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We propose a method for directly probing the dynamics of disentanglement of an initial two-qubit entangled
state under the action of a reservoir. We show that it is possible to detect disentanglement, for experimentally
realizable examples of decaying systems, through the measurement of a single observable, which is invariant
throughout the decay. The systems under consideration may lead to either finite-time or asymptotic disen-
tanglement. A general prescription for measuring this observable, which yields an operational meaning to
entanglement measures, is proposed, and exemplified for cavity quantum electrodynamics and trapped ions.
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Entanglement is the most characteristic trait of quantum
mechanics �1�. As such, it has led not only to intense debate
since the beginnings of quantum mechanics �2�, but also to a
variety of possible applications, ranging from communica-
tions �3,4� to computation �5�. Decoherence and entangle-
ment are closely connected phenomena: not only decoher-
ence follows from the entanglement of the system of interest
with the rest of the Universe �6�, but also it is responsible for
the fragility of entanglement in systems interacting with res-
ervoirs. Because of this, understanding the basic mechanisms
of decoherence and disentanglement has both fundamental
and practical implications. However, even for simple systems
of two qubits, the available entanglement measures, such as
concurrence as introduced by Wootters �7�, involve math-
ematical operations that do not seem to have a direct physi-
cal interpretation. It is desirable, therefore, to find examples
of systems for which an entanglement measure could be as-
sociated with an observable that could easily be measured.
This not only would make it easier to follow the dynamics of
disentanglement for systems interacting with reservoirs, but
it could be helpful for the physical interpretation of this pro-
cess. We show that, for an experimentally realizable example
of a decaying system, it is possible to directly measure con-
currence, through the detection of an observable that is in-
variant throughout the evolution of the system.

A state of a bipartite system is disentangled or separable if
it can be written in the form

�̂ = �
i

pi�̂i
A

� �̂i
B, �pi � 0� . �1�

For a pair of qubits, described by the density operator �,
entanglement may be quantified by the concurrence �7�,

C��̂� = max�0,��1 − ��2 − ��3 − ��4� , �2�

where the �i’s are the eigenvalues, in decreasing order, of the
Hermitian matrix �̂��̂y � �̂y��̂*��̂y � �̂y�. It ranges from C=0
for a separable state to C=1 for a maximally entangled state.

The connection between the disentanglement of bipartite
systems and decoherence has been recently analyzed, within
the framework of models that may lead to finite-time disen-

tanglement, while the individual subsystems decay asymp-
totically in time �8–12�. These examples are interesting in-
sofar as they allow a clear separation between the
disentangling and the decay dynamics. In �10�, a realistic
system was considered, consisting of a pair of two-level at-
oms, each interacting with its own reservoir. Depending on
the initial atomic state, one may have either finite-time or
asymptotic disentanglement.

Simple methods to detect this transition from entangle-
ment to disentanglement would be clearly desirable. How-
ever, the nonphysical nature of the operations involved in the
definition of concurrence imply that such a detection is usu-
ally a challenging problem, requiring the full tomographic
reconstruction of the state. Entangled states may also be
identified through entanglement witnesses, which are non-
positive operators that are positive in the subspace of sepa-
rable states �13�. Entanglement witnesses allow one to iden-
tify some, but not all, entangled states.

For two trapped ions, entanglement between correspond-
ing two-level internal states has been established either by
means of a witness involving a single matrix element of the
two-qubit density operator �14,15�, or by measuring the full
concurrence via tomographic reconstruction of the state �16�.

In this paper, we show that it is actually possible to detect,
through the measurement of a single observable, finite-time
disentanglement of an initial pure state of two qubits, which
evolves under the action of a reservoir. This observable is a
“perfect witness” for the class of states considered here: any
entangled state in this class would lead to a negative value
for this operator, which is precisely equal to minus the con-
currence of the state. Remarkably, the same observable
yields the concurrence throughout the evolution of the sys-
tem. It is possible, therefore, by measuring this operator as
the system evolves, to pinpoint the precise moment when
disentanglement occurs. Also, a simple physical interpreta-
tion can be given to concurrence in this case. Our proposal is
within present experimental capabilities in systems like
trapped ions �14,15�, cavity quantum electrodynamics �cav-
ity QED� �17,18�, circuit quantum electrodynamics �19�, and
nuclear magnetic resonance �20�.

We consider initial states of the form 	��0�
= 	�		00

+ 	�	exp�i��	11
, where 0 and 1 correspond to the ground and
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excited states of each qubit, respectively. The two qubits may
stand for spin-down and -up internal states of two trapped
ions, or to one- and zero-photon states of two modes of the
electromagnetic field in the same or in different cavities.
States like this have been realized in experiments with
trapped ions �15,16,21,22�. We assume that the two qubits
evolve under the influence of low-temperature-independent
and identical reservoirs, so that higher-energy states are not
populated.

Under these conditions, we show that the concurrence of
the density operator evolving from the above initial state is

equal to C�t�=max�0,−W�t��, where W�t�=Tr��̂�t�Ŵ��, and

Ŵ�=1−2		���
�	���	, with

		���
 = �	00
 + ei�	11
�/�2. �3�

The observable Ŵ� is a perfect witness, the same through-
out the evolution of the system: it is positive for separable
states, and negative for entangled states.

We note that W�t�=1−2P�t� where P�t� is the probability
of finding the system in the state 		���
 at time t. It is easy to
show that other choices of the relative phase in �3�, different
from �, would yield smaller values of the corresponding
probability. This yields a simple physical interpretation of
concurrence in this case: it is twice the maximal excess prob-
ability, with respect to 50%, of finding the state of the system
in a maximally entangled state corresponding to the subspace
spanned by �	00
,	11
�. One should note that the evaluation of
W�t� amounts to measuring this probability. We now show
that this can be done in a simple way, by inverting the pro-
cess that yields 		���
 from the state 	00
.

State �3� may be obtained from the state 	00
 by applying

to this state a unitary transformation Û��� composed of a
one-qubit 
 /2 rotation followed by a CNOT operation �5�.
Therefore, the probability P�t� can be written as

P�t� = �	���	�̂�t�		���
 = �00	Û−1����̂Û���	00
 , �4�

that is, the probability of finding the system in the state �3�
can be obtained by applying the inverse of Û��� to the sys-
tem, and then detecting the probability of finding both qubits
in the ground state.

The general format, in the basis 	11
, 	10
, 	01
, 	00
, of the
time-dependent density matrix that evolves from state 	��0�

is

�̂�t� =�
w�t� 0 0 z�t�

0 x�t� 0 0

0 0 x�t� 0

z*�t� 0 0 y�t�
 �5�

with w�t�, x�t�, and y�t� real. Indeed, the incoherent decay of
the state 	11
 under the action of the reservoir does not lead
to coherence between the states 	10
 and 	01
. Also, the sym-
metry of the initial state and the equality of the damping
rates for both reservoirs implies that the population of these
two states is always the same.

The concurrence corresponding to this state is easily de-
termined as C�t�=max�0,2	z�t�	−2x�t��. Therefore, the state
is entangled if and only if 	z�t�	�x�t�.

The probability of finding the system described by �5� in
the state �3� is given by

P�t� = �1 − 2x�t� + 2	z�t�	�/2, �6�

and therefore, C�t�=max�0,2P�t�−1�, as anticipated.
For the initial state 	��0�
, C�0�=2	��*	=2	z�0�	, which

equals one for the maximally entangled state �	00

+ei�	11
� /�2. As time evolves, the state becomes disen-
tangled when P�t� reaches the value 1/2.

This result is rather insensitive to small deviations from
the above state. Thus, if the populations of states 	10
 and
	01
 are slightly different �due, for instance, to unequal decay
rates�, then if ��t�= 	x1�t�−x2�t�	 	z�t�	, it is easy to show
that the concurrence is still given by the above expression,
up to terms of order �2. Also, our method can be extended to
any state in the subspace �	00
,	11
�

We now show that, for the usual linear coupling with
Markovian reservoirs, C�t� may reach zero at finite times.
The master equation governing the time behavior of the sys-
tem can be written in the Lindblad form �23�:

�̇̂ = �
i

��i/2��2ĉi�̂ĉi
† − ĉi

†ĉi�̂ − �̂ĉi
†ĉi� , �7�

where �i are decay rates and ĉi , ĉi
† are operators representing

the coupling to the reservoir. For atoms decaying spontane-
ously due to the coupling to a zero-temperature reservoir, ĉ
= �̂−, where �̂− is the lowering operator acting on the elec-
tronic levels of the atom. For modes of the electromagnetic
field in one or two cavities, coupled to a zero-temperature
reservoir, the decaying dynamics is analogous to the ionic
system, provided that the photonic state is initially in the
subspace �	0
,	1
�. In this case, ĉi correspond to annihilation
operators for photons, for each of the two cavity modes. The
solution of �7� for any initial state lying in the subspace
�	00
,	11
� is of the form �5� with

w�t� = w�0�e−2�t,

x�t� = w�0��1 − e−�t�e−�t,

y�t� = y�0� + w�0��1 − e−�t�2,

z�t� = z�0�e−�t. �8�

Consequently, an initial state of the form �	00
+�	11
 be-
comes separable for ts=− 1

� ln�1− 	�	
	�	

�. It is clear that only for
states with 	�	� 	�	 is this condition fulfilled for finite times.
The probability P�t� is shown in Fig. 1, for four different
initial states. One should note that states with the same initial
entanglement exhibit finite-time disentanglement for 	�	
� 	�	 and infinite-time disentanglement for 	�	� 	�	. For
states of the form �	01
+�	10
, disentanglement occurs as-
ymptotically in time. This justifies our interest in the special
class of states considered, since they allow a clear separation
between the processes of disentanglement and decoherence,
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besides allowing a simple monitoring procedure of the dis-
entanglement process.

One should note that the method of measurement outlined
above is valid only if the operations on the qubits do not
involve auxiliary systems, as is the case, for instance, in
nuclear magnetic resonance. On the other hand, the realiza-
tion of quantum gates in ion traps �where the vibrational
mode is used for the realization of a CNOT gate�, or in
cavity QED �where the cavity mode mediates the interaction
between two atoms, or an atom mediates the interaction be-
tween two cavity modes� requires auxiliary systems. In these

cases, the operation Û��� does not only depend on the qubit
operators, so that Eq. �4� does not hold. In spite of this, the
above method can still be used to measure entanglement, the
results differing from the concurrence by a scaling constant.
We exemplify this with an application to ion traps and cavity
QED.

For two trapped ions, the production of the initial state
and the measurement of P�t� can be done by employing stan-
dard techniques involved in the production and detection of
entangled states �15,21,22�.

In these experiments, maximally entangled states are pro-
duced through a combination of red-sideband and blue-
sideband transitions and detected using the shelving tech-
nique: the ion undergoes cycling transitions to an excited
unstable state if and only if it is in the ground state, the
resulting fluorescence being measured with a very high de-
tection efficiency �of the order of 99%�. The fluorescence
yield of each ion is thus proportional to the probability of
finding it in the ground state.

One should note that the decay of the ions does not lead to
the population of the vibrational modes, which remain in the
ground state. We consider the initial state �	� �g1g20

+ei�	� �e1e20
� /�2, where ei and gi stand, respectively, for

the upper and lower internal states of the ions �i=1,2�, and
integer numbers stand for the states of the vibrational mode.
Disentanglement of this state can be measured by applying a
red-sideband pulse, to the first ion, so that 	g11
→ 	e10
 and
	e10
→−	g11
. This operation transforms the state �̂�t�
� 	0
�0	, with �̂�t� given by �5�, into

w�t�	g1e21
�g1e21	 + y�t�	g1g20
�g1g20	 − z�t�	g1e21
�g1g20	

− z*�t�	g1g20
�g1e21	 + x�t��	g1e20
�g1e20	 + 	g1g21
�g1g21	� .

Next, a blue-sideband pulse is applied to the second
ion, so that 	g20
→ �	g20
−exp�−i��	e21
� /�2,
	e21
→ �exp�i��	g20
+ 	e21
� /�2, and 	g21

→cos�
�2/4�	g21
−sin�
�2/4�exp�−i��	e22
. The prob-
ability Pgg�� , t� that both ions are in the ground state is

Pgg��,t� = 1/2 − 	z�t�	cos�� − �� − �x�t� , �9�

where �=sin2�
�2/4�. Choosing � so that cos��−��=−�
one gets, calling Pgg�t� the value of Pgg�� , t� at this point:

2Pgg�t� − 1 = ��2P�t� − 1� , �10�

with P�t� given by �6�. This shows that max�0,2Pgg−1� is
proportional to the concurrence. One should note that even if
the initial phase � is not known, measurement of Pgg�� , t� for
three values of the phase �, leading to three linearly indepen-
dent equations for x�t�, 	z�t�	, and �, would allow one to
determine the concurrence.

For cavity QED, the experimental setup involves two
high-Q cavities �Ca and Cb� on either side of a low-Q cavity
�Caux�, as shown in Fig. 2. A two-level atom crosses this
system, interacting resonantly with the three cavities. The
field in Caux can be taken as classical, generating a 
 rotation
of the atomic state. The fields in Ca and Cb are initially in the
vacuum state. The interaction time between the atom and
each cavity is adjusted, for open-cavity geometry �17,18�, by
Stark shifting the relevant atomic levels, so as to tune them
into resonance with the cavity mode for the proper amount of
time.

The first step is the preparation of the entangled two-
cavity state. This is done by sending a two-level atom, ini-
tially in the excited state 	e
, through the three cavities. The
interaction time with the first cavity �Ca� is adjusted so that
state 	�1
=�	e ,0 ,0
−�	g ,1 ,0
 is produced; �	i ,n ,m
 de-
notes atomic state 	i
 and Fock states 	n ,m
 for cavities Ca
and Cb, respectively�. That is, the atom has a probability 	�	2
of remaining in the initial state, and a probability 	�	2 of

FIG. 1. P as a function of �=�t for four different initial states,
of the form �	00
+�	11
, with concurrence C�0�=2	� ��	. Solid
thick lines correspond to C�0�=�2/3, while dotted lines correspond
to C�0�=�15/16. Concurrence, as a function of time, is given by
max�0,2P�t�−1�. Entanglement persists as long as P�1/2 �this
bound corresponds to the thin solid line�. States with the same
initial entanglement exhibit finite-time disentanglement for 	�	
� 	�	 and infinite-time disentanglement for 	�	� 	�	.

FIG. 2. �Color online� Experimental setup for probing finite-
time decoherence in cavity QED.
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decaying to the state 	g
, leaving one photon in the resonant
mode of Ca. The atomic 
 rotation in Caux takes 	�1
 into
	�2
=�	g ,0 ,0
+�	e ,1 ,0
, and another 
 rotation, this time
with the resonant mode of Cb, produces the desired entangled
state 	� f
=�	0,0
+�	1,1
 of the two modes. The atom al-
ways leaves the setup in the ground state.

Due to cavity losses, the prepared state 	� f
 evolves into
the mixed state described by Eq. �5�. In order to measure the
disentanglement of the state of the high-Q cavities, another
two-level atom is again sent through the setup. This atom
enters Ca in the ground state and undergoes a Rabi 
 rotation
if there is one photon in the resonant mode. Next, Caux is
used to generate yet another atomic 
 rotation and then the
atom state undergoes a final rotation in Cb, so that 	g1

→ �	g1
+ 	e0
� /�2, 	e0
→ �−	g1
+ 	e0
� /�2. The rotation in
Caux includes a control phase � /2 �	g
→e−i�/2	e
 and 	e
→
−ei�/2	g
�. Finally, the atomic internal state is measured by
ionization. The probability Pe�� , t� of finding the atom in the
excited state is given by the same expression �9� obtained for
the two-ion system, leading to the concurrence in the same
way.

Finite-time separability is related, in the example dis-
cussed above, to properties of the reservoir and the initial

state. The same phenomenon occurs for a diffusive reservoir,
acting on the two-qubit system. The corresponding contribu-
tion for the master equation can be written in the form �7�
with ĉ1= �̂− and ĉ2= �̂+ for each reservoir. Due to the sym-
metry of this reservoir, all states belonging to the subspace
�	00
, 	11
�, or yet �	01
, 	10
�, display finite-time separability,
independently of the relative population of the states. This is
consistent with the findings in �12�, which considered the
action of classical noise on a two-qubit system.

Since the work of Bell �24� the subtle property of en-
tanglement has been subjected to many quantitative tests and
has led to intriguing consequences. Understanding the physi-
cal meaning of entanglement measures remains, however, a
major challenge. In this paper, we have analyzed an example
of a decaying two-qubit system for which it is possible to
attribute an operational meaning to an entanglement mea-
sure, valid throughout the decay process, and we have pro-
posed an experimental procedure that amounts to a direct
measurement of entanglement.
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