-
mation will provide us with an estimate of the sign of the
SCE in Eq. �4� without detailed knowledge of the periodic
rays themselves.

The sign of Casimir energies is one of its many puzzles.
Without explicit calculation, determining the sign of the dif-
ference of two divergent vacuum energies in general is quite
hopeless. Obtaining the sign of the SCE, on the other hand,
is much more promising due to the geometrical nature of this
definition. The overall phase of the contribution to the re-
sponse function from a particular periodic ray is given by a
topological winding number �32�. The sign of the SCE can
often already be inferred from the shortest periodic rays that
contribute.

I first illustrate the approach for single valued �bosonic�
fields on smooth d-dimensional manifolds without boundary
such as Sd and Td and verify the sign of the Casimir energy
for these manifolds obtained by zeta function regularization
�24–27,33,34�. I then generalize to manifolds with bound-
aries on which the bosonic field satisfies Dirichlet or Neu-
mann conditions. Several examples show that classical peri-
odic rays within the boundary must also be considered. In
general the contribution of these rays to the SCE depends on
the boundary condition. When the boundary is not smooth,
as for a parallelepiped, contributions due to periodic rays in
even lower-dimensional spaces have to be included as well.

II. GENERAL SPACES WITHOUT BOUNDARY

The conceptually simplest Casimir energy probably is that
due to a massless single valued bosonic field on a smooth

�d+1�-dimensional Riemannian space-time without bound-
ary. I will assume that the metric is static in a particular
frame, that is it makes sense to speak of a d-dimensional
spatial manifold M and of the energy of a particle. Periodic
rays follow geodesics on M that close on themselves. The
classical action for a periodic ray � then is

S� = � p · dx = p�E�L�, �5�

where ��=�S� /�E is the time for the ray to return to its
starting point on M. For a massless particle moving at the
speed of light, ��=L� /c and thus p�E�=E /c. Note that for
periodic rays �� is an integer multiple of the primitive period
t�.

The contribution g̃�E� of isolated periodic rays to the re-
sponse function is of the form �20�

g̃�E� =
1

i�
�
�

A�t�eiE��/�−i	��/2. �6�

In Eq. �6� the amplitude A� is determined by the monodromy
matrix associated with the ray �. It is a geometric quantity
that �for massless particles in vacuum� does not depend on
their energy E. A� furthermore is positive and real by defi-
nition. The integer 	�
0 is the Maslov-like index of the
stable and unstable manifolds of the periodic ray �32�. Im-
portant for us is that this index is a topological winding
number. As such it is an additive integer that scales directly
with the number of times an orbit is iterated. For practical
calculations it will be useful that 	� may be written as the
sum

	� = �� + ��, �7�

of the number of conjugate points �� between the initial
point x and the final point x�=x of the periodic ray and of an
integer �� associated with the stability of the periodic orbit.

�� gives the total phase retardation ��� /2 due to conju-
gate points �for manifolds without boundaries� encountered
by the periodic ray. �� in Eq. �7� is the number of negative
eigenvalues of the matrix W of second variations of L� with
respect to a change of the initial �=final� point of the periodic
ray �20�

�
L��x + 
y,x� + 
y��x=x� = 
yT · W�x� · 
y . �8�

Since one of the eigenvalues of the d�d matrix W always
vanishes, 0����d−1.

If all periodic rays are isolated, one can insert Eq. �6� in
the definition of Eq. �4�. Upon performing the energy inte-
gral, the SCE due to only isolated periodic rays is of the form

Ec�M� = − ��
�

cos�	��/2�
A� t�

2���
2 . �9�

The sign of the contribution of a particular periodic ray to the
SCE is determined by the integer 	�. Remarkably, periodic
rays with odd 	� do not contribute to the Casimir energy.
Although an expression like Eq. �9� is valid only for isolated
periodic rays, it can also be used to infer the sign of the
Casimir energy of integrable systems. The expression of
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Berry and Tabor �35� for the spectral density of an integrable
system in terms of periodic rays is more appropriate in this
case �see below�, but integrable systems are singular in the
sense that small deformations of the manifold M destroy the
symmetries and generically result in isolated periodic rays.
The expression of Eq. �9� is robust in that the SCE changes
continuously and in particular generally does not change sign
if the deformation is small enough. Slightly deforming M to
isolate the orbits therefore should allow us to obtain the sign
of Ec from Eq. �9� even for integrable systems. In support of
this conjecture note that the integer 	� of an individual pe-
riodic ray in Eq. �6� is a winding number that changes only
when a new conjugate point appears or the stability of the
periodic ray changes. If the contribution of a periodic ray to
the Casimir energy does not vanish, its sign should not
change for sufficiently small deformations of the manifold.

A unique determination of the sign of Ec is possible when
cos�	�� /2� does not depend on the periodic ray �. In less
favorable situations I resort to finding the sign of the contri-
bution due to the shortest periodic rays to Eq. �9�. The con-
tribution in Eq. �9� of a periodic ray that winds n times about
the geodesic generally decreases in magnitude as 1/n2 and in
some cases decreases even faster. If the contribution from
primitive periodic rays dominates the SCE in Eq. �9�, one
can attempt to obtain its sign from the shortest primitive
periodic rays. For some spaces �see, for instance, Seven be-
low�, short primitive rays do not contribute to the Casimir
energy at all or may give contributions of either sign. The
overall sign of the Casimir energy in this case is ambiguous
and this estimate fails. One nevertheless might expect Ec to
be rather small in magnitude in these situations and I will
write Ec	0 when the sign cannot be determined from the
shortest periodic rays.

A. d-dimensional tori and spheres

Obtaining the sign of the SCE is straightforward for a
massless scalar on a d-dimensional torus Td=S1�S1� ¯

�S1. The curvature of Td vanishes and it is a space without
boundary. The subtracted spectral density therefore is the
Weyl-term proportional to the volume of Td only. However,
due to the translational symmetries this is an integrable sys-
tem and classical periodic rays are not isolated. To estimate
the sign of the SCE of a torus using Eq. �9�, one has to
deform it slightly. This generally destroys all symmetries and
gives isolated periodic rays, the shortest of which resemble
periodic rays of the original torus on its shortest cycles. If the
curvature remains sufficiently small on the deformed torus,
the number of conjugate points along a primitive orbit con-
tinues to vanish. The length of the shortest periodic rays
furthermore is a minimum by definition. One thus obtains
��=��=	�=0 for the shortest periodic rays of a slightly de-
formed torus. They all give a negative contribution to the
Casimir energy in Eq. �9�. Since this sign does not depend on
the particular deformation of the torus, one can be confident
that

Ec�Td� � 0 for all d = 1,2, . . . . �10�

This sign agrees with that of the Casimir energy due to a

massless scalar field satisfying periodic boundary conditions
on the hypersurface of any d-dimensional parallelepiped ob-
tained by explicit calculation �24,26,27,33�.

Equation �9� indicates that the SCE may in principle be of
either sign for manifolds without boundaries. A nontrivial
example is the Casimir energy of a massless scalar field con-
fined to a spherical shell Sd of dimension d and radius R.
Periodic rays follow great circles of radius R on Sd. They
again are not isolated and the �d−1� dimensional cross sec-
tion of a bundle of initially parallel geodesics is reduced to a
point at two antipodes. Any starting point on a geodesic of Sd
also is a conjugate point of order d−1, i.e., it is self-
conjugate �36�. One can avoid the associated complications
by slightly deforming Sd in a generic fashion. The primitive
periodic rays of the deformed sphere should still resemble
the original geodesics on Sd, but the starting point generally
no longer is self-conjugate. A pencil of rays emanating from
a point on a geodesic also generally no longer meets in a
single focal point. For a sufficiently small deformation, focal
points of the sphere will have been resolved into a series of
d−1 closely spaced conjugate points of first order. On the
shortest primitive periodic ray, there generically are only d
−1 conjugate points, the next group of d−1 conjugate points
occurring just after completion of a full revolution. The rea-
son is that the curvature along the shortest primitive ray in
general is slightly too small to lead to more than one
intersection2—as for a periodic ray about the waist of a
slightly elongated ellipsoid. The shortest periodic rays fur-
thermore are of minimal length and therefore are stable and
��=0 in this case. The total phase retardation of the shortest
primitive rays thus is 	�� /2=��� /2= �d−1�� /2. Their con-
tribution to the Casimir energy of a �deformed� sphere in Eq.
�9� vanishes in even dimensions and is of alternating sign in
odd dimensions. Assuming that the contribution from the
shortest periodic rays dominate in Eq. �9�, one thus expects
that

Ec�Sd� � − cos���d − 1�/2�
�0, for d = 1 mod 4,

	0, for even d ,

�0, for d = 3 mod 4.
�

�11�

The explicit calculations for d�4 of Appendix A confirm
this not very intuitive pattern for the sign of the Casimir
energy of a massless scalar field on low-dimensional spheres.
The same pattern has been observed in the explicit calcula-
tion of the Casimir energy due to a massless scalar on odd
and even dimensional spheres using zeta function regulariza-
tion �34�. The relation to optical properties of the spheres,
however, does not seem to have been noted previously. A
little surprisingly, the Casimir energy vanishes exactly for S2,

2The geodesic distance ��s� between two nearby geodesics satis-
fies the linear second order equation d2��s� /ds2=−��s���s�, where
s is the arc length along the ray and ��s� is the Gaussian curvature
at s. If ��s��4�2 /L�

2 two geodesics at most meet once. This con-
dition generally holds for the shortest primitive ray of a slightly
deformed sphere.
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S4, and, in fact, any Seven. Since our somewhat crude estima-
tion only takes contributions from the shortest primitive rays
into account, it cannot in itself predict a vanishing Casimir
energy. When the contribution from the shortest periodic rays
vanishes, determining the overall sign of the Casimir energy
becomes much more involved. To conclude that the Casimir
energy vanishes one has to show that it is positive for some
�small� deformations of the manifold and negative for others.
Although this can be shown for Seven, the argument is no
longer “simple” and will not be pursued any further here.
Below I consider another method of estimating the sign of
the SCE of integrable systems that unambiguously confirms
Eq. �11� for spheres.

It is amusing to consider further stretching the sphere to
an elongated cigarlike shape and eventually a long cylinder
with end caps. The subtractions have to remain constant dur-
ing this deformation. In two and three dimensions, it is suf-
ficient to keep the total surface area, respectively, volume,
constant during the deformation. In higher dimensions, cer-
tain moments of the curvature and other global characteris-
tics also must not change. As the curvature decreases, the d
−1 conjugate points on the shortest �and thus stable� periodic
rays move beyond the end of the primitive orbit when the
sphere is stretched sufficiently. 	�→0 for these orbits and
they eventually dominate and lead to a negative Casimir en-
ergy for a �slightly deformed� long cylindrical d-dimensional
surface �for essentially the same reason as the short rays on a
torus�. Since the length of the shortest periodic rays on a
very elongated cylinder is much less than on a sphere of the
same d-dimensional volume, the Casimir energy furthermore
increases in magnitude during this deformation.3 A free
massless scalar field thus would tend to collapse Sd to a
filament. This lack of stability of the Casimir energy with
respect to certain deformations could be important for the
self-consistent dimensional reduction �37� of some Kaluza-
Klein models.

III. INTEGRABLE SYSTEMS

A quantitative comparison with the Casimir energy ob-
tained by other methods generally is possible only for inte-
grable systems for which the true spectrum is explicitly or
implicitly �38� known. The semiclassical approximation is
exact for some integrable systems. The spectrum of the
Laplace-Beltrami operator in fact is reproduced semiclassi-
cally for manifolds of any semisimple Lie group �39�. This
includes the tori and some of the spheres discussed previ-
ously. In the examples studied in Appendix A the SCE in fact
coincides with that obtained by zeta function regularization
when the analytic continuation is unique. When poles arise
and zeta function regularization gives ambiguous answers
�8,21,22�, the associated subtraction in the spectral density is
not universal either. Universal subtractions on the other hand
may include terms in �0�E� that depend on global character-

istics of the curvature �10,28� �as, for example, the Casimir
energy on S4 in Appendix A�.

Since the integral in Eq. �4� had to be performed explic-
itly to arrive at Eq. �9�, all our estimates of the sign of the
SCE rely on the dispersion relation p�E�=E /c of a massless
particle. The sign of the SCE in general will differ for other
dispersion relations, as for instance for the spectrum of the
Laplace-Beltrami operator without curvature correction. The
latter is not the spectrum of a massless scalar �20,39,40� �see
also Appendix A�. Using zeta function regularization, the
Casimir energy in this case is negative for all Sd ,d�4 �41�,
but the Casimir energy of S3 is ambiguous due to the sub-
traction of a pole contribution.

The explicit calculations of Appendix A strongly suggest
that the SCE of a massless scalar on Sd vanishes exactly for
even dimension d: the integrands in this case are polynomials
in �ER�2 only. The subtraction �0�E� for Seven otherwise
would not be universal. The integral over the energy of the
response function �after Wick rotation� has vanishing imagi-
nary part and there is no contribution to the Casimir energy
from any periodic ray on Seven.

Although this supports the previous estimate of the sign
of the SCE for low-dimensional spheres, Eq. �9� requires
periodic rays that are isolated and thus cannot be directly
applied to integrable systems. Let us therefore obtain an ex-
pression for the SCE that can be used to determine its sign in
the �rather special� case of an integrable system.

Action-angle variables are the canonical phase-space co-
ordinates of integrable systems. The SCE for a
d-dimensional integrable system is found by applying Pois-
son’s formula �20,35�

Ec�integrable system� =
1

2�d�
m

�� H�I�e2�im·�I/�−�/4�dI .

�12�

Here H�I� is the classical Hamiltonian expressed in terms of
the actions I= �I1 , I2 , . . . , Id� and m is a d-dimensional vector
of integers. The primed sum in Eq. �12� extends over all such
vectors except m=0= �0,0 , . . . ,0�. The omitted m=0 term in
the sum in Eq. �12� corresponds to the subtracted “classical”
spectral density

�0�E� =� 
„E − H�I�…
dI

�d . �13�

Equation �12� expresses the SCE of an integrable system as a
sum over classical periodic trajectories on the invariant tori.
The classical action of a trajectory with winding numbers m
about each of the cycles of the invariant torus is S�m�
=2�m ·I. The correction to the classical action proportional
to � is linear in the winding numbers m. It is a topological
quantity that determines how periodic orbits on the invariant
torus are projected onto physical coordinate space �42�. The
vector � of Keller-Maslov �43� indices gives the phase loss
from caustics on a periodic orbit �see below�. Note that � is
a geometrical quantity that does not depend on I.

3It would be erroneous to compare the Casimir energy densities of
a cylindrical surface and a spherical one of the same radius when
the subtractions are not the same.
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The integrals over the actions of Eq. �12� are evaluated

semiclassically at stationary points Ī�E ,m� of the classical
action on the energy surface—the vector m is normal to the

energy surface H�I�=E at I= Ī�E ,m�. For given energy E,
the d−1 integrations along the �compact� energy surface are
performed semiclassically by choosing a local frame of ac-

tions at Ī for which one axis, say that of I1, is in the direction
of m and all others are tangent to the energy surface. Care
must be taken with zero modes of the matrix of second de-
rivatives

Hij = �2H/�Īi�Ī j, i, j = 2, . . . ,d . �14�

The integral over the �0-dimensional subspace of the zero
modes of Hij is stationary only when the corresponding fre-
quencies vanish. The sum over m is thereby reduced to one
over the �d−�0�-dimensional vectors n that are orthogonal to
the zero modes. Denoting the �0-dimensional volume of this
classical moduli space by V�0

�E ,n�, the semiclassical result
for the d−1 integrations along the energy surface in Eq. �12�
is

Ec�integrable system�

= �
n

��
0

� EdE

2��d

V�0
�E,n�ei���−−�+�/4

��n/���d−1−�0�det� Hij�
e2�in·�Ī/�−�/4�.

�15�

The primed determinant here means that the �0 zero-modes
have been omitted in its calculation. �+ and �− are the num-
ber of positive and negative eigenvalues of the matrix Hij,
�++�−+�0=d−1. The frequency �= �� � = ��IH�I=Ī�E,m� for a
massless particle in fact does not depend on its energy.

The energy dependence of the integrand in Eq. �15� is
made explicit by noting that the classical action of a massless

field is S�E ,n�= �2�n · Ī � =ELn /c where Ln�0 is the length
of the periodic ray. For dimensional reasons, det�Hij�E�
scales as �E /�2�1−d+�0 and V�0

�E� scales as �E /���0. The in-
tegration over the energy E in Eq. �15� then gives the SCE of
an integrable system without boundaries in the form

Ec�integrable system�

= − �c�
n

�
 c

Ln
�d+1

An̂ cos���� − �0 − �−�n/2� . �16�

To perform the integral in Eq. �15�, the integer

	̃n = �� − �0 − �−�n, �17�

must not depend on E. Since geodesics do not depend on the
energy of a ray, the number of non-positive eigenvalues of
Hij does not depend on E for massless particles. The Keller-
Maslov index �n=n ·� depends only on n by construction.
Note that any constant angle variable of a closed geodesic
implies that the Hamiltonian does not depend on the conju-
gate action. The dimension 0��0�d−1 of the space of zero
modes of Hij can thus often be found by inspection.

The amplitude An̂ in Eq. �16� is positive by construction
and all dependence on the scale �n� was absorbed in the
length Ln of a class of periodic rays. An̂ thus is a function of
the dimensions of the integrable system �such as the volume
of the space� that do not scale with the length of the periodic
orbit. The leading contribution to the Casimir energy of an
integrable system in Eq. �16� generally is from the shortest
rays that contribute to Eq. �16�. The sign of this contribution
depends on the Keller-Maslov index �n of the rays as well as
the number of non-positive eigenvalues of Hij. The sign of
the contribution from a particular class n of periodic rays of
an integrable system is again given by

− cos�	̃n�/2� , �18�

with 	̃n defined by Eq. �17�. The SCE of Eq. �16� for an
integrable system thus is remarkably similar to the one in Eq.
�9� for a system with only isolated periodic rays. It is tempt-
ing to identify 	̃n in Eq. �17� with 	� of Eq. �7�. However,
while both 	� and 	̃n are topological quantities, 	� in
Gutzwiller’s expression for the contribution to the response
function of isolated rays is a topological property of the ray
�32�, whereas 	̃n in Eq. �17� is a property of a whole con-
tinuous family n of periodic rays. The two integers depend
differently on the winding number of the periodic rays. One
nevertheless can argue that they coincide for the shortest
�and thus for primitive� periodic rays.

The Keller-Maslov index �n of an integrable system is
given by the number of caustics a periodic ray encounters
�for manifolds without boundary�. These caustics are created
by the family of rays it is a member of. �n thus is a topo-
logical property of the family of rays that generally does not
equal ��, the number of conjugate points on a single ray of
that family. For one, �n does not depend on the starting point
of the ray and is a well-defined integer even when this point
happens to be self-conjugate �as in the case of spheres�. �n is
proportional to the number of times the periodic rays wind
about the closed geodesic. The number of positive eigenval-
ues of Hij, on the other hand, is a statement about the curva-
ture at a particular point on the energy surface determined by
the direction of its normal n̂. Neither this point nor the en-
ergy surface change with the magnitude of n. ��0+�−�= �d
−1−�+� thus does not depend on the winding number of the
periodic ray. For 	� to coincide with 	̃n for all periodic rays
� as the integrable system is slightly deformed, the number
of nonpositive eigenvalues of Hij would have to vanish �as is
the case for a torus�. However, the sign of the Casimir energy
in general does not change under small deformations, if the
phase of the shortest periodic rays remains the same. This
observation gives the desired connection between 	� and 	̃n:
the two have to coincide for the shortest periodic rays of an
integrable system and its �sufficiently small� deformation.
Below we will see that this is the case in the previous ex-
ample of spheres and tori.

A. Covering spaces

The previous arguments imply that the sign of the Casimir
energy can often be inferred from the Keller-Maslov index
�� of periodic rays of integrable systems. �� here is some
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representative of the class n.� It thus is important to have a
reliable and transparent determination of this index. Keller
�42� gives a geometrical construction that generalizes to
manifolds with boundaries. Let me recall some points of the
construction that are relevant here.

A solution S�q� , t� of the Hamilton-Jacobi equation

H�q� , p� =�� S , t�=E for constant energy E generally is multiply

valued and so may be the momentum p� =�� S itself. At any
point x� the momentum p� =�� S of a solution only has a finite
number of branches, say m of them. One constructs an
m-sheeted covering space on which p� =�� S is a single-valued
function by associating each of the branches of �� S with a
separate sheet. Any two different sheets i and j are joined
together on submanifolds on which the momenta coincide
�p� �i= �p� � j. Such a submanifold generically is a caustic of the
rays or a boundary in the original space. �If �� S is defined on
only part of x space then only this part is covered.� The

advantage of Keller’s construction is that p� =�� S becomes a
single-valued function on the covering space. The rays of a
family n of periodic rays do not intersect on the covering
space.

The semiclassical Casimir energy of the integrable system
is obtained by considering the periodic rays on this covering
space. The phase is retarded by m� /2 whenever a ray
crosses a caustic of mth order in passing from one sheet to
another. The positive integer m is the number of dimensions
by which the cross section of a tube of nearby trajectories is
reduced at the caustic. Keller’s construction does not of itself
provide the order of a caustic. The latter must be inferred
from the behavior of a bundle of nearby rays.

An example is the construction of this covering space
for geodesic motion on a d-dimensional sphere Sd. The
SO�d+1� symmetry of Sd implies that geodesics lie in a hy-
perplane of the Rd+1 it can be embedded in. The vector or-
thogonal to this hyperplane makes a certain angle � with the
vertical which is the inclination of the geodesic. It can be
chosen as one of the angles of the action-angle variables and
geodesics of Sd thus fall into distinct classes characterized by
their inclination. A family of periodic rays of the same incli-
nation covers an annulus of Sd that is bounded by two Sd−1
hypersurfaces. These two �d−1�-dimensional caustics are
around the polar regions of Sd. Every closed geodesic in the
family of solutions with given inclination touches the “up-
per” and “lower” caustic once. One constructs the covering
space by joining two sheets of this annulus of Sd at the two
caustics. A periodic ray of the given inclination passes from
one sheet to the other every time it crosses one of these
caustics. In this covering space a family of rays of given
inclination does not intersect. The number of times a periodic
ray winds about the annulus also is the number of times the
periodic ray passes through both caustics. These caustics are
of order d−1, because the cross section of a
�d−1�-dimensional tube of geodesics vanishes when they in-
tersect a given periodic ray at the caustic. The phase loss of
a periodic ray that winds about the sphere n times and thus
crosses 2n caustics is 2n�d−1�� /2 and therefore ��=2n�d
−1� for any family of periodic rays. The Hamiltonian de-
pends on the action conjugate to the angle describing the

motion on a great circle only �the magnitude of angular mo-
mentum in the two-dimensional case�. Therefore �0=d−1
and �−=0 in this case leading to 	̃= �2n−1��d−1�. For even
dimensions d, 	̃ thus is odd for all n and the contribution to
the SCE of all periodic rays vanishes according to Eq. �18�.
This agrees with our previous estimation of the signs in Eq.
�11� based on Eq. �9� and proves that the SCE of even-
dimensional spheres indeed vanishes. Appendix A presents
explicit results for 0�d�4. The Casimir energy of a mass-
less scalar on Sd has previously been calculated �34� in zeta
function regularization and the dependence of the sign on d
also agrees with Eq. �11�.

Note that the covering space for rays on a d-dimensional
torus is trivial since the momentum is single valued. The
Hamiltonian in this case furthermore depends on the modu-
lus of the momentum in each direction and Hij is positive
definite. �0+�−=0 for a massless particle on the torus and
	̃n=0 for any periodic ray. The Casimir energy of a torus
therefore is always negative, as was already found by de-
forming it and using Eq. �9�.

IV. MANIFOLDS WITH BOUNDARIES

Estimates of the sign of the SCE are more difficult for
manifolds with a boundary on which the scalar field satisfies
some conditions. I here consider Dirichlet and Neumann
boundary conditions only. Since classical rays reflect specu-
larly at a boundary, the basic strategy is to glue copies of the
original manifold at the boundaries and consider the result-
ing covering manifold without boundary. At a boundary p�

=�� S is discontinuous and there are �at least� two values for
the momentum at any point near a boundary. By constructing

the covering manifold for which p� =�� S is single valued, one
thus can treat a boundary in much the same way as a caustic.
The phase retardation at a boundary depends on the bound-
ary condition. The phase loss is � for Dirichlet and 0 for
Neumann boundary conditions. This ensures the correct be-
havior of semiclassical Green functions near the boundary.

However, an additional correction to the semiclassical Ca-
simir energy arises from periodic rays of the covering mani-
fold that lie �entirely� within the boundary. The sign and
magnitude of this additional contribution can be essential in
determining the sign of the semiclassical Casimir energy and
its dependence on the boundary condition. Let us examine
some simple examples.

A. Semiclassical Casimir energy of
a d-dimensional half-sphere

Consider first the semiclassical Casimir energy of a half-
sphere in d dimensions. Space in this case is just Sd cut in
half at the equatorial Sd−1. Classical periodic rays lie on two
halves of great circles of the original Sd with the same incli-
nation that intersect on the equatorial Sd−1 of the sphere. The
momentum at any point on the half-sphere annulus covered
by a family of rays with fixed inclination therefore can take
up to four values and one needs a four sheeted covering of

this space to make �� S single valued. This covering space is
constructed in two steps. One first doubles the half-sphere
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and joins the two sheets at the equators to form an Sd. On this
boundaryless doublecovering of the half sphere, geodesics
are again great-circles and one again introduces two cover-
ings for each annulus of Sd. Note that this last operation
doubles the equatorial �boundary� Sd−1. One of these “equa-
tors” is where the upper and lower parts of the inner annulus
join, the other is where the corresponding parts of the outer
annulus join. This doubling of the boundary of the half
sphere cannot be avoided if the momentum on the covering
space is to be single valued.

The periodic rays of this four-sheeted covering of the
d-dimensional half-sphere evidently are those already found
for the two-sheeted covering space of Sd. The only difference
is that the phase of a ray may be retarded by � at every
crossing of an “equator” �for Dirichlet boundary conditions�.
Since a periodic ray, however, crosses the “equators” an even
number of times, one is tempted to conclude that the semi-
classical Casimir energy of the half sphere is just half the
semiclassical Casimir energy of Sd, irrespective of whether
Neumann or Dirichlet boundary conditions have been im-
posed.

However, this argument ignores classical periodic rays of
the covering space that lie entirely within the boundary. The
contribution of such rays in general depends on the imposed
boundary condition. Since the field vanishes on a boundary
with Dirichlet’s condition, classical periodic rays that lie en-
tirely within the boundary should not contribute to Green’s
function and the spectral density. Their contribution to the
spectral density of the manifold without boundary has to be
subtracted in this case.

Often, as in the case of a sphere, symmetry arguments can
be invoked to relate the Casimir energy for Dirichlet and
Neumann boundary conditions. Due to symmetry under re-
flections about the equatorial plane, eigenfunctions of the
Hamiltonian can be chosen to satisfy either Neumann or Di-
richlet boundary conditions at the equator of Sd. The sum of
the Casimir energies on the half sphere E�S2 /2 ;N� and
E�S2 /2 ;D� for Neumann and Dirichlet boundary conditions,
respectively, therefore is the Casimir energy of the full
sphere

Ec�Sd/2;N� + Ec�Sd/2;D� = Ec�Sd� . �19�

The difference Ec�Sd /2 ;N�−Ec�Sd /2 ;D� is due to contribu-
tions to the Casimir energy from the boundary, i.e., due
to periodic rays on the equator. The magnitude of this con-
tribution in general is difficult to obtain without explicit cal-
culation. It is not simply related to the Casimir energy of a
�d−1�-dimensional sphere, because Ec�Sd−1� does not include
fluctuations transverse to the equator. One nevertheless can
infer the sign of this difference, that is whether Neumann or
Dirichlet boundary conditions lower the Casimir energy. The
point is that families of periodic rays in the vicinity of the
equator of Sd are similar to those on Sd−1 except that they
nevertheless pass two caustics of order d−1—rather than of
order d−2 as for Sd−1—in every revolution. This gives an
additional phase loss of � for every revolution no matter
how close to the equatorial hyperplane the periodic rays are.
Since the sign of the contribution of a periodic ray to the

Casimir energy of Sd−1 is given by 	̃�Sd−1�= �2n−1��d−2�,
the additional phase loss of n� on Sd changes the index to
	̃�equator Sd�= �2n−1��d−2�+2n. From this one obtains that

Ec�Sd/2;N� − Ec�Sd/2;D�

	 Ec�equator�
�0, for d = 0 mod 4,

=0, for odd d ,

�0, for d = 2 mod 4.
� �20�

The explicit calculation of the SCE of a two-dimensional
half shell given in Eq. �A14� of Appendix A agrees with Eq.
�20�. It also is well known that the Casimir energy is the
same for Dirichlet or Neumann boundary conditions at the
endpoints of a half circle �i.e., interval�. �Since there is no
curvature for d=1 this also coincides with Ref. �41�.� The
Casimir energy of a massless scalar on half an Einstein uni-
verse has also been calculated explicitly �44� and was found
to be just half of the Casimir energy for the full Einstein
universe irrespective of the boundary conditions �which cor-
responds to d=3 in Eq. �20��. More general orbifold factors
of two- and three-spheres were considered in Ref. �45�. The
fact that the Casimir energy of a massless scalar on all odd-
dimensional half-spheres does not depend on whether Neu-
mann or Dirichlet boundary conditions are imposed has only
recently �46� been verified. Note that the fate of the implic-
itly subtracted infinite vacuum energy proportional to the
surface area of the equator of the halved Einstein universe
was ignored in Ref. �44�. Fulling has pointed out �6� that
some �infinite� changes in the vacuum energy of the universe
could be absorbed in the cosmological constant. They also
may be cancelled by similar �infinite� contributions from
other fields as in the case of supersymmetry. The following
example of a d-dimensional parallelepiped shows that the
semiclassical evaluation of the Casimir energy of spaces with
boundaries that are not smooth and intersect on lower-
dimensional manifolds can be even more involved.

B. Semiclassical Casimir energy of
a d-dimensional parallelepiped

The Casimir energy of a massless scalar field confined to
the interior of a parallelepiped with dimensions l1� l2� ¯

� ld has previously been obtained by Ambjörn and Wolfram
�27�. They considered Neumann, Dirichlet as well as peri-
odic and electromagnetic boundary conditions on the surface
of the parallelepiped. I now give a more geometrical inter-
pretation of some of their results in terms of periodic rays of
the covering space.

It suffices to consider the case where all the li of the
parallelepiped are finite. The result of Ref. �27�. for a paral-
lelepiped with some sides that are much longer than all oth-
ers is found by taking the appropriate limits. Lacking a more
concise notation, the SCE of a parallelepiped with dimen-
sions l1� ¯ � ld will be denoted by

Ec�l1, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld� . �21�

Here Neumann boundary conditions are satisfied on 0�N
�d pairs of parallel hypersurfaces that are distances
l1 , . . . , lN apart, Dirichlet boundary conditions are satisfied on
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0�D�d−N pairs of parallel hypersurfaces that are dis-
tances lN+1 , . . . , lN+D apart, and periodic boundary conditions
are assumed to hold on the remaining 0�d−N−D pairs of
parallel surfaces.

The symmetry of a parallelepiped implies that eigenfunc-
tions satisfying periodic boundary conditions on a pair of
faces, are even or odd under reflection of the parallelepiped
about these faces. This leads to the following relation be-
tween the Casimir energies of scalar fields satisfying differ-
ent boundary conditions on the surfaces of d-dimensional
parallelepipeds,

Ec�l2, . . . ,lN;lN+1, . . . ,lN+D;2l1,lN+D+1, . . . ,ld�

= Ec�l1, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld�

+ Ec�l2, . . . ,lN;l1,lN+1, . . . ,lN+D;lN+D+1, . . . ,ld� .

�22�

Equation �22� is a relation between the Casimir energies of a
scalar field on parallelepipeds where the periodic boundary
conditions on a pair of parallel surfaces are replaced by Di-
richlet or Neumann boundary conditions and the distance
between the two surfaces is halved. The total volume of the
manifolds on the left- and right-hand sides of this equation
thus are the same. The subtracted terms of the spectral den-
sities are the same as well, and the Casimir energies indeed
are equal.

The spectrum of a parallelepiped differs only in a zero
frequency mode for Neumann and Dirichlet conditions on a
set of parallel surfaces. This frequency does not depend on
the separation of the two surfaces. One therefore also has
that

Ec�l2, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld�

= Ec�l1, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld�

− Ec�l2, . . . ,lN;l1,lN+1, . . . ,lN+D;lN+D+1, . . . ,ld� .

�23�

Note that the subtractions in the spectral density proportional
to the d-dimensional volume cancel on the right hand side
and the leading remaining subtraction is proportional to the
volume of the �d−1�-dimensional parallelepiped on the left-
hand side.

Combining Eqs. �22� and �23� one obtains the following
recursive relations for the SCE of a parallelepiped:

2Ec�l1, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld�

= Ec�l2, . . . ,lN;lN+1, . . . ,lN+D;2l1,lN+D+1, . . . ,ld�

+ Ec�l2, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld� ,

2Ec�l2, . . . ,lN;l1,lN+1, . . . ,lN+D;lN+D+1, . . . ,ld�

= Ec�l2, . . . ,lN;lN+1, . . . ,lN+D;2l1,lN+D+1, . . . ,ld�

− Ec�l2, . . . ,lN;lN+1, . . . ,lN+D;lN+D+1, . . . ,ld� . �24�

Equation �24� expresses the Casimir energy of a parallel-
epiped in terms of Casimir energies of parallelepipeds with
nonperiodic boundary conditions on fewer sets of parallel

plates. Repeated application of these relations thus gives the
Casimir energy of a parallelepiped with Neumann, Dirichlet,
and periodic boundary conditions in terms of the Casimir
energies of tori only. Thus the Casimir energy of a three-
dimensional parallelepiped with Dirichlet boundary condi-
tions on all six faces may be decomposed as

8Ec�;l1,l2,l3;�

= 4Ec�;l2,l3;2l1� − 4Ec�;l2,l3;� = 2Ec�;l3;2l1,2l2�

− 2Ec�;l3;2l1� − 2Ec�;l3;2l2� + 2Ec�;l3;�

=Ec�; ;2l1,2l2,2l3� − Ec�; ;2l1,2l2� − Ec�; ;2l1,2l3�

− Ec�; ;2l2,2l3� + Ec�; ;2l1� + Ec�; ;2l2� + Ec�; ;2l3� .

�25�

The corrections proportional to the Casimir energies of
lower-dimensional tori are due to periodic rays of the cover-
ing space that lie on the boundaries of the original parallel-
epiped. Since the subtraction for a torus is the Weyl-
contribution proportional to its “volume,” the subtractions
for a general parallelepiped include Weyl-terms proportional
to the “area” of its hypersurfaces, “lengths” of the intersec-
tions of its hypersurfaces, etc. The Casimir energy of a gen-
eral parallelepiped thus can be compared with that of other
systems of the same volume, area of the boundary �with the
same boundary conditions�, length of intersections of hyper-
surfaces, etc. The simplest class of spaces that satisfy all
these conditions are d-dimensional generalizations of Pow-
er’s box �23� with a fixed number of orthogonal but movable
walls.4

Let us turn to the construction of the appropriate covering
space for a parallelepiped. The momentum is single valued
only when periodic boundary conditions hold on all pairs of
hypersurfaces. N+D=0 and there is no need to introduce
additional sheets. The result is the same as for the
d-dimensional torus in Sec. II A: the Casimir energy in this
case is negative for any dimension of the torus and any
lengths, li, of its cycles.

For N+D�0, the momentum is not single valued. Each
pair of faces with nonperiodic boundary conditions requires
a double covering since the component of momentum that is
perpendicular to these surfaces can have either sign. One
recursively constructs this covering space as follows.

Consider first the pair of faces with coordinate x1=0 and
x1= l1. The boundary condition on this pair is not periodic
and the first component of momentum �for rays of fixed en-
ergy� therefore is double valued. It is single valued on a
covering space obtained by joining a second sheet of the
original parallelepiped to the first at the boundaries x1=0 and

4Power’s original construction of a box with just one movable
wall for the Casimir force between two parallel plates has been
reexamined in Ref. �47�. Since the surface areas of the two paral-
lelepipeds depend linearly on their volume, considering a box with
just one movable wall does not isolate the surface dependence of
the Casimir energy of a parallelepiped—one has to consider more
than one movable wall to isolate this contribution.
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x1= l1 to form a cylinderlike covering space. Periodic rays
that reflect from the x1=0 and x1= l1 faces of the original
parallelepiped pass smoothly through these borders from one
sheet to the other in the covering space. Although one must
keep track of the position of the original boundaries at x1
=0 and x1= l1, the problem of constructing a covering space
on which momentum is unique has been reduced to that of a
parallelepiped with only D+N−1 pairs of hypersurfaces on
which nonperiodic boundary conditions hold. Note that the
first dimension of this covering space is now twice that of the
original parallelepiped.

If N+D�1, the procedure is repeated with the pair of
faces at x2=0 and x2= l2 of this double cover of the original
parallelepiped. This results in a covering parallelepiped with
nonperiodic conditions in just N+D−2 dimensions. The
length of this covering parallelepiped in the second dimen-
sion is again twice that of the original parallelepiped. The
process ends with the pair of faces at xD+N=0 and xD+N
= lD+N.

The covering space of a general d-dimensional parallel-
epiped thus is a d-dimensional torus with cycles
2l1 , . . . ,2lD+N , lD+N+1 , . . . , ld. The original parallelepiped is
covered 2D+N times. The 2�D+N��d−1�-dimensional hyper-
surfaces with nonperiodic boundary conditions of the origi-
nal parallelepiped now are �d−1�-dimensional interfaces be-
tween sheets of this covering space at x1=0, x1= l1, x2
=0 , . . . ,xD+N=0, and xD+N= lD+N.

Since a general periodic ray crosses pairs of boundary
surfaces, ��=0 for periodic and Neumann as well as for
Dirichlet boundary conditions on opposing pairs of
hypersurfaces.5 On this toroidal covering space there are pe-
riodic rays that lie entirely within the �d−1�-dimensional hy-
persurfaces that are projected onto the boundaries of the
original parallelepiped. The contribution to the Casimir en-
ergy due to these rays depends on the imposed boundary
conditions. The hypersurfaces of a parallelepiped in addition
intersect on lower-dimensional hyperedges that also contain
periodic rays of the covering space.

The corrections due to rays on these lower-dimensional
tori are clearly visible in Eqs. �24� and �25�. They are in
one-to-one correspondence with the boundary surfaces,
edges, etc., of the parallelepiped. The contribution of rays on
the lower-dimensional surfaces has to be subtracted for Di-
richlet boundary conditions because the field vanishes on the
surface of the parallelepiped in this case. That the lower-
dimensional correction in Eq. �24� is added for Neumann
conditions then follows from the reflection symmetry of the
parallelepiped, which implies Eq. �22�.

The sign of the Casimir energy of a parallelepiped in gen-
eral therefore is determined by the boundary conditions on
its surfaces. One can argue that the Casimir energy due to

periodic rays of a boundary surface is always negative when
this surface is embedded in a higher-dimensional space of
vanishing curvature: there are no caustics to contend with
and the energy surface has no zero modes.

Whether the Casimir energy due to periodic rays on such
a boundary surface has to be subtracted or added depends on
the imposed condition. The sign of the overall Casimir en-
ergy of a parallelepiped therefore depends on the relative
magnitude of boundary contributions with opposite sign.
Which sign prevails in general will depend on the actual
dimensions of the parallelepiped. The previous analysis nev-
ertheless allows for a few general statements about the sign
of the Casimir energy of a parallelepiped.

Since contributions from periodic rays on lower-
dimensional boundary surfaces are always negative, the sign
of the SCE of a parallelepiped with only Neumann and pe-
riodic boundary conditions is negative in any dimension.

Replacing Dirichlet by Neumann boundary conditions on
a pair of parallel surfaces decreases the Casimir energy of the
parallelepiped.

If one dimension of the parallelepiped is much smaller
than all others, as for two parallel infinite hyperplanes, the
difference in Casimir energy for Neumann and Dirichlet
boundary conditions tends to vanish �since all contributions
to the Casimir energy due to rays on lower-dimensional sur-
faces become negligible�.

V. CONCLUSION

By defining the SCE through the required subtraction
�0�E� in the spectral density one describes a class of systems
whose vacuum energies can be compared. By definition the
subtracted spectral density �̃�E� of Eq. �3� gives a finite Ca-
simir energy. It is approximated semiclassically by contribu-
tions due to classical periodic rays. For a massless scalar
field on d-dimensional spheres and tori as well as on related
spaces with boundary such as half spheres and parallelepi-
peds, this SCE coincides with other definitions whenever the
subtractions in the spectral density are the same for a non-
trivial class of systems �see Appendix A�.

�One may argue that certain systems, such as wedges
formed by two semi-infinite planes joined at the common
edge �3�, do not have classical periodic rays and that this
semiclassical approach may thus be rather limited in scope.
However, the implicit subtraction is not universal in this
case, and depends on the opening angle of the wedge in a
nonlinear fashion �14� that prohibits comparisons between
systems with wedges of different opening angle. The ex-
tracted finite Casimir energy of a particular wedge in this
case is of little physical significance and for instance does
not determine the torque between the two plates of the
wedge.�

The geometrical description of the SCE in terms of peri-
odic rays gives insights into qualitative features of this part
of the vacuum energy that otherwise are rather mysterious.
The need for an explanation of the sign of Casimir energies
was very nicely formulated by Sucher: “Understanding the
signs is a sign of understanding” �48�. I have presented some
evidence that the sign of the SCE depends critically on op-

5��=even
2 if the scalar field satisfies Neumann’s condition on
one, but Dirichlet’s condition on the other of a pair of parallel
hypersurfaces. Such asymmetric boundary conditions on a pair of
parallel surfaces can give a change in sign of the semiclassical
Casimir energy �15,48�. It is due to a phase loss of � for some
dominant primitive periodic rays and can be explained along the
lines used for manifolds without boundary �15�.
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tical properties of “important” �short� periodic rays.
The semiclassical contribution to the Casimir energy due

to an isolated periodic ray has a definite sign �see Eq. �9��.
The contribution due to a class of periodic rays of an inte-
grable system also is of a definite sign �see Eq. �16��. For
isolated periodic rays, the sign is determined by the winding
number 	� of their stable and unstable manifolds �32�,
whereas it essentially is given by the Keller-Maslov index �n
of a class of periodic rays in integrable systems. �When the
Hessian of Eq. �14� is not positive definite, the sign of the
contribution of a class of rays is given by Eq. �17�.�

The semiclassical expressions of Eqs. �9� and �16� suggest
that the Casimir energy very often is dominated by the short-
est periodic rays or class of periodic rays. Arguing that the
contribution of the shortest periodic rays is continuous under
small deformations of the manifold, one can infer the sign of
the Casimir energy of integrable systems in two ways: either
by direct computation of the index in Eq. �17�, or by slight
deformation of the integrable system and computation of the
index of Eq. �7� for the shortest periodic rays. Continuity
under deformations also explains the pattern of signs for the
Casimir energies of a massless scalar on spheres and on tori
of various dimensions as well as changes in sign when
spheres are strongly deformed. Sign changes of the SCE in
such cases are accompanied by a change in the number of
conjugate points of the shortest rays.

The sign of the SCE is harder to determine for spaces
with boundary. The shortest periodic rays again dominate,
but the sign �and magnitude� of contributions due to periodic
rays that lie within the boundary depends on the boundary
conditions. Such boundary rays can be among the shortest
periodic rays and in some cases dominate the Casimir en-
ergy.

Only d-dimensional half spheres and general parallelepi-
peds with Neumann and Dirichlet boundary conditions were
considered. However, the general arguments remain valid in
more realistic situations with, for instance, electromagnetic
fields. The sign of the Casimir energy of spherical and cylin-
drical cavities with idealized metallic boundary conditions
can apparently be understood in terms of the phases of the
shortest periodic rays �49�.

Determining the sign of a SCE in this sense is reduced to
a problem of geometrical optics. For certain simple mani-
folds, such as tori and spheres, one finds that all contribu-
tions due to periodic rays are of the same sign. The sign of
the SCE is unambiguous in this case. The fact that classical
dynamics of periodic trajectories seems to determine the sign
of the Casimir energy raises the intriguing question whether
the sign is a topological characteristic of the phase space. In
general, and in particular for manifolds with boundaries, pe-
riodic rays of comparable length contribute to the SCE with
opposite sign. It then depends on the boundary conditions
and metric characteristics of the space whether the SCE is
positive or negative.
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APPENDIX A: CASIMIR ENERGIES AND CURVATURE
CORRECTIONS: SPHERES AND HALF SHELLS

I here explicitly compute the Casimir energies due to a
scalar field for low-dimensional spheres S1, S2, S3, and S4 as
well as for two-dimensional half-shells with Neumann and
Dirichlet boundary conditions. Of special interest are the as-
sociated subtractions in the spectral density that render the
Casimir energies finite. As explained in the main text, these
subtractions determine classes of systems with finite vacuum
energy differences. The finite Casimir energy in the exam-
ined cases is given by contributions due to periodic rays
whenever the subtractions are universal.

1. The circle

The Casimir energy of a scalar field on S1 probably is the
most transparent example. The curvature vanishes and the
energy spectrum of a massless field on S1 clearly is El
= l�c /R for integer l
0. For l�0 the energy eigenvalues are
twofold degenerate. The vacuum energy of a massless scalar
on S1 thus is formally given by

Evac�S1� =
�c

2R
�
l=1

�

2l . �A1�

One may regularize this divergent expression in many ways.
One of the more popular is by analytic continuation in the
exponent s of the �for s�1 manifestly convergent� sum
��s�=�1

�l−s. This method, known as zeta function regulariza-
tion, has been claimed �41� to be not just the most elegant,
but also the only rigorous mathematical definition of the sum
in Eq. �A1�. That may be true but gives appreciably little
insight into the physical significance of the finite Casimir
energy one obtains, which for a circle is −��c� / �12R�.

Let us subtract from the spectral density �S1
�E ;S1�

=�l=0
� 2
�E−�cl /R� the smooth Weyl density �0�E�

= �2�R� / ���c�. The SCE of a circle then is defined to be

Ec�S1� =
1

2
�

0

�

���E;S1� − �0�E��EdE

=
1

2
�

0

� ��
l=0

�

2
�E − �cl/R� −
2R

�c�EdE

= −
1

�
Im

2�R

i�c
�
n=1

� �
0

�

EdEein2�RE/��c�

= −
�c

2�2R
�
n=1

�
1

n2

= −
�c

12R
. �A2�
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The second line of Eq. �A2� expresses the subtracted spectral
density in terms of the semiclassical contribution due to pe-
riodic rays of length 2�Rn ,n�0. The final answer coincides
with that of zeta function regularization, but one now explic-
itly knows the implicit subtraction in the spectral density
required to obtain it. The subtracted Weyl contribution to the
spectral density is proportional to the circumference of the
circle. The difference in Casimir energies of two circles thus
is not the difference in their vacuum energy. It in fact would
cost an infinite amount of energy to change the radius of the
circle by a finite amount.

The subtraction nevertheless is universal in the sense that
the �so defined� finite Casimir energy reproduces all deriva-
tives of the vacuum energy with respect to the radius of
second and higher order. The difference in total Casimir en-
ergy, for instance, gives the energy required to change the
relative radii of disjoint circles while keeping their sum
constant.6

2. The two-sphere

The two-dimensional sphere S2 is a prototypical manifold
with positive curvature. The Casimir energy of a scalar field
on S2 depends on how the scalar couples to the curvature. It
is known �6,20,39,40�, and we will verify, that this coupling
to the curvature is of a particular strength for a massless
field. To compare with Ref. �41�, let us for the moment ig-
nore the coupling to the curvature.

The eigenfunctions of the Laplace-Beltrami operator on a
two-sphere are the spherical harmonics with �2l+1�-fold de-
generate eigenvalues. Without coupling to the gaussian cur-
vature of S2, the energy eigenvalues of a scalar field are El

=�c�l�l+1� /R. The vacuum energy of a two-sphere of ra-
dius R in this case is formally given by the divergent sum

Evac�S2� =
�c

2R
�
l=0

�

�2l + 1��l�l + 1� . �A3�

Zeta function regularization �ZR� of Eq. �A3� gives �41� the
negative value

EZR�S2� = lim
s→1/2

�c

2R
�
l=0

�

�2l + 1��l�l + 1��s = − 0.132548
�c

R

�A4�

for this Casimir energy. A physically perhaps more transpar-
ent treatment of the sum in Eq. �A3� by heat kernel regular-
ization �HK� gives

EHK�S2� = lim
�→0+

�c

2R��
l=0

�

�2l + 1��l�l + 1�e−�l�l+1� −
��

2�3/2�
= − 0.132548

�c

R
. �A5�

Subtracting the integral over l� �0,�� from the sum over

angular momenta thus leads to the same finite result for the
Casimir energy as zeta function regularization. However, no
obvious physical principle apart from finiteness of the result
seems to dictate the particular subtraction in Eq. �A5�. �For a
justification and the relation to subtractions in other regular-
ization schemes see Ref. �10�.�

A straightforward physical interpretation of the subtrac-
tion is possible in the semiclassical treatment: one again sub-
tracts a smooth “classical” part of the spectral density. �0�E�
should not depend on the detailed shape of the surface. For a
two-dimensional manifold without boundaries, one may sub-
tract the classical Weyl contribution to the spectral density
proportional to the area A of the manifold, �0�E�
=AE / �2���c�2�. The subtracted spectral density is

�̃�E� = ��E� − �0�E�

= ��
l=0

�

�2l + 1�
„E − �c�l�l + 1�/R…� −
2R2E

��c�2 .

�A6�

�̃�E� can be expressed in terms of semiclassical contributions
from periodic rays �20,50�

�̃�E� = −
1

�
Im

4�R2E

i��c�2 �
n=1

�

�exp�in�2�R

�c
�E2 + 
 �c

2R
�2

− ��� . �A7�

One verifies that Eq. �A7� is equivalent to Eq. �A6� by rec-
ognizing that apart from a n=0 term, the real part of the sum
over n in Eq. �A7� is a periodic 
 distribution. The sum in
Eq. �A7� on the other hand can be interpreted as due to
contributions from classical periodic rays that wind n times
about a geodesic of the two-sphere with a total length Ln
=2�Rn.

The Casimir energy corresponding to the spectral density
�̃�E� of Eq. �A7� is

Ec�S2� =
1

2
�

0

�

E�̃�E�dE

=
�c

4R
Re e3i�/4�

n=1

� �
0

�

�1 + i�����2 + i��e−n��d�

=
�c

4R
Re�i − 1��

0

� �1 + i�����1 + i�/2�
e�� − 1

d�

= − 0.132548 ¯

�c

R
, �A8�

where the last number was obtained by numerical evaluation
of the integral.7 The SCE thus coincides with that of zeta
function and heat kernel regularization. The Casimir energy

6The situation is unstable due to the minus sign of the Casimir
energy in Eq. �A2�. It implies that the energy is minimized by
shrinking all but one of the circles to a point.

7Substitution of the variable i��E�=�1+ � 2RE
�c

�2−1 and a clockwise
rotation of the integration contour by 90° gives the integral that
converges exponentially and is numerically well behaved.
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of a spherical shell is completely described in terms of its
classical periodic rays. Moreover, this procedure gives a
transparent physical meaning to the subtraction: the spectral
density �̃�E� is the difference to the universal Weyl term in
density for two-dimensional surfaces of the same area. The
Casimir energy thus does not give the energy required to
change the radius of S2: the subtracted �divergent� term pro-
portional to the surface area of the sphere is far more impor-
tant for this energy difference �29�. The Casimir energy on
the other hand does allow the computation of the energy
required to deform the sphere into another smooth manifold
without boundary of the same total area. It thus for instance
makes sense to speak of the energy required to change a
two-sphere to an oblate or an elongated ellipsoid of the same
area. The energy required for such deformations is finite.

The effective action of a periodic ray of arc length Ln
=2�Rn in Eq. �A7� is

Sn = � p · dx = p�E�Ln, �A9�

with

p2�E� = �E/c�2 + �2/�4R2� . �A10�

Equation �A10� is not the dispersion relation one expects
for a massless particle. p2�E� differs from �E /c�2 by a term
of order �2 that is proportional to the Gaussian curvature �
=1/R2 of S2. The curvature of the manifold results in a dis-
persion relation that would correspond to a tachyon with
velocity v�E�= �dp /dE�−1=c�1+ ��c / �2RE��2�c. This can
also be seen by rewriting

El
2 =

��c�2

R2 l�l + 1� = 
�c�l + 1/2�
R

�2

− 
 �c

2R
�2

. �A11�

Interpreting ��l+1/2� /R as the eigenvalue of the momentum
operator for a field satisfying anti-periodic boundary condi-
tions on a circle of radius R, this dispersion clearly is tachy-
onic: the effective mass squared is negative m2=−�� /2cR�2.
The violation of Huygens’ Principle without �appropriate�
coupling to the curvature was already emphasized in Ref.
�39�. The fact that the effective action in Eq. �A9� does not
vanish for E=0 is another indication that the spectrum of the
Laplace-Beltrami operator on curved spaces is not the spec-
trum of a massless scalar field.

A particle is massless if its dispersion is p�E�=E /c. The
generalization of the wave equation for d-dimensional Rie-
mannian manifolds M with metric gij and Gaussian curva-
ture � includes a coupling to the curvature. The appropriate
wave equation for a �d+1�-dimensional �ultrastatic� space-
time with curvature is �d�=c−2�t

2�, where

�d = �1/�g�
�

�xi
�ggij �

�xj −
�d − 1�2

4
� . �A12�

This curvature correction to the Laplace-Beltrami operator of
M also arises naturally from the measure of the path integral

and is consistent with the required short-time behavior of the
Feynman propagator �40�. The particular strength of the cou-
pling to the curvature in Eq. �A12� preserves conformal
invariance8 of the wave equation �6�. For a d-dimensional
sphere Sd of radius R, �=1/R2 and the eigenvalues of −�d
defined in Eq. �A12� are �l+ �d−1� /2�2 /R2 for integer l
0.
The Casimir energy due to a massless scalar field on a two-
sphere thus is

Ec�S2;m = 0�

= �
0

� EdE

2 ��
l=0

�

�2l + 1�
„E − �c�l + 1/2�/R… −
2R2E

��c�2�
= −

1

2�
Im

4�R2

i��c�2 �
n=1

� �
0

�

E2dEexp�in
2�R

�c
E − ���

= Im
�c

4�3R
�
n=1

�
�− 1�n

n3 = 0. �A13�

That the Casimir energy of a massless scalar field vanishes
for a two-sphere agrees with the arguments presented in
Secs. II A and III. Zeta function- and heat kernel regulariza-
tion also give a vanishing Casimir energy when the coupling
of a massless scalar to the curvature is included �34�. Note
that the average spectral density of a two-dimensional mani-
fold of the same area again was subtracted to obtain the finite
answer of Eq. �A13�. Although the second line of Eq. �A13�
is a sum over contributions due to periodic rays of the two-
sphere, it does not have the form of Eq. �6�. The amplitude in
particular is proportional to the energy here. As discussed in
Sec. III, free motion on a two-sphere is integrable and the
corresponding periodic rays are not isolated. As shown in
Appendix B, a semiclassical treatment along the lines of Ref.
�35� gives the semiclassical response function of Eq. �A13�
without reference to the exact quantum mechanical spec-
trum.

Let us now turn to a manifold with boundary and consider
a two-dimensional half-sphere S2 /2 with Neumann �N� or
Dirichlet �D� boundary conditions on the equatorial circle.9

Due to the symmetry of the two-sphere upon reflection about
its equator, eigenfunctions of the Laplace-Beltrami operator
either satisfy Neumann or Dirichlet conditions on the equator
and thus E�S2 /2 ;N�+E�S2 /2 ;D�=E�S2�=0. Since one more
mode satisfies Neumann’s boundary condition than Di-
richlet’s for every energy eigenvalue, one has for the Casimir
energy of a half-sphere

8� in Eq. �A12� is the Gaussian curvature of M rather than the
Ricci curvature scalar R of the space-time R�M considered in
Ref. �6�. For an ultrastatic space-time the two curvatures are related
by R=��d−1� /d and the particular coupling strength in Eq. �A12�
corresponds to the conformal coupling �= ��d+1�−2� / �4��d+1�
−1�� discussed in Ref. �6�.

9A more general treatment of the Selberg trace formula for two-
dimensional manifolds with boundaries is given in Ref. �51� and for
the particular case of spheres in Refs. �45,46�.
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Ec�S2/2; D
N� = ± �

0

� EdE

4 ��
l=0

�


�E − �c�l + 1/2�/R� −
R

�c�
= �

1

�
Im

2�R

i�c
�
n=1

� �
0

� EdE

4

�exp�in
2�R

�c
E − ���

= �
�c

8�2R
�
n=1

�
�− 1�n

n2 = ±
�c

96R
. �A14�

This again agrees with zeta function regularization for this
case. Note that an additional universal subtraction is neces-
sary. It is a Weyl contribution to the spectral density propor-
tional to the length of the boundary. Due to the subtraction of
terms proportional to the overal area of the surface and
length of its boundary, the Casimir energy of a massless
scalar on the half-sphere can be compared to the Casimir
energy on another smooth two-dimensional manifold of the
same area and with a smooth boundary of the same length
only.

Note that the necessary subtraction for a half-sphere with
boundary is not universal if the curvature correction to the
Laplace-Beltrami operator in Eq. �A13� is ignored. In this
case one obtains the following difference in Casimir energies

E�S2/2;N� − E�S2/2;D�

= �
0

� EdE

2 ��l=0

�


„E − �c�l�l + 1�/R… −
R

�c

E

�E2 + 
 �c

2R
�2�

= −
1

�
Im

2�R

i�c
�
n=1

� �
0

� EdE

2

�
E

�E2 + 
 �c

2R
�2

ein��2�R/�c��E2+��c/2R�2−��

=
�c

4R
Re�i − 1��

0

�

d�
���1 + i�/2�

e�� − 1

= − 0.110687 ¯

�c

R
. �A15�

The subtracted spectral density �0�E� in Eq. �A15� is again
proportional to the length of the boundary, but it now de-
pends on the Gaussian curvature �=1/R2 as well. Expanding
for small values of the curvature E /�E2+ � �c

2R
�2	1

−���c�2 / �8E2� shows the presence of a �logarithmic� diver-
gent contribution to the vacuum energy that is proportional
to 1/R. No derivative of the vacuum energy with respect to
the radius of the half-shell is finite and the subtracted �finite�
Casimir energy of Eq. �A15� is of no physical significance.

In zeta function regularization the logarithmic divergence
manifests itself as a pole at s=−1/2 whose subtraction is
ambiguous �21,22�. Taking only the principal value of this

pole contribution to the Casimir energy gives a finite value
�41� of −0.166080�c /R for the above difference of the Ca-
simir energies of half-shells with Neumann and Dirichlet
boundary conditions. Since the implicit subtraction is not
universal, it should not surprise that the value ascribed by
this prescription differs from the one in Eq. �A15�—obtained
by prescribing a particular subtraction of the spectral density.
The finite part of the Casimir energy of this system in fact is
quite arbitrary since its vacuum energy cannot be compared
to that of any other system anyway. The appearance of a pole
in zeta function regularization thus indicates that the associ-
ated implicit subtraction in the spectral density is not univer-
sal.

If one is of the opinion that a Casimir energy due to a
physical field should enjoy some degree of universality,
small deformations of a smooth manifold should not require
an infinite amount of energy. The lack of universality of the
Casimir energy on a half-shell in this sense is yet another
indication that the spectrum of the Laplace-Beltrami operator
is not that of a physical particle. The argument perhaps is
more convincing if one notes that even the Casimir energy of
a scalar on S3 �a manifold without boundary that until re-
cently could have served as a model for the spatial part of
our universe� is not universal �41� without curvature correc-
tion.

3. S3 and S4

For comparison with the results of Ref. �41� and in sup-
port of the arguments for the sign of the Casimir energy of a
massless scalar field on d-dimensional spheres of Secs. II A
and III, I here state the universal Casimir energies of a mass-
less scalar field on �d=3�- and �d=4�-dimensional spheres.
The appropriate coupling to the curvature for a massless sca-
lar of Eq. �A12� has been used and the results therefore differ
from those without curvature correction in �41�. The differ-
ence is not minor: the Casimir energy of a scalar on S3 in
particular is not universal and devoid of physical implica-
tions if this coupling to the curvature is ignored. In zeta
function regularization this is indicated by the presence of a
pole �21,22,41�.

The Casimir energies due to a scalar on S3 and S4 can be
obtained in much the same manner as for the two-sphere—
the main difference is the degeneracy of the spectrum of the
Laplace-Beltrami operator in Eq. �A12�. It is �l+1�2 for S3

and �l+1��l+2��2l+3� /6 for S4. As can be seen from Eq.
�A12�, the spectrum of a massless field with the appropriate
coupling to the curvature is El=�c�l+1� /R on S3 and El

=�c�l+3/2� /R on S4. One then obtains

Ec�S3;m = 0� =
�c

240R
= + 0.0041666 ¯

�c

R
,

Ec�S4;m = 0� = 0. �A16�

These results again are in agreement with those of zeta func-
tion regularization �34� for a conformally coupled scalar.
There are no logarithmic divergent subtractions and no poles
appear in zeta function regularization with the appropriate
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coupling to the curvature. For S4 the subtraction of the Weyl
contribution proportional to the four-volume of S4 is not suf-
ficient to obtain a finite Casimir energy. An additional
smooth spectral density proportional to R2 must be sub-
tracted and

�0�E;S4� =
�R4E3

3��c�4�1 − 
 �c

2RE
�2� . �A17�

The additional term in the smooth part of the spectral density
is proportional to the integrated local curvature of the mani-
fold �see Refs. �10,28,52,53��. One thus can compare the
�vanishing� Casimir energy of a massless scalar field on S4
with that of other four-dimensional manifolds without
boundary of the same four-volume and average curvature.

APPENDIX B: SEMICLASSICAL DERIVATION
OF THE SPECTRAL DENSITY OF A SCALAR

ON A TWO-SPHERE

For completeness I here give the semiclassical calculation
of the Casimir energy Ec�S2� of Eq. �A13� for a massless
scalar particle on a two-sphere without reference to the
quantum-mechanical spectrum. Although a somewhat trivial
example of the more general asymptotic expansion for ellip-
tic self-adjoint pseudodifferential operators on Riemannian
manifolds �54,55�, this calculation does illustrate some of the
basic ideas at an elementary level and is an example of the
general procedure of Sec. III.

The system has two constants of motion in involution and
is thus integrable. One of these can be taken to be the square
or magnitude of the momentum �p�, the other the angular
momentum lz. The corresponding action variables for a two-
sphere of radius R are I1=R � p � 
0 and I2= lz with �I2 � � I1.
The Hamiltonian for a free massless particle on the two-
sphere is H�I1 , I2�=c � p � =cI1 /R. Following Refs. �20,35�, the
oscillating part of the semiclassical spectral density is

�̃�E;S2� =
1

�2 �
n,m=−�

�

� �
0

�

dI1�
−I1

I1

dI2
�E − H�I1,I2��

�e2�i��nI1+mI2�/�−n/2�. �B1�

The integration domain of the action variables in Eq. �B1� is
due to classical considerations only and the primed sum in
Eq. �B1� here implies that the �classical� contribution with
m=n=0 is to be omitted. Note that the m=n=0 term is just
the �0�E� that is subtracted from the full spectral density. The
spectral density evidently is given in terms of contributions
from periodic trajectories that wind �n ,m� times about the �in
this case two-dimensional� invariant tori of constant energy.
The phase retardation by n� of the family of trajectories that
wind n-times about the whole two-sphere is related to the
uniqueness of the quantum mechanical wave function �42�
and might not be expected classically. Keller’s construction

described in Sec. III A shows that this phase loss is due to
the two caustics of first order formed by families of periodic
rays of the same inclination.10 Inserting Eq. �B1� in Eq. �4�
and performing the integral over E one obtains

Ec�S2� =
1

2�2 �
n,m=−�

�

� �
0

�

dI1�
−I1

I1

dI2H�I1,I2�e2�i��nI1+mI2�/�−n/2�.

�B2�

Although a direct consequence of Eq. �B1�, it perhaps is
remarkable that the SCE of an integrable system is express-
ible in terms of the Fourier transform of the classical Hamil-
tonian with respect to action variables. Since the Hamil-
tonian H�I1 , I2�=cI1 /R does not depend on I2 and one is
interested in the term of order � only, one can perform the
integral over I2 in saddle point approximation. This gives

�
−I1

I1

dI2e2�imI2/� = ��
−I1/�

I1/�

dxe2�imx = 2I1
m0 + O��� .

�B3�

The only sizable contribution to the I2 integral thus is from
the m=0 term of the sum. Inserting Eq. �B3� in Eq. �B2� one
finally obtains for the SCE due to a massless scalar on S2,

Ec�S2� =
c

R�2 �
n=−�

�

��− 1�n�
0

�

dI1I1
2e2�inI1/�

=
− i�c

�4�3�R �
n=−�

�

�
�− 1�n

n3 = 0. �B4�

The integral over I1 in Eq. �B4� coincides with that over the
energy in Eq. �A13�; recall that I1=ER /c. Note that higher
moments of the semiclassical spectral density do not vanish.
One in particular finds that the second moment of the semi-
classical spectral density is negative

�E2�c�S2� = 12
 �c

4�2R
�2

�
n=−�

�

�
�− 1�n

n4 = −
7

480

�c

R
�2

.

�B5�

The contribution of periodic rays to the spectral density of a
massless scalar thus cannot be positive semi-definite for S2.
Upon subtracting the “classical” Weyl contribution to the
spectral density there in fact is no reason why the remainder
must be positive. The negative sign in Eq. �B5� can be traced
to the phase loss of � for every revolution of a periodic ray
and thus ultimately to the Keller-Maslov index of a class of
periodic rays.

10For fixed energy the inclination of a periodic orbit is determined
by lz= I2 on S2
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