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Three-body systems of scalar bosons are covariantly described in the framework of relativistic constraint
dynamics. With help of a change of variables followed by a change of wave function, two redundant degrees
of freedom get eliminated and the mass-shell constraints can be reduced to a three-dimensional eigenvalue
problem. In general, the reduced equation obtained by this procedure involves the spectral parameter in a
nonconventional manner, but for three equal masses a drastic simplification arises at the first post-Galilean
order: the reduced wave equation becomes a conventional eigenvalue problem that we treat perturbatively,
computing a first-order correction beyond the nonrelativistic limit. The harmonic interaction is displayed as a
toy model.
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I. INTRODUCTION, BASIC EQUATIONS

A relativistic system of mutually interacting particles can
be described, in a manifestly covariant way, by mass-shell
constraints. These constraints determine the evolution of a
wave function which depends on four-dimensional argu-
ments �1–3�. The price paid for covariance is the presence of
redundant degrees of freedom, just like in the Bethe-Salpeter
�BS� approach.

For two-body systems, the extra degree of freedom is
trivially factorized out. Moreover, in that case, the contact
with the BS equation was established �4�.

In contrast, for three or more particles it is difficult to find
an interaction term such that the mass-shell constraints are
compatible among themselves, respect Poincaré invariance,
reproduce free-body motion when this term vanishes, and
allow for eliminating the redundant degrees of freedom.

In this paper we focus on the case of three spinless par-
ticles. We thus consider three Klein-Gordon equations
coupled by a mutual interaction which should be either de-
rived from the underlying field theory �QCD, for instance� or
motivated by phenomenological considerations. Our basic
equations are

2Ka� � �pa
2 + 2W�� = ma

2c2�, a,b = 1,2,3, �1�

for a wave function with three four-dimensional arguments
�either qa or pb according to the representation used�. The
relativistic “potential” W must be Poincaré invariant and
chosen such that the equations above are mutually compat-
ible.

Remark. In principle it seems that one could also consider
more general equations involving three distinct relativistic
potentials W1, W2, and W3. But even if we leave aside the
problem of mutual compatibility which would become more
complicated, in this more general case there is no evidence
that the superfluous degrees of freedom could be eliminated
at all. It is therefore natural to focus on the simple class of
models characterized by Wa=W. This choice is reminiscent
of what is currently done in the two-body case, where using
the same interaction function in both wave equations is gen-
eral enough to accommodate most realistic situations �5,6�.

For three particles, the assumption of a single interaction
function in Eqs. �1� will be justified a posteriori by its effi-
ciency in the task of reducing the degrees of freedom. Of
course in a future work, a justification by a contact with field
theory would be desirable.

It should be emphasized that having Wa=W by no means
forbids us from taking into account differences in the cou-
plings that concern each particle. In most systems of practi-
cal interest W is a sum of three terms; each one of these three
terms, although it is not strictly binary �due to the three-
particle forces automatically included�, still carries some
two-body input �the three-body forces being of higher order�.

This will be seen for instance in the covariant harmonic
potential of Sec. IV, where the potential given by Eq. �51�
includes three distinct spring constants permitting us to
implement a different interaction law inside each cluster; for
electromagnetic interactions, different charges could be
handled in a similar way.

Poincaré algebra is realized in the same manner as for the
free-particle case—say, P= p1+ p2+ p3 and M =�qaÙ pa. It is
convenient to introduce relative variables with the “heliocen-
tric” notation: relative-particle indices are A ,B=2,3. We de-
fine the four-vectors

zA = q1 − qA, yB =
P

3
− pB. �2�

Their transverse parts are z̃A , ỹB. The tilde denotes the pro-
jection orthogonal to P—for instance, z̃A=zA− �zA · P�P / P2,
etc.

With help of the identity

3 � p2 � P2 + D + 6P2� , �3�

where

D = 6�ỹ2
2 + ỹ3

2 + ỹ2 · ỹ3� , �4�

� = �P2�−2��y2 · P�2 + �y3 · P�2 + �y2 · P��y3 · P�� , �5�

the sum of Eqs. �1� yields a dynamical equation involving
the potential. On the other hand, the differences of Eqs. �1�
take on the purely kinematic form
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�p1 − pA��p1 + pA�� = 2�Ac2� , �6�

where the half squared-mass differences are �A= 1
2 �m1

2−mA
2�.

For the sake of compatibility we require that W commute
with both products �p1− pA��p1+ pA�.

In order to achieve the elimination of two degrees of free-
dom, we have proposed �7� a quadratic change of variables
in momentum space—say, pa� pb�, or equivalently,

P,yA � P,yA� .

This transformation can be characterized as a redefinition of
the relative energies such that

�p1 + pA� · �p1 − pA� = P · �p1� − pA�� �7�

and by the requirement that it leave P , ỹ2, and ỹ3
unchanged—that is,

P� = P, ỹA� = ỹA. �8�

Clearly Eq. �7� determines in closed form the longitudinal
pieces of p2� , p3� �y2� ,y3�� in terms of all the primitive variables
pa �P ,yA� �8�.

Of course, we define the new relative momenta yA� as lin-
early related with the pa�’s through a formula similar to Eqs.
�2�: namely,

yA� =
P

3
− pA� .

Note that our transformation preserves Poincaré invariance;
as a result, the generators of spacetime displacements have
the usual form also in terms of pa�.

Naturally, this procedure gives rise to new configuration
variables zA� . In general, the new variables zA� ,yB� are referred
to as reducible.

It is noteworthy that instead of �, we can equivalently use
a new wave function

� = �J�1/2�, J =
D�p1,p2,p3�
D�p1�,p2�,p3��

. �9�

Accordingly, the operators K and W are mapped to H and V,
respectively,

H = �J�1/2K�J�−1/2, V = �J�1/2W�J�−1/2. �10�

In contrast to z2 ,z3, the operators zA� are “formally Hermit-
ian” �i.e., symmetric� with respect to the Hilbert space
L2�R12,d12p��. In other words, setting

d12p = d4p1 d4p2 d4p3, d12p� = d4p1� d4p2� d4p3�,

we have

� �zA���*�d12p� =� �*zA��d12p� �11�

whenever � and � are square integrable in terms of the
volume element d12p�. Owing to Eqs. �10�, H and V have the
same property �9�.

The results of Ref. �7� are as follows.

�a� Provided the three masses are not too much different
one from another, Eqs. �7� and �8� can be inverted in closed
analytic form.

Indeed our model is reliable insofar as, in the no-
interaction limit obtained by putting the potential equal to
zero, one recovers the free motion of independent particles.
The discussion of this point in Ref. �7� led us to require

��2 + �3� �
1

24 � ma
2, ��2 − �3� �

1

8 � ma
2. �12�

For instance, if only two masses are equal—say,
m2=m3—their value is allowed to deviate from m1 by an
amount of almost 6%.

�b� Conditions �7� amount to redefining the relative ener-
gies in such a way that the new relative energies can be
eliminated.

�c� The compatibility conditions can be satisfied easily in
terms of our new variables. Actually, in view of the compat-
ibility requirement, a closed form of the interaction is avail-
able only in terms of the new variables.

A typical example of a potential satisfying compatibility
and Poincaré invariance would be of the form

V = f„�z̃2��
2,�z̃3��

2, z̃2� · z̃3�,P
2
… �13�

since any function of z̃B� , ỹC� , and P commutes with yA� · P. In
this equation all the arguments of f are mutually commuting
�10�.

This situation is in favor of using � and the new vari-
ables, as we shall do hereafter.

By our transformations, the difference equations �6� be-
come

yA� · P� = 	4

3
�A −

2

3
�B
c2�, A � B , �14�

and the dynamical equation of motion is mapped to

�3 � m2c2 − P2�� = �D + 6P2� + 18V�� . �15�

In order to handle this equation we need to express � in
terms of the new variables.

Lengthy but elementary manipulations reported in �7�
show that

� = �2 + 	2 + 	� , �16�

where �, 	 are determined by the system

2

3
� +

1

3
	 + �	 +

	2

2
= u , �17�

2

3
	 +

1

3
� + �	 +

�2

2
= v , �18�

u, v being determined as follows:

P2u = y2� · P +
1

2
y3� · P − 	ỹ2 · ỹ3 +

1

2
ỹ3

2
 , �19�

P2v = y3� · P +
1

2
y2� · P − 	ỹ2 · ỹ3 +

1

2
ỹ2

2
 . �20�

PH. DROZ-VINCENT PHYSICAL REVIEW A 73, 042101 �2006�

042101-2



II. THREE-DIMENSIONAL REDUCTION

Now the dependence of � on the new relative energies is
easily factorized out, provided we assume a sharp linear
momentum—say,

P
� = k
�, k2 = M2c2, �21�

for some constant timelike vector k. Let the caret denote the
projection orthogonal to k. For instance, the transverse piece
of z with respect to k is ẑ=z− ��z ·k� /k2�k, etc. In the rest
frame we have ŷA

2 =−yA
2 , ẑA

2 =−zA
2 , etc.

We make this convention that, in any operator F depend-
ing on the dynamical variables, the underline indicates that
we replace yA� · P by � 4

3�A− 2
3�B�c2 and P
 by k
, hence P2 by

M2c2. Let us write this symbolically

F = S�yA� · P = 	4

3
�A −

2

3
�B
c2, P
 = k
, F� .

It is clear that F reduces to F on the “mass-momentum shell”
�defined as the subspace of solutions to the mass-shell con-
straints which are eigenstates of total linear momentum�.

Note that � depends only on ŷ2 , ŷ3.
Equation �15� yields the reduced equation

�3 � m2 − M2�c2� = �6�ŷ2
2 + ŷ3

2 + ŷ2 · ŷ3� + 18V + 6M2c2���

�22�

for a reduced wave function � which depends on three-
dimensional arguments only �say, ŷ2 , ŷ3 in the momentum
representation�.

III. EQUAL MASSES

Fortunately, in the case of three equal masses—say, ma
=m—we have this further simplification that �A=0, which
finally renders u ,v of the order of 1 /c2. More precisely, Eqs.
�19� and �20� entail

M2c2u = − 	ŷ2 · ŷ3 +
1

2
ŷ3

2
 , �23�

M2c2v = − 	ŷ2 · ŷ3 +
1

2
ŷ2

2
 , �24�

hence u and v to be inserted into the reduced version of the
system �17� and �18�. Solving for � ,	 we obtain

� = 2u − v + O�1/c4� , �25�

	 = 2v − u + O�1/c4� . �26�

Inserting this into Eq. �16� we get

� = 3�u2 + v2 − u · v� + O�1/c6� , �27�

correcting a misprint in the higher-order term of Eq. �100� of
Ref. �7�. Since the leading term in � is O�1/c4�, we have
defined � by setting

M4c4� = � = ��0� +
1

c2��1� + ¯ , �28�

where ��0� ,��1� , . . . remain finite when c→. In view of Eq.
�27� it is clear that

M4c4� = 3M4c4�u2 + v2 − u · v� + O�1/c2� .

We compute respectively u2 ,v2 and hence

��0� =
3

4
�ŷ2

2�2 + �ŷ3
2�2 + 4�ŷ2 · ŷ3�2

+ 2�ŷ2
2 + ŷ3

2��ŷ2 · ŷ3� − ŷ2
2ŷ3

2� , �29�

an expression valid only for three equal masses �this formula
was given in Ref. �7� without proof�. Note that � is a positive
operator and would survive in the absence of interaction.

For three equal masses, Eq. �22� takes on the form

�9m2 − M2�c2� = 6�ŷ2
2 + ŷ3

2 + ŷ2 · ŷ3�� + 18V� +
6

M2c2�� .

�30�

Defining

6� = �M2 − 9m2�c2 �31�

and using the rest frame �where ŷA · ŷB=−yA ·yB� we can
write

�� = �y2
2 + y3

2 + y2 · y3�� − 3V� −
�

M2c2� . �32�

Naturally ��0� admits an expression identical to Eq. �29� in
terms of y2 ,y3.

In spite of being three dimensional, the reduced equation
�32�, as it stands, is more problematic than an ordinary ei-
genvalue problem. Even if the interaction does not depend
on the total energy �that is, V does not depend on P2�, the
term P2� in Eq. �15�, which has no counterpart in two-body
systems and yields M2c2� in Eq. �22�, brings out some en-
ergy dependence. It follows that Eq. �32� is not a conven-
tional eigenvalue equation: through Eq. �31� the operator to
be diagonalized depends on its own eigenvalue. This com-
plication is by no means a drawback special to our model. As
emphasized in �11� it plagues most relativistic wave equa-
tions; the mathematical theory of this situation is rather in-
volved, but fortunately this difficulty can be more easily
handled in a perturbation scheme, provided the unperturbed
equation is not energy dependent.

In the rest of this paper we focus on the first relativistic
corrections. Therefore we solve Eq. �32� after expansion in
powers of 1 /c2, taking Eq. �31� into account—say, M2

=9m2+6� /c2. In principle, the exact analytic expression for
� is known and is itself a series in 1/c2. In fact knowledge of
��0� is sufficient for our purpose. Assuming that � remains
finite in the nonrelativistic limit, we select these solutions
that are in some sense “close to” the nonrelativistic
Schrödinger equation obtained by dropping 1/c2 in Eq. �32�.

This development is justified insofar as the velocity of
light can be considered as large with respect to some velocity
formed with help of the physical parameters defining the
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system. Practically, the constituent masses and the coupling
constants involved in the interaction term must be combined
as to form a quantity having the dimension of speed. In prin-
ciple one should check that this “characteristic velocity” ac-
tually has something to do with the average velocities of the
constituent particles in the slow-motion approximation.

The legitimacy and limitations of this procedure vary ac-
cording to the analytic shape of the interaction term and must
be discussed in each specific case.

A. Post-Galilean approximation

Let us start expanding in powers of 1 /c2. Using the rest
frame and assuming that

� = ��0� +
1

c2��1� + ¯ , V = V�0� +
1

c2V�1� + ¯ , �33�

the zeroth-order approximation to Eq. �32� yields the nonrel-
ativistic limit

�0��0� − �y2
2 + y3

2 + y2 · y3���0� + 3V�0���0� = 0. �34�

Setting

E�0� =
��0�

m
, U = −

3

m
V�0�, �35�

Eq. �34� can be rewritten as

E�0���0� =
1

m
�y2

2 + y3
2 + y2 · y3���0� + U��0�, �36�

which is similar to the Schrödinger equation of a nonrelativ-
istic problem with three equal masses �except perhaps for
complications resulting from a possible dependence of V on
P2�. Indeed we consider equal masses, thus m=2m0 where
m0 is the reduced mass of either of particles 2, 3, with respect
to particle 1. The first operator in the right-hand side is noth-
ing but the kinetic energy for a nonrelativistic system of
three masses m, when the center-of-mass motion has been
separated.

At the first order in 1 /c2 we can, in the last term of Eq.
�32�, replace � which depends on M2, by ��0�, which does
not. In view of Eq. �31�, in this last term, we can also replace
M2 by 9m2. Hence

�� = 	y2
2 + y3

2 + y2 · y3 − 3V −
��0�

9m2c2
� , �37�

with ��0� biquadratic in y. Inasmuch as V is not energy de-
pendent, the above equation still has the structure of a non-
relativistic eigenvalue problem and can be solved by treating
the last term as a perturbation.

More care is needed for most realistic potentials, for
which V depends on P2, and hence V depends on M2c2.
Fortunately, in several cases, this dependence is of higher
order, so that it can be accounted for by addition of an extra
perturbation term, as follows. Assuming that V is as in Eqs.
�33� we have

�� = �y2
2 + y3

2 + y2 · y3�� − 3V�0�� −
1

c2	 ��0�

9m2 + 3V�1�
� .

�38�

Since we do not go beyond first order, let us write �=��0�

+ 1
c2 ��1�.
For any nondegenerate level �, we have

��1� = − � ��0�

9m2 + 3V�1�� , �39�

where the expectation value must be calculated in the unper-
turbed eigenstate ��0�.

Binding energy

Now we are in a position to calculate, at first post-
Galilean order, the binding energy of a bound state. This
quantity is usually defined through the �linear� mass defect
�12�. So let us evaluate M −�m=M −3m. Taylor expansion
of Eq. �31� yields

�M − 3m�c2 =
�

m
−

�2

6m3c2 + O�1/c4� , �40�

�M − 3m�c2 =
��0�

m
+

1

c2	��1�

m
−

��0�
2

6m3
 + O�1/c4� , �41�

which yields the first correction to binding energy.

B. Jacobi’s coordinates

Equation �38� amounts to a nonrelativistic problem, for-
mulated in terms of the canonically conjugate variables
zA� ,yB� . Before we turn to the harmonic interaction it is con-
venient to introduce Jacobi’s coordinates that have the virtue
of simplifying the expression of the kinetic energy. So we
perform a linear change from zA� ,yB� to RA ,�B, as follows.

For three equal masses, the Jacobi coordinates R2 ,R3 as-
sociated with q2� ,q3�, are defined by the formulas �13�

R2 = q2� − q3�, R3 =
1
�3

�2q1� − q2� − q3�� , �42�

in other words,

R2 = − z2� + z3�, R3 =
1
�3

�z2� + z3�� . �43�

Inverting Eqs. �43� yields

z2� =
1

2
��3R3 − R2�, z3� =

1

2
��3R3 + R2� . �44�

Since Eqs. �43� are a linear transformation, it is easy to
determine conjugate momenta—say, �2 ,�3—such that
�R2 ,�2�= �R3 ,�3�= i� and �R2 ,�3�= �R3 ,�2�=0, etc. We
find

�2 = −
1

2
y2 +

1

2
y3, �3 =

�3

2
�y2 + y3� , �45�

hence the inverse formulas
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y2 = − �2 +
1
�3

�3, y3 = �2 +
1
�3

�3. �46�

In Eq. �36� kinetic energy was expressed in terms of the
heliocentric coordinates. But with help of Eqs. �46� we can
write

y2
2 + y3

2 + y2 · y3 = �2
2 + �3

2. �47�

Now Eq. �36� may be rewritten in terms of the Jacobi coor-
dinates. For the total kinetic energy we have

� p2

2m
=

P2

6m
+

1

m
��2

2 + �3
2� . �48�

In order to compute the first relativistic corrections we need
to evaluate also ��0� in terms of �2 ,�3. So we must insert
Eqs. �46� into Eq. �29�. To this end we can write

4

3
��0� = A2 + B2 + 4C2 + 2�A + B�C − AB , �49�

with the notation

A = �y2�2, B = �y3�2, C = y2 · y3,

A = ��2�2, B = ��3�2, C = �2 · �3.

From Eqs. �46� we get

A = �2
2 −

2
�3

�2 · �3 +
1

3
�3

2,

B = �2
2 +

2
�3

�2 · �3 +
1

3
�3

2,

C =
1

3
�3

2 − �2
2,

in other words,

A = A −
2
�3

C +
1

3
B ,

B = A +
2
�3

C +
1

3
B ,

C =
1

3
B − A .

Inserting this into Eq. �29� we get

4

3
��0� = �A + B�2 + 4C2,

4

3
��0� = ��2

2�2 + ��3
2�2 + 2�2

2�3
2 + 4��2 · �3�2. �50�

IV. COVARIANT HARMONIC POTENTIAL

In order to test the formalism, it is natural to consider first
a toy model: namely, the harmonic oscillator.

Harmonic interactions are implemented through the po-
tential

V = �12�q1� − q2��˜2 + �23�q2� − q3��˜2 + �13�q1� − q3��˜2, �51�

where �ab are positive coupling constants.
If, for the sake of simplicity, we assume that all these

constants are equal, we obtain the version

V = ��
a�b

�qa� − qb��˜2 = 2��z̃2��
2 + �z̃3��

2 − z̃2� · z̃3�� , �52�

where � is a positive constant. The identity

�
a�b

�qa� − qb��˜2 � 2�z̃2��
2 + �z̃3��

2 − z̃2� · z̃3�� �53�

reads, after reduction to the rest frame,

� �qa� − qb��
2 = 2�z2�

2 + z3�
2 − z2� · z3�� = z2�

2 + z3�
2 + �z2� − z3��

2.

�54�

With help of Eqs. �44� we have z2�−z3�=−R2 and

z2�
2 =

1

4
�3R3

2 − 2�3R3 · R2 + R2
2�,

z3�
2 =

1

4
�3R3

2 + 2�3R3 · R2 + R2
2� .

Note that

2�z2�
2 + z3�

2 − z2� · z3�� =
3

2
�R2

2 + R3
2�

for all choice of units. Hence we obtain

� �qa� − qb��
2 =

3

2
�R2

2 + R3
2� , �55�

which exhibits the O6 invariance of our potential U.
Finally Eq. �37� takes on the form

�� = ��2
2 + �3

2�� +
9

2
��R2

2 + R3
2�� − 	 ��0�

9m2c2
� . �56�

For the moment, let us consider the zeroth-order approxi-
mation and divide by m. We obtain the Schrödinger equation
of a nonrelativistic three-body oscillator with equal masses,
written in Jacobi coordinates R2 ,R3 ,�2 ,�3 �the SU6 invari-
ance of the nonrelativistic limit would become manifest if we
were to choose an appropriate unit of length�.

In order to make the contact with textbook notations �13�,
we may define

K =
6�

m
.

The nonrelativistic potential is

U = −
3

m
V =

K

2 � �qa� − qb��
2.

At the zeroth order the ground-state wave function is a
Gaussian, as well in the coordinate as in the momentum rep-
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resentation. It is better to choose the latter, where the opera-
tor � is multiplicative. Then the unperturbed ground state is

��0� = � = const � exp�−
1

3�2�
��2

2 + �3
2�� . �57�

In order to check the validity of expanding in powers of 1 /c
we observe that the quantity 1

m
�3K /m has the dimension of a

squared velocity. The velocity obtained by taking its square
root is a characteristic of the system and should be reason-
ably small with respect to the speed of light.

Since V does not depend on P2, it follows that V does not
depend on M2; thus, Eq. �36� is an eigenvalue problem in the
conventional sense.

With the notations �35� we have, for the nth level of the
unperturbed harmonic oscillator,

E�0� = �3K/m�3 + n�, n = 0,1,2, . . . ,  . �58�

It is convenient to set

� = �3K/m =
3

m
�2� . �59�

Indeed, for the ground state we have, in particular,

E�0� = 3�, ��0� = 9�2� = 3m� . �60�

Let us now consider the first post-Galilean contribution;
first-order perturbation theory applies as usual.

We focus on the ground state; in order to compute the first
correction, we need to evaluate the expectation value of ��0�
in the state ��0�. At this stage we observe that ��0� is a ho-
mogeneous function of fourth degree in the six-dimensional
vector X= ��2 ,�3�. It follows that, with obvious notations, 

being any constant,

���0�� = 
−4� e−X2
��0��X�d6X , �61�

provided that 
2= 2
3 �2��−1/2, which corresponds to ��0�

=const�e−
2X2/2. Therefore it is sufficient to carry out the
calculation in the case where 
=1, so let us provisionally
choose the unit of length such that �=2/9.

It is convenient to note that �=�2�3 introducing the nor-
malized functions

�A = �−3/4exp	−
1

2
�A

2
 .

As an operator �A does not affect �B when B�A. Moreover,
�2 ,�3 are normalized to unity, so we have that

���A
2�2� = ��A,��A

2�2�A� .

For instance, we obtain

���2
2�2� =

15

4
�62�

and in the same way

���3
2�2� =

15

4
. �63�

Further we have

��2�3,�2
2�3

2�2�3� = ��2,�2
2�2���3,�3

2�3� ,

but we compute easily

��2,�2
2�2� = ��3,�3

2�3� =
3

2

and thus

��2
2�3

2� =
9

4
. �64�

Finally, if the �A
j are the coordinates of the three-vector �A,

we have that

��2 · �3�2 = ��2
1�3

1 + �2
2�3

2 + �2
3�3

3�2. �65�

For the sixfold integral

���2 · �3�2� = �−3� ��2 · �3�2e−�2
2−�3

2
d3�2d3�3,

�66�

we find

���2 · �3�2� =
3

4
. �67�

Linear combination of all these results yields, according to
Eqs. �50�,

���0�� =
45

4
= 11 +

1

4
.

In view of Eq. �61� we now revert to an arbitrary unit of
length and write

���0�� =
405

8
� . �68�

Applying this result to Eq. �39� where V�1� is supposed to
vanish,

��1� = −
45

8

�

m2 . �69�

It is interesting to evaluate the relative importance of this
correction. For this purpose consider the quantity

��

�
=

1

c2

��1�

��0�
.

In view of Eqs. �59�, �60�, and �69� we finally obtain

��

�
= −

5

16

�2�

m2c2 = −
5

48

�

mc2 . �70�

Recall that � /m is the square of the characteristic velocity.
Now inserting ��0� and ��1�, respectively, given by Eqs.

�60� and �69�, into Eq. �31� we obtain, up to O�1/c6�,
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M2

m2 − 9 =
54�2�

m2c2 −
135�

4m4c4 �71�

or, equivalently,

M2

m2 − 9 = 18
�

mc2 −
15

8
	 �

mc2
2

. �72�

In principle these formulas permit us to calculate M at the
first post-Galilean order when � and m are given.

But in practice one may be interested in a naive model of
baryon. In this case it is natural to fix M �e.g., the proton
mass� and adjust m and � in agreement with Eq. �71�. The
most simple possibility is to choose first the ratio M /m
within reasonable limits discussed below, then extract � from
Eq. �71� or alternatively extract �

mc2 from Eq. �72�. In this
procedure the choice of M /m must allow for a reasonable
value of the characteristic velocity. More precisely, �

mc2 must
be small enough in order to justify our first-order treatment.
It is clear that the more M /m exceeds 3, the more our system
is rapid.

Example. If M
m =3.03, solving Eq. �72� yields

�

mc2 = 0.0100

so that the critical velocity is about 10% of the velocity of
light. If M is the proton mass �Mc2=920 MeV�, we find
mc2=303.6 MeV for the constituent quark mass.

V. CONCLUSION

Our basic equations involve a unique interaction term and
are tailored for allowing elimination of the redundant vari-
ables implied by manifest covariance. In most relevant cases,
the interaction term looks as if it were made of two-body
contributions. In fact, the two-body nature of these contribu-
tions is not exact, because the transformation from original
coordinates to the reducible ones somehow mixes the indi-
vidual variables. For instance, the reducible relative variable
z̃A� does not exactly match the cluster �1A� and so on. This
situation can be interpreted as due to genuine three-body
forces that we have automatically introduced in order to en-
sure the mutual compatibility of the constraints and the pos-
sibility of a three-dimensional �3D� reduction. In general,
this reduction gives rise to a nonconventional eigenvalue
problem.

Starting from manifestly covariant basic equations offers
several advantages:

Conceptually we realize that a general description of the
system must exist even before we assign a sharp value to P.
And before we impose a sharp value to P, there is no rest
frame available yet �P being just an operator� which seems to
discard a three-dimensional formulation at this stage.

Our approach yields a Schrödinger-like equation only at
the end; the reduced wave equation �32� contains a post-
Galilean correction which would hardly be derived from an a
priori 3D theory.

Another motivation in favor of constraint dynamics is the
fact that the contact with quantum field theory is more easy
in a covariant framework. Actually, this contact has been
thoroughly established in the two-body case �14� where con-
straint dynamics inspired an improved way of summing
Feynman’s diagrams �see the “constraint diagrams” exhib-
ited by Jallouli and Sazdjian �6��. Of course, further work is
still needed in order to determine if the mass-shell con-
straints of a three-body model also can suggest similar sim-
plifications in the three-body case.

We performed a systematic expansion in powers of 1 /c2.
At least for three particles with equal masses, the nonrelativ-
istic limit has familiar features and the first post-Galilean
formulation is tractable: at this order the reduced wave equa-
tion is similar to a nonrelativistic equation modified by an
overall perturbation of kinematic origin, supplemented by an
additional term which stems from the possible energy depen-
dence of the interaction potential.

Within this framework it is possible to compute for in-
stance the first relativistic correction to the binding energy of
three given �equal� masses bound by a given interaction. Or
alternatively, in a simple naive model like the harmonic os-
cillator, one may determine the free parameters �constituent
mass and/or coupling constant� in order to fit a fixed value of
the ground-state mass.

Although we focused on the first post-Galilean correc-
tions, let us stress that our formalism is ready for use at
higher orders, with help of Eq. �32� where �, or equivalently
�, must be suitably expanded.

Future work is needed, however, for concrete applica-
tions: we plan to implement spin, consider the case of un-
equal masses, and improve the contact with other approaches
�15�. In particular, it may be interesting to revisit the BS
equation in terms of the reducible variables employed here.

Finally, our approach seems to be more specially designed
for confined systems. When nonconfining forces are present,
the occurrence of scattering states may raise the question of
cluster separability which is not addressed here. But even so,
our picture may provide, if not a complete theory, at least a
reasonable effective model valid in the sector of bound
states.
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