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We study the quantum entanglement produced by a head-on collision between two Gaussian wave packets
in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering ampli-
tudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity
provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum
space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the
transverse area of the wave packets.
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In this Brief Report we describe the quantum entangle-
ment generated by wave-packet scattering in three-
dimensional free space. Unlike one-dimensional problems
studied previously by one of us �1�, scattering in three di-
mensions involves wave functions with much richer state
structures for entanglement. Recently, we have demonstrated
some interesting features for low-energy eigenfunctions in
trapped systems �2�. For unbounded systems, Tai and Kurizki
have analyzed the increase of entropy in terms of the scat-
tering matrix �3�. Their approach is based on a particular
form of two-particle wave functions in which the corre-
sponding Schmidt decomposition can be expressed in pure
plane-wave bases �3�. For general two-particle wave func-
tions, however, particles may not be paired in plane-wave
modes. Therefore a complete analysis of scattering effects on
entanglement production remains open for investigations.
Here we address the problem in the low-energy regime. As-
suming the interaction potential is isotropic and short-
ranged, we can employ the s-wave approximation to obtain
the scattering wave functions. Our task is to determine the
loss of purity of an individual particle, which serves as a
measure of entanglement in our system with pure two-
particle states.

The system under investigation consists of two interacting
particles of equal mass m in free space. The Hamiltonian in
terms of center of mass and relative coordinates is given by
H=Hcm+Hrel with

Hcm =
P2

2M
, �1�

Hrel =
p2

2�
+ V�r� . �2�

Here M =2m is the total mass and �=m /2 is the reduced
mass. For convenience, we will use the units with �=�=1.
We assume that the interaction potential V�r� is isotropic and
has a short range b such that V�r��0 for r�b. Initially, the
two particles are in the form of �disentangled� Gaussian
wave packets, each having a width �0 in momentum space.
Their initial positions and average momenta are ±r0 and
�k0, respectively. The direction of k0 is chosen such that the
packets make a head-on collision at later time �Fig. 1�.

The initial two-particle wave function in momentum
space is given by a product state: ��k1 ,k2 ,0�
=�1�k1��2�k2�, where

�1�k1� = 	�k1,k0;�2/�0�e−i�k1−k0�r0/2, �3�

�2�k2� = 	�k2,− k0;�2/�0�ei�k2+k0�r0/2, �4�

with 	�a ,b ;c� being a Gaussian function parametrized by
the inverse width c and the peak at b,

	�a,b;c� � � c2

2

	3/4

exp
−
c2

4
�a − b�2� . �5�

The function �5� allows us to express the wave packets in a
compact form. After the scattering, the wave function in the
long time limit takes the form

��k1,k2,t� = �N�−1/2��1�k1��2�k2�e−i�k1
2+k2

2�t/4

+ ��scat�k1,k2,t�� . �6�

Here the first term corresponds to a nonscattering part that
propagates freely, and the second term corresponds to the
scattering part. The constants N and � are normalization fac-
tors such that � and �scat are both normalized to unity. In
this paper we treat ����1 as a small number.

To analyze the quantum entanglement, it is customary to
study the entanglement entropy obtained from the Schmidt
decomposition of Eq. �6�. Quite generally, the Schmidt

FIG. 1. An illustration of the system before and after a head-on
collision of wave packets. Under the s-wave approximation, the
scattered part of the single-particle density �i.e., either particle 1 or
particle 2� is a spherical shell shown in the right figure. The arrows
indicate that the two particles go into opposite directions.
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modes are not simply the momentum eigenfunctions, and the
decomposition has to be performed numerically. We note that
this is in contrast to the special case considered in Ref. �3�, in
which the Schmidt modes are momentum eigenfunctions. To
gain insight of the problem analytically, we employ the pu-
rity function P as an alternative measure of entanglement.
Such a function is defined by P=Tr�1

2�, where 1

=Tr2�12� is the reduced density of the particle 1, and 12

corresponds to the two-particle density matrix associated
with the state �6�. For pure two-particle states considered in
this paper, the smaller the value of P, the higher the en-
tanglement. A disentangled �product� state corresponds to
P=1. We remark that P shares similar features as entropy,
but it has the key advantage that it is more accessible to
theoretical analysis �4–6�. In atomic physics, P �or its in-
verse P −1� has also been employed to indicate the two-body
correlations in various dynamical processes �4,7�.

Specifically, P takes an integral form in our system:

P =    ��k1,k2,t���k3,k4,t��*�k1,k4,t�

��*�k3,k2,t�d3k1d3k2d3k3d3k4. �7�

From Eq. �4� and Eq. �6�, we obtain the expression of P up to
the second order of �:

P � 1 − 2���2�1 + I1 − I2 − I3� , �8�

where the integrals I1 , I2 , I3 are defined by

I1 = �  �scat
* �k1,k2,t��1�k1��2�k2�d3k1d3k2�2

, �9�

I2 = � �scat
* �k1,k2,t��1�k1�d3k1�2

d3k2, �10�

I3 = � �scat
* �k1,k2,t��2�k2�d3k2�2

d3k1. �11�

These integrals describe the interference between a nonscat-
tered wave and a scattered wave. It is interesting to note that
there are no first-order terms in � in Eq. �8�, as these terms
cancel each other once the � dependence in the normalization
constant N is taken into account. We also remark that as long
as � is a small parameter, Eq. �8� is valid for general two-
particle states that are initially separable, not just for Gauss-
ian wave packets.

To calculate � and �scat, let us rewrite Eq. �6� in terms of
center of mass and relative coordinates: ��k1 ,k2 , t�
= �N�−1/2�cm�K , t��rel�k , t�, where K=k1+k2, k= �k1−k2� /2,

�cm�K , t�=	�K ,0 ;1 /�0�e−�1/8�K2t. Since we are interested in
low-energy scattering processes, we may keep only the
s-waves of the scattered part in �rel�k , t�, i.e.,

�rel�k,t� � �rel
NS�k,t� + ���s��k,t� , �12�

where �rel
NS�k , t�=�rel�k ,0�e−i�1/2�k2t is the freely propagating

nonscattered part. In this way, we have �scat�k1 ,k2 , t�
��cm�K , t���s��k , t�.

Under the assumption that the two particles are well sepa-

rated �initially and finally� �8�, the scattering part ���s��k , t�
is given by

���s��k,t� =
1

�2
�3   �rel�k�,0�f0�k��
eik�r

r
e−ik·r−ik�2t/2

�d3k�d3r , �13�

where

f0�k� =
ei2��k� − 1

2ik
�14�

is the s-wave scattering amplitude, and ��k� is the s-wave
scattering phase shift. After some calculations, we obtain

���s��k,t� =
�0

2

4k0 − i2�0
2r0

�e2i��k� − 1�	�k,k0k̂;
2

�0
	

�
ei�k−k0�r0

k
e−i�1/2�k2t. �15�

The constant � is determined from the norm of the right side
of Eq. �15�. We may Taylor expand ��k� at k0 to the second
order. The normalization condition is a Gaussian integral that
can be calculated explicitly. This gives

���2 =
�0

2

k0
2�2
1 − Re�e2i��k0�� 2

2 − i�0
2���k0�

�exp�−
�0

2���k0�2

2 − i�0
2���k0�

	�� , �16�

where ���k0� and ���k0� are first and second derivatives of
��k0�, and �2�1+ ��0

2r0 /2k0�2 in the denominator corre-
sponds to the spreading factor of the spatial width of the
packets �since r0 /k0 is the time of collision�. Therefore the
spreading of the wave packets would decrease the norm of
the scattered wave function ���2 as expected. We also note
that the value of the bracket �1−Re�¯�� is bounded between
0 and 2, and therefore ���2 is smaller than 2�0

2 /k0
2.

With the results of � and ��s�, we find that I1��0
2 /2k0

2,
I2�2�0

2 /3k0
2, I3�2�0

2 /3k0
2 are all of the order of �0

2 /k0
2. Be-

cause of the prefactor ���2 in Eq. �8�, these integrals’s contri-
bution to P is about �0

4 /k0
4, which will be neglected. Hence

the purity of final state is approximately

P � 1 − 2���2, �17�

where ���2 is given by Eq. �16�.
Further simplification of this result can be made in the

limit �0
2� ��k0��1, and �0���k0��1, i.e., the wave packets

are very narrow in the momentum space. In this limit, we
have �����2�f0�k0���c, where 1/�c�� /�0 is the spatial
width of the wave packets at the collision time. Alternatively,
we may employ the scattering cross section S0�k0�
=4
�f0�k0��2, so that

1 − P � 4�c
2�f0�k0��2 =

�c
2S0�k0�



. �18�

Therefore the purity of the two-particle wave function after
scattering can now be explicitly expressed in terms of the
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s-wave scattering cross section as well as the widths of wave
packets. However, we remark that such a simple relation is
valid if �0 is sufficiently small. The result can become more
complicated when �0���k0� or �0

2� ��k0� in Eq. �16� are not
negligible.

Equations �16�–�18� are the main results of this paper. We
see that the degree of entanglement �quantified by 1−P� is
determined by a simple dimensionless parameter �c

2S�k0�.
Since 1/�c is the spatial width of an individual wave packet
at the collision time, �c

2S�k0� is just the ratio of scattering
cross section to the characteristic cross area of the wave
packet in position space. Hence a stronger entanglement can
be generated for systems with a larger value of the ratio. For
example, this can be achieved by exploiting resonance scat-
tering in which S�k0� can be enhanced near the resonance
energies defined by the interaction potential �1,3�.

We point out that the degree of entanglement is typically
small. This is due to the fact that the two-particle wave func-
tion is dominated by an unscattered part, which is a product
state. However, if mainly the scattered part is observed �for
example, by detecting directions different from the incident
one�, then the relevant wave functions can have a much
higher degree of entanglement. For the s-wave function

given in Eq. �15�, if �0 is small such that the phase shift can
be treated as a constant ��k0�, then the normalized �relative
coordinate� scattered wave function is a spherical shell of
radius k0 and thickness �0 in momentum space. We find that
the corresponding purity function P has a leading term pro-
portional to �0

2 /k0
2 when �0 /k0�1 is a small parameter.

Therefore the narrower the width of the wave packet, the
stronger the entanglement in the scattered part of the wave
function.

To conclude, we present a simple and general formula that
approximates the loss of purity due to a head-on collision
between two Gaussian wave packets in three-dimensional
space. As long as the scattering is dominated by s waves, our
results provide a quantitative measure of quantum entangle-
ment generated. In particular, our approach allows us to iden-
tify the key parameter �c

2S�k0�, that explicitly connects the
scattering cross section and the width of wave packets to the
degree of quantum entanglement.
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