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We analyze the Heisenberg limit on phase estimation for Gaussian states. In the analysis, no reference to a
phase operator is made. We prove that the squeezed vacuum state is the most sensitive for a given average
photon number. We provide two adaptive local measurement schemes that attain the Heisenberg limit asymp-
totically. One of them is described by a positive operator-valued measure and its efficiency is exhaustively
explored. We also study Gaussian measurement schemes based on phase quadrature measurements. We show
that homodyne tomography of the appropriate quadrature attains the Heisenberg limit for large samples. This
proves that this limit can be attained with local projective von Neuman measurements.
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I. INTRODUCTION

For a long time quantum phase measurements have been a
field of attention for both theoretical and experimental re-
search in quantum theory [1-18]. Many schemes have been
proposed with the aim of optimally determining the phase
shift produced by a physical process [16], usually focusing
on quantized harmonic oscillators. Despite all the efforts, no
attempt has ever settled the issue with full generality [1].
Many different approaches exist, but they often have a re-
stricted range of applicability. There are various reasons for
this situation. The most important one is the fact that a well
defined phase operator does not exist on the whole Fock
space. This seems to indicate that Heisenberg’s uncertainty
relation for phase and number may not be always taken at
“face value” and a rederivation without the use of such a
phase operator is called for (see [19] and references therein).

In this paper we are concerned with phase measurements
on pure Gaussian states. First, we review the derivation of
the Heisenberg limit using the theory of quantum state esti-
mation [19,20], which does not require the existence of a
phase operator. Then we propose a positive operator-valued
measure (POVM) that attains the limit by an adaptive proce-
dure [21-23], for an asymptotically large number of copies.
We also determine the optimal Gaussian measurement for
phase estimation in this asymptotic regime.

When performing phase measurements on Gaussian
states, one usually implements them on light beams with a
given average photon number, i.e., with a fixed energy. This
constraint is always assumed when comparing different
Gaussian states in order to determine their optimality for
phase estimation. The techniques we use, namely, asymptot-
ics in quantum statistics, are best suited for the problem at
hand, where one usually has a light beam turned on for a
large number of coherence times, which translates into hav-
ing a large number of identical copies of such a Gaussian
state.

II. QUANTUM PARAMETER ESTIMATION

In this section we review the theory of quantum parameter
estimation [6,19,20,23-26], which leads to a useful generali-
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zation of the Heisenberg uncertainty relation.

Let us assume we have a family of pure states p(6) la-
beled by a parameter 6. In our case the parameter is the
phase. This family corresponds to a curve in Hilbert space,
and translations along such a curve are generated by a Her-
mitian operator G in the usual manner. In our case the gen-
erator is the number operator G=a'a:

p(6) = exp(= i6G)p(0)exp(i6G). (1)

Throughout this paper we use the following notation. We
will write |n) to denote Fock states, i.e., states with a well
defined number. With ¢/, we denote the unitary operator that
yields the state p(6) from the vacuum, namely

p(6) =Ugl0)OLLA), (2)

We define the vectors |¢,) as the Fock states transformed by
Uy,

|b.) =Ugn): (3)

hence, p(6)=|po)(¢by-

Our aim is to determine the parameter 6 by performing
the best possible POVM measurement on the system. For
this, we propose an estimator é(x), which is a function of the
possible outcomes x of the measurement. Hence, the expec-
tation value of such estimator is [27]

Ef6]= 2 p(x]6) 6(x), 4)
and its variance
Var [ 6] = 2 p(x|0)[6(x) - E 6], (5)

where the subscript # means that the expectation value is
taken with probability distribution p(x|#6). In the quantum
case, they are given by the Born rule p(x|6)=tr[p(O)E,],
where {E,} are the elements of a POVM.

An estimator is called unbiased when
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L8] =6. (6)

In this case, the variance is equivalent to the mean squared
error (MSE):

MSE[ 0] = E[(6- 6)%] = Var[ 8] + (E[ 8] - 0)2.  (7)

A well known theorem in statistics gives a lower bound to
the variance of any unbiased estimator. It is the so-called
Cramér-Rao bound [27],

X 1
Vary 0] = ——, 8
L= ®
where F(6) is the Fisher information associated with the
measurement

(alog p(x|0)>2

F(O) = X p(x]0) 0

xeX,

)

and the sum runs over the set of possible outcomes X, i.e.,
those with p(x|6) #0.

Furthermore, the Braunstein-Caves inequality [20] sets an
upper bound on the Fisher information:

F(6) < H(6), (10)

where H(6) does not depend on the specific measurement
being performed. H(6) is sometimes regarded as the Quan-
tum Fisher Information (QFI). It is defined as [6,20,21,23]

H(6) = ulp(O)N(6)], (11)

where \ is the symmetric logarithmic derivative (SLD), de-
fined as the Hermitian operator that fulfills

p(0)

1
20 =—i[G7P(9)]=5[?\(0)9(0)+p(0)7\(9)]- (12)

Equations (8) and (10) set a fundamental bound on the
variance of any unbiased estimator. This bound only depends
on the geometrical properties of the curve p(6). In our case,
the SLD is

N(6) = 2i(| o)Xyl = ) ebol) = = 2i[G.p(0)],  (13)

where
|49y = (1= | o) o)) Gl o) (14)
The eigenvectors of N are |¢*)=|y) i\ (| )| dy), with the

corresponding eigenvalues given by [.=+2.(i¢|#). Note

that (/| ¢,)=0. Working out the value of H, we get

H(60) = 4(yly) = 4AG);, (15)
where (AG); is defined, as usual, as {¢y|G?| ¢y
~(¢o|Gl¢bo)*. Thus,

Var [ 0(AG)2 = i (16)

This expression is similar to Heisenberg’s uncertainty rela-
tion for canonically conjugate variables, but has some advan-
tages (see [19]). First of all, it has been derived without the
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use of any phase operator. In fact, the only operator we need
is the phase shift generator, i.e., the number operator. On the
other hand, it sets a lower bound on the variance of an esti-
mator, whereas the standard uncertainty relation does not
concern optimality but only variances obtained from mea-
surements of observables (i.e., self-adjoint operators). In this
sense, Eq. (16) is more general.

Now assume we have N identical copies of the same un-
known state p(@). In this case the collective state p(6)®" is
still a member of a one-parameter family, and it is straight-
forward to show that the corresponding QFI scales as N.
Thus, combining Egs. (8) and (10), with H replaced by the

N-copy QFI and ) denoting any unbiased estimator based on
any measurement (collective or individual) on the N copies,
we have

R 1
VarN,g[ 0]<AG>2 = —

4N’ (17

where the subscript N stands for the number copies.

An important issue is the attainability of these bounds.
The Braunstein-Caves inequality is known to be saturable
[20,24], i.e., there exists a POVM that gives the equality in
(10) [it is given by A(6); see Sec. IV for details]. Note, how-
ever, that in general \(6) is not constant, and the optimal
POVM depends on the true value of 6. This suggests that, in
order to attain the equality in (10) for large N, one needs an
adaptive scheme. The measurement at a given step of the
estimation scheme may need to be optimized using the data
gathered from the previous steps. The Cramér-Rao bound is
also known to be asymptotically saturable by the so-called
maximum likelihood estimator (MLE). That is, for multiple
identical measurements, the MLE has a variance that ap-
proaches the inverse of the Fisher information, thus attaining
equality also in (8). All this seems to indicate that the opti-
mal scheme should consist of at least two steps: A prelimi-
nary rough estimate of 6, using a vanishing fraction of copies
(N, with 0<a@<1), and a refinement using the remaining

N=N-N¢ copies, where all measurements are identical in
the last step.
Therefore, if N— %, one can reasonably expect that

lim N Vary 4 6] =

1
—, 18

for the MLE, provided the optimal POVM measurement is
performed in step two. Here the subscript N indicates that the
variance is obtained from the outcomes of the last N identical

measurements. This will be loosely written as

Var,[ 6] ~ (19)

HAGY;
We show below that (19) holds if the number of copies used
in each of the two steps of the estimation scheme (i.e., @) is
appropriately chosen.

A word should be said about asymptotically unbiased es-
timators. These are estimators whose expectation values con-
verge to the parameter in the large sample limit, but have
some vanishing bias, i.e.,
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E[8]= 0+ O(N), (20)

with >0. In this case the correct quantifier of the sensitiv-
ity is the MSE. If o> 1/2 the MSE is asymptotically equiva-
lent to the variance, since

MSE[ 4] = Var[ 6] + O(N2%), (21)

and we note that the leading order contribution in inverse
powers of N is solely given by Var[ d].

II1. OPTIMAL GAUSSIAN STATE

Next, we determine the optimal Gaussian state, which
provides the highest sensitivity to phase measurements
within our approach, i.e., the one that maximizes its QFIL.
The state is obtained by sequentially applying a series of
operations on the vacuum: (i) a squeezing along a fixed di-
rection (say Q), S(r)=exp[(r/2)(a*~a™?)]; (ii) a displace-
ment, D(a)=exp(aa’—a’a) with real «; (iii) the unknown
phase shift, U(f)=exp(-ifa’a). The state after applying
these operations is

|bo) = U(0)D()S(r)[0). (22)
and its QFI is given by
H(6) = 4(Aa’a);=4[|al*(cosh r — sinh r)?
+ 2 sinh? r cosh? r]. (23)

Notice that actually H does not depend on the phase. The
energy of the state (22) is

(n)p={da'a),=|al*+ sinh? r. (24)

We aim at maximizing H with the constraint to have a fixed
average number of photons. Using Lagrange multipliers, it is
straightforward to find that the most sensitive choice is
a=0. As intuition dictates, the highest sensitivity is achieved
by employing all available energy in squeezing the vacuum.
Therefore, the optimal Gaussian state is |¢,)=U(6)S(r)|0),
for which

H=cosh4r—1=8({n)>+(n)). (25)

Hence, the optimal phase estimation has a variance that goes
as

1

AT )

(26)

IV. ASYMPTOTICALLY OPTIMAL FEW-OUTCOME
MEASUREMENT

Following the derivation of the Braunstein-Caves inequal-
ity [20], one can check that the optimality conditions on the
POVM elements {E.} are (see [24])

Im{ulp(OENO)]} =0,
Vo(ONONVE, = k\p(O)VE,, (27)
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for all x that have nonvanishing probabilities, where k, are
some constants. Assuming pure states p*>=p, and the fact that
any PQVM can be decomposed into rank one operators (so
that VE, = E,), one may write the second optimality condition
as

P(ONOE, =k p(O)E,. (28)

Finally, one can check that a sufficient condition for Egs.
(27) and (28) to hold is that {E,} project onto the eigenspaces
of the SLD. Therefore, an optimal POVM can be chosen to
have three elements, {E,,E_,E,}, given by

1

.= mw)‘)(dfl (29)

and
Ey=1-E,-E_. (30)

For completeness, we give the explicit form of the states
|¢*). They are

|¢p*) = V2 sinh r cosh r(£i|po) = |$2)), (31)

which, after normalizing, become

|¢’t> _ ii|¢0>— |¢2> "y ii|0>: |2>
Il V2 I

This measurement resembles tomography applied to the es-
timation of spin states lying close to the z axis of the Bloch
sphere, where spin measurements along the x and y direc-
tions are optimal [21,28].

From the hermiticity of A, it is straightforward to check
that {E, ,E_,E,} are positive and, furthermore, that they rep-
resent projective von Neuman measurements. The outcomes
of these measurements will be used in the maximum likeli-
hood analysis of the next section, where its corresponding
expectation value and MSE will be discussed.

(32)

V. MAXIMUM LIKELIHOOD ESTIMATION

Assume one has performed step one, a series of nonopti-
mal measurements on a vanishingly small number of copies,
N¢, of our optimal Gaussian state |¢,), and has obtained a

rough guess 90 of its phase. Let us write 90= 60— 56, where 66
represents the error in this first step, which is assumed to be

small. Let | o) be the guessed state. We design (step two) the
optimal measurement on the remaining N=N—-N¢ copies as

if tA90 were the true phase.
Let N,, be the number of times the outcomes +,0 are
obtained. The likelihood function for 8 is [27]

L(6)= p(+10Np(=0)-p(0]6)™.  (33)

N!
N,IN_IN!
Numerical maximization of this function yields the strict
MLE. Recall that this is known to attain the Cramér-Rao
bound in the limit of a large number of copies. We can,
however, analytically compute an approximate estimator,
which converges to the MLE in the large sample limit and
has the same nice properties, i.e., it is asymptotically unbi-

033821-3



ALEX MONRAS

ased and attains the Cramér-Rao bound asymptotically.
These properties will be checked explicitly.

Taylor expanding the true state around the first-step guess,
we have

A 1 o o o A
p(6) = p(6) + ED\(GO)P(QO) + p(6p)N(6,)]66 + 0(56%),

(34)

and the probabilities of obtaining the outcomes x=+,0 are
1 [

P(i|0)=§i () 50+ 0(66%), (35)

p(0|6) = 0(56°), (36)

where |iJ) is given by Eq. (14) by replacing |¢) for | ).
With this, (| )=(An)?. Thus,
dlog L B N, dp(x]6)
d0 xe{+,-,0} p()C| 0) 00

N *;N = — (N, +N_)(An>56> +0(56%).

= 4(An>(

(37)

Equating this to zero yields the approximate MLE at leading
order in 66

N.

B = B+ = (38)

=0+ .
T oK An)
Here N, =N,+N_ is the total number of “informative” out-
comes. This estimator is based on disregarding the improb-
able and noninformative outcomes x=0. Our approximate
MLE is undefined, in the rare event that N,,=0. In this
case we may just keep the preliminary estimate and define
e = 6o

Disregarding the unlikely x=0 outcomes, the estimator is

just based on a binomial distribution, and for a fixed value of
Ni,r We have

N,

inf

~ ~ [Nt A 2q-1
Eon [Oviel= 2 6 ( )qN+(1—q)N—=0+ ,
0.N;, L YMLE ot MLE N, 0 2(An)
(39)

where ¢ is, to the relevant order, g=1/2+{An)56+0(56°).
This yields

Ee,zvinf[ éMLE] =0+ 0(592)~ (40)

Since 86°=0(N~%), the expectation value is asymptotically
unbiased [recall Eq. (20)]. It is also straightforward to com-
pute the MSE of this estimator, for a given number N, of
informative outcomes:

. s
MSEG’Nint[ GMLE] = ) + 0(504)’

1
4(AnY* Ny ’ O( E
(41)

for N,,;>0, and
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MSE [ el = 66, (42)

for Ninf=0'

To compute the full MSE of our scheme we just need to
average over all possible values of N This yields (see
Appendix A for details)

N —
Ning=0 Ning
(43)
1/ 1
7/( 2an2 " 0(592)> ’ (44)

where p is the probability of getting an informative outcome
in a given measurement [p=1-0(86)]. Clearly enough, by
choosing a>1/2 the error of the first step only contributes
to subleading orders in the variance. If, e.g., @=2/3, one

sees that in the large N limit, the MSE[ 6] reduces to

MSE( by ] = (45)

1 1
—————— +0| 7= |.
8((n)* + (n))N <N4/3>
Hence, the optimal performance displayed in (26) is asymp-
totically attained.

VI. ASYMPTOTICALLY OPTIMAL
GAUSSIAN MEASUREMENTS

Now we face the problem of determining the minimal
phase variance that can be attained by means of dyne mea-
surements. These consist of the simultaneous measurement
of two conjugate variables, such as Q and P, or their phase
generalizations U(0')QU(#') and U(#')PU'(#'). They are
typically performed by splitting the signal state. Often this is
done by means of a beamsplitter, the so-called eight-port
homodyne detector [29]. Another possibility is heterodyne
detection. In any case, the Arthurs and Kelly theorem (see,
e.g., [29]) guarantees that further noise will appear in the
detection process. In the eight-port homodyne detector, it
appears as vacuum fluctuations entering through the unused
port of the beamsplitter, which is sometimes called the aux-
iliary port. By introducing some sort of squeezed vacuum in
the auxiliary port, one can reduce the noise in one quadra-
ture, at the expense of increasing the noise in the correspond-
ing conjugate quadrature. These measurements can be math-
ematically expressed as a covariant measurement [2,3] with
POVM elements given by

1 1
E(x)= ;TD(X)UOD*()() =5 v (46)

where (¢, p) = x are the outcomes and represent coordinates
in phase space, and D(y) is the displacement operator
D(x)=exp i(pQ—qP). The density matrix oy is the ancilla
entering through the auxiliary port of the beamsplitter. From
the covariance of the measurement, o, can be taken to
be a squeezed vacuum state ({g)=(p)=0) without loss of
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generality. One can relate the probability of obtaining the
outcome x, dp(x|6), with the fidelity [30], Flo,,p(0)]

Y 7
p(0)2a,p(6)'?, a

=tr v S

2
Ap(xle) = tlp(DEO KX = T2 Ao p(OF. @)

When oy is a Gaussian state, the measurement is said to be
Gaussian and the outcomes are Gaussian distributed. More-
over, when one of the two states is pure, the fidelity can be
easily expressed as Flo,,p(6)]*=2/det M(0)eXMOx [31],
where M(6)=(y,+y,)~'. The covariance matrices of the in-
put and the auxiliary states are

Yo=R'(0)SR(6), (48)
Yo=R'(0")TR(0'), (49)
with
R _(cosa —sin 0) 50
()= sinf cos@ /)’ (50)
S_<s2 0) T_(ﬂ 0) .
N0 wus?) N0 1) D)

where s=¢™ and 6 (t=¢™ and 6') are the squeezing pa-
rameter and phase of the input state (ancilla). Recall that the
diagonal matrix elements of the covariance matrices give the
variances of the canonical observables (AQ)>=[v,],;/2 and

(APY’=[yglp/2.
From (47), the probability density is

R
Vdet M(6)

p(x|6) = exp[— XM () x]. (52)

The Fisher information of such a measurement can be readily
computed from (9):

F(6) = %tr[M’M‘lM’M‘I], (53)

where M’ denotes the derivative of M(6) wrt 6 and M~! its
inverse. The 6 dependency has been dropped for readability
reasons. Further manipulations show that the Fisher informa-
tion can be written as

F(6) = %tr[F_IEF_IE], (54)

with
I'=S+R(0' - O)TR(O' — 0) = (cosh 2r + cosh 2r')1
— (sinh 27 + sinh 27’ cos ¢) o3 + sinh 27’ sin g0,
(55)
and
S, = R'(m/2)S + SR(m/2) = 2 sinh 2ror,, (56)

where, as expected, ¢=2(6'—6) is the only relevant angular
parameter, and o; (i=1,2,3) are the standard Pauli matrices.
With this, F(6) reads as

PHYSICAL REVIEW A 73, 033821 (2006)

2 sinh? 2r

F(6) = P ; p 5
(cosh 2r cosh 27" — sinh 2r sinh 27’ cos ¢ + 1)

X (cosh 2r cosh 2" — sinh 2r sinh 27" cos ¢
+sinh® 2r'sin? @ + 1). (57)

Here the dependence of ¢ on 6 is implicit. To optimize the
measurement, we find the values of ' and r’ that maximize
the Fisher information. Imposing JF/de=0, we find three
possible extremal points: ¢=0 and o=+ @(s,1) [see Eq. (60)
for the expression of ¢,]. We will drop the arguments of ¢,
where no confusion arises. The angle ¢=0 is a maximum if
the squeezing in the auxilliary port of the beamsplitter is
weaker than a threshold, 1 <tr<ry,(s), given by

1
tine($) = 2_s\'/s4_ 1+ Vs + 1457 + 1. (58)

In this case, this is the only extremal point of F(6). When
1>ty the trivial solution ¢=0 becomes a minimum and the
solutions ¢==* ¢, become maxima.

The maximum Fisher information below the threshold
(1<t<ty,) is

(1 - s%? sinh? 2r

22+ )% cosh®(r—r")’

F(0')= (59)

As a function of 7, the maximum of F(6) is at the critical
point #=tg,,.

Over the threshold (7> ty,), the optimal angle is given by

2 cosh 4r' sinh 2r + cosh 27’ sinh 4r
(3 + cosh 4r)sinh 27’ + 2 cosh 2r sinh 47"’

(60)
©o=0 [recall the definition of s and ¢ right after Eq. (51)].
According to the definition of ¢, we have €' =0+ ¢,/2. The
maximum Fisher information is
F(O' F @y/2)
3 + cosh 4r + 8 cosh 2r cosh 21" + 4 cosh 4r’
4(cosh 2r + cosh 2r')?

COS @) =

= sinh? 2r

(61)

As t— (r' ——), the optimal angle becomes

4
-1
®(s) =lim @y(s,1) = arccos( S4 0 ) = arccos(— tanh 2r),
st +

100 K
(62)
and the Fisher information approaches the value
lim F(8' 7 @f2) = O ;si4)2 =coshdr—1.  (63)
(o0

This is precisely the Heisenberg limit found in Sec. II [see
also Egs. (25) and (26)]. Hence, optimal phase sensitivity is
attained with a POVM measurement given by Eq. (46) and
an auxiliary state oy characterized by t—o and
¢’ =6+®D/2. This is an infinitely squeezed state phase-shifted
wrt the true phase. In Sec. VIII we present a two-step adap-
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tive implementation of this measurement that can be derived
proceeding along the same lines as in Sec. V. This scheme
also attains the Heisenberg limit.

VII. INTERPRETATION OF THE OPTIMAL
GAUSSIAN MEASUREMENT

In this section we provide an interpretation of this appar-
ently unphysical proposal of a Gaussian measurement with
infinite squeezing in the auxiliary port. Introducing an infi-
nitely squeezed ancilla in this port is equivalent to having
zero noise in one quadrature, say P’, at the expense of intro-
ducing infinite noise in the correspondingly conjugate one,
Q’. This makes the readings of Q' to be just random noise
with no information about the signal state. Therefore, one
has only a measurement of P’. This strongly supports the
idea that, after all, only homodyne detection is needed to
implement the measurement under discussion. Later, we pro-
vide a mathematical justification of this interpretation, and
show that the marginal POVM elements, i.e., those obtained
by integrating Eq. (46) over ¢', become exactly the rank-one
projectors of the P’ measurement.

Let us start by giving the precise definition of the observ-
ables Q' and P':

Q' =U(0")QU'(#")=Qcos @ —Psin ¢, (64)

P'=U(0)PU'(6')=Qsin @ +Pcos 6. (65)

This is just a rotation in phase space, thus the coordinates
transform in the same manner,

x' =R(0)x, (66)
and the displacement operators D(y) transform as
D'(x') = U()D(x")U'(8') = D(x). (67)

Let |Q;q) and |Q';q) be the eigenstates of Q and Q’,
respectively, where ¢ is the eigenvalue, so that

|Q0";:9)=U(0")|Q;q). Since ay is
o0=U(6)S(r"|0)0IST(r U (6'), (68)
the POVM elements of Eq. (46) can be cast as
1 . .
E(0) =5 —U(@)D()S()I0X0IS (D (x )U'(6')
dg, d
=J %|Q’;ql><Q’;qz|
T
xe?' @ y(q, - q") ¢ (9, -q'), (69)

where we have introduced the squeezed-vacuum wave func-
tion ¢A(q), defined as (q)=(Q;q|S(r")|0).

We can compute the marginal POVM elements F(p') by
integrating E(x) over dq’',

PHYSICAL REVIEW A 73, 033821 (2006)

F(p’)=qu’ E(x)
=qu’ E(RT'(0)x")
dq, dq,

=J . 10540 q

Xeip/(“““z)qu’ Wq - g (g—q"). (70)

Performing the dq’ integral yields

2r
! ’ * ’ e
qu Wa1-q)V (g2—q )=eXp(— 1 (ql—qz)z),
(71)
where we have used that [32]
'R 2r

e e,
=— - . 72
Wq) i em( 54 ) (72)

With this, the marginal POVM reads as

) dqidqy, ,
F(p )=J 21—772|Q :q14Q" 45|
2r!

4

><e><p<ip'(ql—qz)—e (ql—q2)2>, (73)

which in the limit r’ — —% converges to

F(p')=|P";p'XP";p'|. (74)

By rotating the canonical operators, Q' and P’ we have
diagonalized the covariance matrix of oy, and got rid of the
correlations between Q and P. We thus put all the noise
introduced by the auxiliary state into the Q' quadrature, and
put all the information of the signal state into the P’ quadra-
ture. This enables us to use the marginal POVMs without
loss of information, which in turn means that it suffices to
measure the P’ quadrature, i.e., the informative one.

Another interpretation follows from [29], where it is
shown that introducing a squeezed state in the auxiliary port
is equivalent to leaving the vacuum and tuning the beam-
splitter to a transmittance/reflectance other than 50%/50%.
The limit of infinite squeezing amounts to having a com-
pletely transmitting or reflecting mirror, which again con-
verts heterodyning into homodyning.

VIII. ESTIMATION SCHEME

The analysis carried out so far tells us that optimal phase
measurements can be performed by means of homodyne to-
mography of the appropriate quadrature 6’ =6,+®(s)/2,
where ®(s) is given by Eq. (62) and 8, is the estimate of the
first step measurement, which is not assumed to be optimal.
Let us call this quadrature P’. The outcomes will be Gauss-
ian distributed with zero mean (recall that our signal state is
a squeezed vacuum) and variance given by
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1+s*+(1=5%cos2(0 - 0)
452

a(0',0) = , (75)

as can be seen by diagonalizing the M matrix in Eq. (52)
through the transformation y'=R(6")y.

It is straightforward to check that the Fisher information
provided by this distribution is exactly that given by Eq.
(63).

The maximum likelihood analysis of the data yields the
condition o*(6’, 9MLE)=Epi2/]V, where {p,, ...

of outcomes corresponding to the N measurements of the
second step. Thus

PR} is the set

4s° Ep,-z/ﬁ— 1-s*

R 1
=0 =+ > arccos(

and the MLE is twice degenerate. There is, however, a trivial
way to break this degeneracy by using the outcomes of the
first step. The prescription is to choose the solution closest to

the rough guess 90. This estimator has an asymptotically van-
ishing bias, whereas that corresponding to the other solution
has a constant bias that goes roughly as

4520%(0',0) -1 - 54)

1-s*

E[6] - 6= arccos( (77)

Therefore, as the prior estimation gets accurate with increas-

ing N, the separation of the two maxima of the likelihood
function remain constant. By choosing the maximum closest
to éo, one has an exponentially small error probability.

In summary, the optimal scheme goes as follows:

(1) Perform any phase measurement (not necessarily op-
timal) on N* (1/2<a<1) copies of the signal state. From
the outcomes, compute a preliminary estimation éo, which
has a typical error 56°=1/N*.

(2) Measure the quadrature with 6’ =6,+®(s)/2, where
®(s) is given in Eq. (62), on the remaining N=N—N¢ copies.
This corresponds to setting the phase reference (the local
oscillator) to 6'.

(3) The Maximum Likelihood Estimator is obtained by
choosing the minus sign in Eq. (76).

Note that one could equivalently write 8’ =68,—®(s)/2
and choose the plus sign in Eq. (76). The variance of this
estimator goes as

25* ~ 1
(1-59 8((n)*+(n))’

o 1
Varl Gy ] ~ 7 (78)

and its bias vanishes asymptotically; therefore its MSE goes
as

1

MSE(fyig) ~ m’

(79)

which is the Heisenberg limit presented in Sec. II.
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IX. CONCLUSIONS

We have seen that the phase-number Heisenberg inequal-
ity is valid, regardless of the existence of any phase operator,
provided (A 6)? is regarded as a phase estimation variance. It
is just a consequence of the Cramér-Rao and Braunstein-
Caves inequalities.

We have seen that asymptotically the Heisenberg limit
(optimal estimation) can be attained by means of a (three-
outcome) POVM adaptive measurement. The physical
implementation of such a measurement is a demanding open
problem. We have introduced an approximate MLE that pro-
vides an outstanding simplification of the maximum likeli-
hood analysis. Asymptotically this approximate MLE and the
exact one are shown to be equivalent.

We have shown that the Heisenberg limit can be also at-
tained asymptotically by means of dyne measurements and,
surprisingly, only one quadrature needs to be measured. This
provides a remarkable economy of resources as compared to
POVM measurements such as an eight-port homodyne detec-
tion with squeezing in the auxiliary port. The relative phase
between the Local Oscillator in homodyne detection and the
signal state has been computed and used to devise a two-step
phase estimation scheme that attains the Heisenberg limit
asymptotically.

Remarkably enough, optimality is achieved with local
measurements. Hence, collective measurements prove of
little use in the large sample limit. This is a consequence of
quantum estimation theory applied to one-parameter prob-
lems.

Most of the schemes available so far succeed in attaining

the behavior Var] 8]~ (n)~2 for (n) large enough. The exact
behavior is usually not considered in the literature. This is, in
our opinion, an important loophole in phase estimation, since
one is usually interested in low energy states, where (n) is
small. An exception is the paper by Yurke er al. [33], in
which they introduce a scheme whose variance comes close
to our bounds for large (n) [34]. However, our scheme is
asymptotically optimal and beats, to the extent of our knowl-
edge, any proposal presented up to this day.
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APPENDIX A: AVERAGING OVER THE NUMBER
OF INFORMATIVE OUTCOMES Nj,¢

In this
E,,’Ninf[(éMLE— 6)?] over the number of informative outcomes

appendix, we compute the average of

Ninf7 1.€.,
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E[(ye— 6]

5 _
R N ; N-N;
_ E ]ENinf[ ( s — 0)2]< ) mef(l - p)N Ning
Nmf=0 inf
1 N 1 (N N v
N N-N, N
=— > — pr(1 = p)* N+ 56%(1 ~ p)™.
4(An)? Nyp=1 Ninf(Ninf>
(A1)

The first sum runs from 1 to IV, thus taking into account that
the actual variance for the rare case N;,;=0 is considered
separately. We can compute the expectation value (1/Ny,) by
expanding 1/N;,; around the expectation value of N, which
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i8S (Nipp) = pﬁ, and keeping terms up to second order. We ob-
tain

N N B
2 —< >pNinf(1 — p)NNint
Nip=1 Ninf inf
1 1- v
=_—<l+—_p—(l—p)N). (A2)
Np Np
Inserting the value for p=1+0(56%) yields

o 1

E[(Oyie— 0)°1= ———— + 0(56). (A3)

4(An)*N
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