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We present a rigorous proof of an interesting boundary effect of deterministic dense coding first observed by
S. Mozes, J. Oppenheim, and B. Reznik �Phys. Rev. A 71, 012311 �2005��. Namely, it is shown that d2−1
cannot be the maximal alphabet size of any isometric deterministic dense coding schemes utilizing d-level
partial entanglement.

DOI: 10.1103/PhysRevA.73.034307 PACS number�s�: 03.67.Hk, 03.65.Ud, 03.67.Mn

Dense coding �1� is a communication protocol that im-
proves the capacity of a noiseless quantum channel with the
assistance of quantum entanglement. The protocol, proposed
by Bennett and Wiesner more than a decade ago, has now
become one of the most important constituents of quantum
information theory. Alice and Bob, two parties in the proto-
col, share in prior a maximally entangled pair and can com-
municate by sending a noiseless qubit. Without the entangle-
ment, Alice can only transmit one of two different letters to
Bob �2�. Surprisingly, however, she can do much better by
utilizing the shared pair. Alice first performs an appropriate
encoding operation on her half of the pair depending on the
letter she wants to transmit and then sends the half on her
side to Bob. Having the whole pair in hand, Bob is now able
to perfectly distinguish these four possibilities as they form
an orthonormal basis. Thus, by sending a single quantum bit,
a classical transmission of one of four letters is achieved with
the cost of consuming an entangled pair.

Illuminated by the original superdense coding protocol,
many generalizations and related aspects have been consid-
ered in the literature. In Ref. �1�, the protocol is generalized
to make use of maximally entangled d-level systems to trans-
mit one letter out of d2. Probabilistic and asymptotic ap-
proaches are taken in Refs. �3–5� and�6–9�, respectively.
Generalizations are also made to continuous variables
�10,11� and to the multipartite cases �12–14�. Recently,
Mozes, Oppenheim, and Reznik initiated the discussion of
deterministic dense coding �15� using both numerical and
analytical methods. We will give a mathematical proof of
one of the interesting phenomena mentioned in their paper.

In deterministic dense coding, nonmaximal pure entangle-
ment of two separated d-level systems is considered and we
still want to reliably transmit one of the letters chosen from
an alphabet. The main goal is to analyze the relation between
the maximal size of the alphabet Nmax��� and the partially
entangled state ��� in use. It is well known that Nmax=d2 for
maximally entangled states and one might naturally expect to
have Nmax���=d2−1 for some ��� close enough to the maxi-

mal entanglement. Yet, results of numerical methods ob-
tained in Ref. �15� indicate that Nmax��� can be any value in
the range �d ,d2� with the possible exception of d2−1. For
Nmax=d2−2 and d=3,4 the numerical algorithm can find so-
lutions as desired while for Nmax=d2−1 it fails definitely.
However, as it is pointed out in Ref. �15�, numerical methods
cannot completely rule out the possibility of d2−1, nor can
they analyze the cases in higher dimensions. We will give a
uniform proof of this observation for all d�2 confirming
that Nmax����d2−1 for any partial entanglement ��� of two
d-level systems.

We now begin the proof by introducing some notations
first. The partial entanglement ��� in use can be written in the
following Schmidt decomposition �16� as

��� = �
i=0

d−1

��i�i�A � �i�B, �1�

where �i is a probability distribution and 	�i�A
 �resp. 	�i�B
�
forms a basis of system A �resp. B�. Without loss of gener-
ality, we assume that �i are already in descending order, that
is,

�0 � �1 � ¯ � �d−1. �2�

The main idea of deterministic dense coding is to encode
classical messages by performing corresponding operations
on system A only, leaving states that can be perfectly identi-
fied on the whole system of A and B. The most general
operations that can be used here are quantum operations
which is the case considered in Ref. �5�. We will focus on
isometric encoding only in this paper and are thus interested
in finding maximally sized set of local unitary operators
	Ui

A
i=0
Nmax���−1 such that Ui

A
� IB��� are orthogonal states.

If for some partial entanglement ���, Nmax���=d2−1, we

will see how this will lead to a contradiction. Let 	Vi
A
i=0

d2−2 be
the d2−1 encoding operators. It is easy to see that applying
an extra unitary operator afterward does not change the en-
coding efficiency, that is, Ui

A=UVi
A can be used equally in

the dense coding protocol. We will specify unitary operator
U later. Denote ��i�=Ui

A
� IB���, ��ij�=Ui

A�j�A. We have
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��i� = Ui
A

� IB��� = �
j=0

d−1

�� j��ij��j� .

The orthogonality of ��i� is equivalent to

��i�� j� = ���Ui
A†Uj

A
� IB��� = �

k,l

��k�l�k�Ui
A†Uj

A�l��k�l�

= �
k

�k�k�Ui
A†Uj

A�k� = tr�Uj
A�Ui

A†� = �ij , �3�

where � is a d�d diagonal matrix of the Schmidt coeffi-
cients �i.

Let P be the projector of the subspace spanned by
	��i� , i=0,1 , . . . ,d2−2
,

P = �
i=0

d2−2

��i���i� = �
i,j,k

�� j�k��ij���ik� � �j��k� . �4�

Q= I− P is a projector of a one-dimensional subspace and is
also the density matrix of the pure state orthogonal to all ��i�.

We calculate the reduced density matrix QA and QB of Q
on system A and B, respectively, using Eq. �4�.

QB = trAQ = trA�I − P� = dI − �
i,j,k

�� j�k��ik��ij��j��k�

= dI − �
i,j

� j�j��j� = �
j

�d − �d2 − 1�� j��j��j� , �5�

where the fourth identity follows from the fact that 	��ij�
 j=0
d−1

forms an orthonormal basis of system A for i=0,1 , . . . ,d2

−2.

QA = trBQ = trB�I − P� = dI − �
i,j,k

�� j�k��ij���ik��k�j�

= dI − �
i,j

� j��ij���ij� = dI − �
i,j

� jUi
A�j��j�Ui

A†

=
1

d2 − 1�
i

Ui
A��

j

�d − �d2 − 1�� j��j��j�Ui
A†

=
1

d2 − 1
U��

i

Vi
AQBVi

A†U†. �6�

Since Q is the density of a pure state, QA and QB have the
same spectrum and we can choose U properly such that
QA=QB. Thus, we have

QB = QA =
1

d2 − 1�
i

Ui
AQBUi

A†. �7�

Let 	i=Ui
AQBUi

A† and pi=1/ �d2−1� for i=0,1 , . . . ,d2−2. It
follows from the above equality that

S��
i

pi	i = �
i

piS�	i� = S�QB� ,

where S is the von Neumann entropy. This means that 	i
satisfy the equality condition of concavity of the entropy and
are thus all equal. See Sec. 11.3.5 of Ref. �16� for a detailed
discussion of the concavity of von Neumann entropy and its

equality condition. In our case, we have Ui
AQBUi

A†=QB for
all i, or equivalently

Ui
AQB = QBUi

A. �8�

Equation �5� indicates that QB is a diagonal matrix whose
�j , j�-th element is d− �d2−1�� j. Remember that ��� is a par-
tial entanglement and thus not all � j’s are equal. So if we
denote t the total number of � j’s having the same value as �0,
then 1
 t�d and Eq. �2� amounts to

�0 = ¯ = �t−1 � �t � ¯ � �d−1.

It follows from Eq. �8� that the �j ,k�-th element of matrix Ui
A

is 0 for all j� t
k and k� t
 j. We can write Ui
A=Ui

A0

� Ui
A1 where A0 and A1 are subspaces spanned by 	�j�
 j=0

t−1 and
	�j�
 j=t

d−1. Denote M=Mt � Md−t where Mn is the vector space
of n�n matrices. Then Ui

A is in M for all i and the dimen-
sion of M is

dim M = t2 + �d − t�2 
 d2 − 2d + 2. �9�

As QB is a density matrix, each of its diagonal elements is
less than or equal to 1 and we have

� j �
1

d + 1
� 0, for all j = 0,1, . . . ,d − 1. �10�

Thus, for M ,N�M, tr�M�N†� defines an inner product of
M ,N and makes M a Hilbert space. Equation �3� indicates
that Ui

A are orthonormal vectors of space M. However, the
number of Ui

A, d2−1, is strictly larger than the dimension of
M which is at most d2−2d+2. This contradicts the basic
facts of Hilbert spaces and it follows that it is impossible to
find d2−1 local unitary operators Vi

A that transform ��� to
orthogonal states. Namely, Nmax
d2−2 for all partial en-
tangled states of two d-level systems.

As a summary, we have proved that the maximal alphabet
size of any isometric dense coding schemes using a d-level
entanglement cannot be d2−1 no matter how close the partial
entanglement is to the maximally entangled pair. In some
sense, this boundary effect reveals the complex nature of
deterministic dense coding. Although isometric deterministic
dense encoding is the most natural and simplest form of
generalization of the original dense coding process, it is
not yet known whether unitary operators only are sufficient
to fully utilize the partial entanglement. So whether general
dense coding schemes can achieve an alphabet size of
d2−1 becomes an interesting problem for future research.
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