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We calculate the dispersive properties of a single-sided cavity coupled to a single dipole. We show that when
a field is resonant with the dipole and the Purcell factor exceeds the bare cavity reflection coefficient, the field
experiences a � phase shift relative to reflection from a bare cavity. We then show that optically Stark shifting
the dipole resonance with a second field creates large Kerr nonlinearities. An approximate expression for the
total number of photons needed to create a � phase shift is derived.
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Optical nonlinearities play an important role in quantum
optics, quantum information processing, and also in design
of practical quantum electronic devices. One of the most
commonly encountered nonlinearities is the Kerr effect,
which has a large number of applications for optical detec-
tion, all-optical switching, and quantum computation �1,2�.
The main difficulty in achieving these applications is that
conventional materials offer only a very small nonlinear re-
sponse, which is significantly outweighed by linear absorp-
tion. Furthermore, applications in quantum optics and quan-
tum information often require that nonlinearities be created
by a small number of photons, or sometimes even a single
photon. There are very few situations where one can even
approach this regime.

One of the few cases where Kerr nonlinearities with a
small number of photons can be observed is in atomic gases
using electromagnetically induced transparency �EIT� �3�.
The central idea for these schemes was originally presented
by Schmidt and Imamoglu �4�. This scheme exploits EIT in a
four-state atom where the interaction between two weak
pulses is mediated by a strong coupling laser. Due to the
large atomic coherence of these systems, cross phase modu-
lation and two-photon absorption can be observed with only
a small number of photons �5�. A limitations of the Schmidt-
Imamoglu proposal is that the large group velocity mismatch
between the two interacting pulses puts a lower limit on the
required intensity for a full � phase shift to a few photons
per cubic wavelength �6�. This group velocity mismatch
problem can in principle be overcome �7,8�.

A cavity coupled to a dipole can exhibit similar properties
to an atomic three-level system in EIT �9�. When the cavity-
dipole system is driven by an external field, the cavity field
can destructively interfere in an analogous way to the excited
state population of a three-level atom. For this reason, we
refer to this effect as dipole induced transparency �DIT�. In
this paper, we explore the dispersive and nonlinear properties
of DIT for a field driving a single-sided cavity, a cavity with
one input and one reflected port as shown in Fig. 1, interact-
ing with a resonant dipole. The parameter that characterizes
this interaction is the Purcell factor, which is the ratio of the
dipole decay rate when coupled to a cavity to the decay rate
when decoupled. We show that when the Purcell factor is
much larger than one, losses due to cavity leakage and dipole

absorption are cancelled. This is a manifestation of destruc-
tive interference which inhibits the light from entering the
cavity. At the same time, whenever the Purcell factor exceeds
the bare cavity reflectivity, the presence of a dipole imposes
a zero-phase shift on the reflected field that is resonant with
the dipole frequency, whereas a bare cavity would impose a
� phase shift.

This change of phase has been previously studied in the
regime where the vacuum Rabi frequency of the dipole, de-
noted g, exceeded the cavity and dipole decay rates �10�. In
this regime, which we refer to as the high-Q regime, the
cavity mode is fully split into a lower and upper polariton
�normal mode splitting�. An important point of this paper is
that one does not need the high-Q regime to observe this �
phase shift. The shift is achieved any time the Purcell factor
exceeds the bare cavity reflectivity. In the “bad cavity” limit,
defined as the limit where the dipole lifetime is much longer
than the cavity lifetime �11�, this condition can be achieved
for much smaller values of g. We show that the large dipole-
induced phase shifts in DIT are sharply peaked near the reso-
nant frequency of the emitter, creating a highly dispersive
region with large group delays. At this same region, absorp-
tion due to cavity losses and dipole decay are cancelled out.
Thus, DIT provides a special condition where we can drive
the dipole on resonance and create large phase shifts while
not suffering from absorption.

In the second part of the paper, we show that these cavity
reflection properties can be used to create large Kerr nonlin-
earities. Nonlinearities using cavity quantum electrodynam-
ics have been theoretically studied �12�, and cross phase
modulation angles as large as 16° have been experimentally
demonstrated �13�. These cross phase modulation angles

FIG. 1. �Color online� Setup for large Kerr nonlinearities off of
reflection from a cavity coupled to a single dipole.
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were limited because of the need to detune the field from the
resonant frequency of the dipole in order to reduce intracav-
ity losses. Here, we show that by using DIT in a single-sided
configuration, one can resonantly drive the dipole to induce
large phase shifts without suffering from intracavity losses.
We show that with presently achievable cavity lifetimes and
vacuum Rabi frequencies, a single cavity photon can achieve
a full nonlinear � phase shift using only a single emitter. In
contrast to the Schmidt-Imamoglu proposal �4� using EIT
without a cavity, our proposal only requires a three-level
system instead of a four-level system. Furthermore, the cou-
pling is naturally achieved by cavity-dipole interaction, alle-
viating the need for a third coupling laser.

The system we study is shown in Fig. 1. An external
waveguide field is reflected off of a single-sided cavity con-
taining a dipole. We define âin and âout as the flux operators
for the input and reflected field, while êout is the flux operator
for parasitic leaky modes. We define � as the energy cou-
pling rate from cavity to waveguide, while � is the energy
coupling rate into leaky modes. The dipole has three states,
denoted �1�, �2�, and �3�, with transition frequencies �0+�
and �, where �0 denotes the central frequency of the cavity,
and cavity coupling strengths g1 and g2. We assume that
� ,�0−���+�, so that both transitions can couple to the
cavity mode. The lifetime of states �2� and �3� are given by �2
and �3, respectively. In the first part of the paper, we only
consider the 1-2 transition to calculate the dispersive proper-
ties of the cavity in the presence of a dipole. We set g2=0,
and the state �3� plays no role in these calculations. The
system is simply described by a cavity coupled to a two-level
dipole, which is equivalent to the system investigated by
Duan and Kimble �10�. In the second part of the paper, we
add level �3� into the system. Three-level atomic systems
have been extensively studied for applications, such as cavity
EIT �14� and light storage �15�. In the system considered
here, the 2-3 transition does not drive the cavity, and is used
only to create an optical Stark shift on state �2�.

We denote 	−
12 and 	−

23 as the lowering operators for the

dipole, and b̂ as the bosonic annihilation operator for the
cavity field. The Hamiltonian of the system is given by

H = Hs + �
n=1

N


 �g1b̂†	−
12 + g2�b̂ + b̂†�	−

23 + H.c.� , �1�

where g1 and g2 are the vacuum Rabi frequencies for the 1-2
and 2-3 transitions, respectively. Hs is the Hamiltonian of the
uncoupled systems and the cavity-waveguide interaction
terms. In order to properly derive the Stark shift term, we do
not yet make the rotating wave approximation for the inter-
action between the cavity and 	−

23.
Using the above Hamiltonian, along with standard cavity

input-output formalism �16�, we can derive the Heisenberg
picture equations of motion for the operators in the “weak
excitation limit,” where the dipole is predominantly in state
�1�. In this limit, we can assume 	z

12�−1, and 	z
23 is very

small and time invariant. The condition for this assumption
to be valid is given by 		+	−��1, which is equivalent to the
condition 	âin

† âin��g1
2 /� for an input field that is resonant

with the dipole �9� �this condition is well satisfied in our
regime of interest�. Using this approximation, the operator
equations of motion are given by

db̂

dt
= �− i�0 − �/2 − �/2�b̂ − 
�âin − 
�êin − ig1	−

12, �2�

d	−
12

dt
= �− i��0 + �� −

1

2�2
�	−

12 − ig1b̂ − ig2�b̂ + b̂†�	−
12	−

23 + f̂

�3�

d	−
23

dt
= �− i� −

1

2�3
�	−

23 − ig2�b̂ + b̂†�	z
23 + ĥ . �4�

The operators f̂ and ĥ are noise operators that are needed to
conserve the commutation relation of the dipole operators.

The input and output fields are related by âout− âin=
�b̂.
We begin by first studying the dispersive properties of

reflected light with only states �1� and �2�, and set g2=0. In
this case, if we apply an input field at frequency �, the re-
flection coefficient can be solved in the frequency domain
using Eqs. �2� and �3� with the correct input-output relation-
ships to give

r��� =

− i�� +
g1

2

− i��� + �� + 1/2�2
− �/2 + �/2

− i�� +
g1

2

− i��� + �� + 1/2�2
+ �/2 + �/2

. �5�

We define the amplitude and phase of the reflection coeffi-
cient by r=
Rei
r, where R is the reflectivity of the cavity
and 
r is the phase shift imposed on the reflected field.

Figure 2 plots the cavity reflectivity as a function of de-
tuning from the cavity resonance for several values of g1. We
set �=6 THz and �=0.1 THz, which is the decay rate of a
cavity with a quality factor of Q=10000 �here Q is defined as

FIG. 2. Cavity reflection coefficient for different values of g: �a�
g=0.3 THz, �b� g=0.15 THz, �c� g=0.33 THz.
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Q=�0 /��. The dipole is assumed to be resonant with the
center frequency of the cavity so that �=0, while �2=1 ns, a
value taken from experimental measurements on quantum
dots �17�.

When g1=0 the cavity is not perfectly reflecting due to
the coupling to leaky modes as shown in panel �a� of the
figure. Introducing a small g1 increases the cavity loss on
resonance, as shown in panel �b�, because the dipole behaves
as an absorber. However, when g1 is increased to higher
values, the cavity reflection improves. This can be under-
stood from the reflection coefficient at ��=0, which is given
by

r��0� = �Fp − r0�/�Fp + 1� , �6�

where Fp=4�2g2 / ��+�� is the Purcell factor, and r0= ��
−�� / ��+�� is the reflection coefficient for a bare cavity with
no dipole. When Fp�r0, the cavity is very lossy because
most of the field is absorbed by the dipole. However, when
Fp�r0, the cavity becomes very reflective again, with one
significant change. The reflection coefficient changes sign
and becomes positive. Thus, there is a � phase shift change
between the case Fp�r0 and Fp�r0. In previous work by
Duan and Kimble �10�, it has been shown that this change in
reflection phase can be used to perform a controlled phase
gate by performing successive reflections of two photons off
of a cavity. In that proposal, the authors considered only the
high-Q regime for implementing this phase change. Equation
�6� shows that the Duan-Kimble proposal works even in the
limit that g is much smaller than the cavity lifetime, provided
the Purcell factor exceeds r0. We need only create suffi-
ciently large values for Fp so that the cavity is not lossy.

We next plot 
r, normalized by �, in Fig. 3 for different
values of g1. An important feature of the reflection coeffi-
cient is that it is highly dispersive near ��=0. The slope of
the dispersion can be calculated from Eq. �5�, and takes on a
particularly simple form near zero detuning when Fp�1. In
this region, we have 
r=arctan(��+� /2��� /g1

2). Thus, the

phase shift quickly changes to � at a detuning of ��
�g1

2 / ��+��. The slope of 
r gives the group delay a pulse
experiences from cavity reflection. Near-zero detuning, this
group delay is simply Tg= ��+�� /g1

2. The second derivative
of 
r near zero detuning vanishes, ensuring that the reflected
pulse preserves its shape, and is not distorted by the cavity.

The sharp dispersive feature of the reflection coefficient
allows the possibility to achieve large Kerr nonlinearity. If
one can shift the dispersion curve by a very small amount, on
the order of ���g1

2 / �� /2+� /2�, the reflection phase can be
changed from � to 0. The shift in dispersion can be created
by optically Stark shifting the 1-2 transition, which can be
implemented by adding level �3� to the system, and applying
a second off-resonant field on the 2-3 transition.

To calculate the optical Stark shift, we assume that the
input field has two frequency components, one at � and the
other at �+�. The component at �+� is the field responsible
for creating a Stark shift. The response of the cavity at this
frequency is given by substituting âin= â�+�e−i��+��t and tak-
ing the Fourier transform of Eq. �2� at frequency �+�. As-
suming the frequency �+� is within the linewidth of the

cavity we have b̂�+��−2â�+� /
�. We assume that 	−
23 is

driven mainly by the field component at frequency �+�.
Using this approximation, the detuning of 	−

12 in the presence

of the Stark field, denoted �s, becomes �s=�+ Ŝ, where

Ŝ =
i2g2

2b̂�+�
† b̂�+�

i� +
1

2�3

. �7�

The Stark operator Ŝ has a real and imaginary component.
The real component gives the optical Stark shift, while the
imaginary component represents loss due to two-photon ab-
sorption. When ��1/�3 this operator represents an energy
shift that is proportional to the number of photons at fre-
quency �+�.

First, we consider the case where there is exactly one
photon in the cavity at frequency �+�, in which case we can

substitute b̂�+�
† b̂�+�=1. We assume ���3 so that the Stark

operator causes only a phase shift. To calculate the Stark
shift, we must have a value for g2. In the case of a quantum
dot, we can use the single exciton and biexciton transitions
for the 1-2 and 2-3 transitions. In this case, it is reasonable to
assume that g2=g1=g, because both transitions represent an
absorption of a photon by an exciton in the quantum dot. For
other systems, the value of g2 must be measured or calcu-
lated from the matrix element between �2� and �3�.

Making the assumption that g1=g2=g, Fig. 4 plots the
phase of the reflection coefficient for �=� �no Stark shift�
and �=−3g, with g=0.3 THz. The curve corresponding to
�=� is identical to the one in Fig. 3. By introducting a Stark
field, the resonant frequency of the first transition is shifted
by 2g2 /�. The phase shift curve will therefore be translated
to the new resonant frequency of the dipole. As the figure
shows, �=−3g is enough to change the reflection phase from
0 to � in the presence of a single photon. In general, when
�� � =� /2+� /2, we have a frequency shift of 2g2 / ��+��,
which is sufficiently large to change the phase by �. This

FIG. 3. Phase shift after reflection from cavity, normalized by �,
for several values of g: �a� g=0 THz, �b� g=0.15 THz, �c� g
=0.33 THz.
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means that a single photon inside the cavity can provide a �
phase shift if it is whithin the cavity linewidth.

In order to maintain one photon in the cavity with high
probability, the Stark field must provide at least one photon
per cavity lifetime �. This is a reasonable lower bound to
ensure the probability of zero-cavity photons is small. At the
same time, the Stark field must have the same pulse duration
as the reflected field. In order for the reflected field to fit
within the linear dispersion region of the cavity reflection
coefficient, its duration must be larger than the modified
spontaneous emission lifetime of the dipole. This lifetime is
given by � /g2 in the limit that �=0 �losses to waveguide are
dominant�. The minimum number of photons in the Stark
field is then given by multiplying the flux of the field by the

minimum pulse duration, which leads to nStark� �� /g1�2. For
typical experimental parameters using quantum dots in pho-
tonic crystal cavities, we have g=0.3 THz and �=1 THz.
This means that ten photons may be enough to see a signifi-
cant Stark shift. As we approach the regime g1=� �the high-
Q regime�, we can potentially achieve a � phase shift with a
single photon. When g��, this phase shift can be achieved
by loading the cavity with one photon at the Stark field fre-
quency, and then reflecting a second pulse on resonance with
the dipole within the photon lifetime of the cavity. Neverthe-
less, even in the low-Q regime where tens of photons or
more are needed, the amount of nonlinearity is orders of
magnitude bigger than conventional methods for cross-phase
modulation. Such nonlinearities may find application for
single photon QND measurements �1�, as well as quantum
computation methods that do not require a full � phase shift
at the single photon level �18�.

The system we consider exhibits large Kerr nonlinearities
due to two properties. The first is that the confinement of the
cavity field creates large values of g, which in turn generate
very strong optical Stark shifts. But there is a second, more
critical property. The largest phase difference is experienced
near resonance with the dipole. In a normal system, we
would not be able to drive a dipole resonantly without simul-
taneously suffering from large losses. In the case of DIT,
however, we can drive the system on resonance and not suf-
fer from absorption. This combination is the essential point
of achieving large phase shifts.

This work was funded in part by the MURI center for
photonic quantum information systems �ARO/DTO Program
No. DAAD19-03-1-0199�, and a Department of Central In-
telligence postdoctoral grant.

�1� N. Imoto, H. A. Haus, and Y. Yamamoto, Phys. Rev. A 32,
2287 �1985�.

�2� S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611
�1998�.

�3� S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64,
1107 �1990�.

�4� H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 �1996�.
�5� D. A. Braje, V. Balic, S. Goda, G. Y. Yin, S. E. Harris et al.,

Phys. Rev. Lett. 93, 183601 �2004�.
�6� S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611 �1999�.
�7� M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419

�2000�.
�8� D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 033833 �2002�.
�9� E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 �2006�.

�10� L. M. Duan and H. J. Kimble, Phys. Rev. Lett. 92, 127902
�2004�.

�11� H. Kimble, Cavity Quantum Electrodynamics �Academic, San
Diego, 1994�.

�12� H. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, J. Opt. B:
Quantum Semiclassical Opt. 5, 218 �2003�.

�13� Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, H. J.
Kimble et al., Phys. Rev. Lett. 75, 4710 �1995�.

�14� M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Veli-
chansky, Opt. Lett. 23, 295 �1998�.

�15� M. Fleischhauer, S. F. Yelin, and M. D. Lukin, Opt. Commun.
179, 395 �2000�.

�16� D. Walls and G. Milburn, Quantum Optics �Springer, Berlin,
1994�.

�17� J. Vuckovic et al., Appl. Phys. Lett. 82, 3596 �2003�.
�18� K. Nemoto and W. J. Munro, Phys. Rev. Lett. 93, 250502

�2004�.

FIG. 4. Reflection phase shift in presence of a single photon
inside the cavity at frequency �+�. It is assumed that g1=g2=g
=0.3 THz. �a� �=�, �b� �=−3g.
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