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We study the quantum limits in an optomechanical sensor based on a detuned high-finesse cavity with a
movable mirror. We show that the radiation pressure exerted on the mirror by the light in the detuned cavity
induces a modification of the mirror dynamics and makes the mirror motion sensitive to the signal. This leads
to an amplification of the signal by the mirror dynamics, and to an improvement of the sensor sensitivity
beyond the standard quantum limit, up to an ultimate quantum limit only related to the mechanical dissipation
of the mirror. This improvement is somewhat similar to the one predicted in detuned signal-recycled
gravitational-wave interferometers, and makes a high-finesse cavity a model system to test these quantum
effects.
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I. INTRODUCTION

Quantum noise of light is known to induce fundamental
limits in very sensitive optical measurements. As an ex-
ample, the future generations of gravitational-wave interfer-
ometers �1–3� will most probably be confronted to quantum
effects of radiation pressure. A gravitational wave induces a
differential variation of the optical paths in the two arms of a
Michelson interferometer. The detection of the phase differ-
ence between the two paths is ultimately limited by two
quantum noise sources: the phase fluctuations of the incident
laser beam and the radiation pressure effects that induce un-
wanted mirror displacements in the interferometer. A com-
promise between these noises leads to the so-called standard
quantum limit for the sensitivity of the measurement �4–6�.

A number of quantum noise reduction schemes have been
proposed that rely on the injection of squeezed states of light
in the interferometer �7–9�, or on the quantum correlations
induced by radiation pressure between phase and intensity
fluctuations in the interferometer �10�. The possibility to
implement these techniques in real interferometers gave rise
to new methods such as the quantum locking of mirrors �11�
or the detuning of the signal recycling cavity �12,13�.

It seems important to find simple systems where similar
quantum effects can be produced and characterized in order
to test these effects in tabletop experiments. From this point
of view, high-finesse optical cavities with movable mirrors
have interesting potentialities since they exhibit similar
quantum limits. Several schemes involving such cavities
have been proposed either to create nonclassical states of
both the radiation field �14,15� and of the mirror motion
�16–18�, or to perform quantum nondemolition measure-
ments �19�. Recent progress in low-noise laser sources and
low-loss mirrors have made the field experimentally acces-
sible �20–22�.

We study in this paper the quantum effects in a detuned
cavity and the possibility to beat the standard quantum limit.

As for signal-recycled interferometers �23�, the detuning of
the cavity induces a modification of the mechanical dynam-
ics of the mirror, known as optical spring. This effect may
improve the sensitivity beyond the standard quantum limit
since it changes the mechanical rigidity of the mirror without
any additional noise �24,25�. The optical spring has already
been observed in a Fabry-Perot cavity �26�, and studied both
theoretically �27� and experimentally �28� for its role in para-
metric instabilities.

We perform a full quantum treatment of a detuned cavity
with a movable mirror. We show that the sensitivity of the
measurement of a cavity length variation can be made better
than the standard quantum limit. From a careful analysis of
the mirror dynamics, we find that it is not only attributed to
the optical spring, but also to the fact that the mirror be-
comes sensitive to the signal through the radiation pressure
exerted on the mirror. We show that the mirror motion can
amplify the signal, thus increasing the sensitivity up to an
ultimate quantum limit only related to the dissipation mecha-
nisms of the mechanical motion �5�. We finally study the
influence of a finite cavity bandwidth and obtain dual sensi-
tivity peaks similar to the ones obtained for detuned signal-
recycled interferometers �12�.

II. OPTOMECHANICAL COUPLING IN A DETUNED
CAVITY

We consider the single-port cavity shown in Fig. 1 with a
partially transmitting front mirror and a totally reflecting end
mirror. A probe laser beam is sent in the cavity and the phase
of the reflected field is monitored by a homodyne detection.
We consider in the following the motion of a single mirror,
assuming the front mirror is fixed, and we note Xm the dis-
placement of the movable end mirror. We study the response
of the system to a signal described as a variation Xsig of the
cavity length. It can either be a physical variation of the
cavity length due, for example, to an external force applied
on the movable mirror, or an apparent variation such as the
one produced by a gravitational wave in a gravitational-wave
interferometer. The time-dependent cavity length L is then
given by
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L�t� = L0 + Xm�t� + Xsig�t� , �1�

where L0 is the cavity length without a signal and for a
mirror at rest.

For a nearly resonant high-finesse cavity, the intracavity
field mode described by the annihilation and creation opera-
tors a�t� and a†�t� is related to the input and output fields
ain�t� and aout�t� by

�
da�t�

dt
= − �� − i��t��a�t� + �2�ain�t� , �2�

aout�t� = − ain�t� + �2�a�t� , �3�

where � is the damping rate of the cavity assumed to be
small compared to 1, � is the cavity round trip time, and ��t�
is the time-dependent detuning of the cavity related to the
cavity length by

��t� � 2kL�t��2�� , �4�

where k is the field wave vector.
The intracavity field induces a radiation pressure force

Frad on the mirror that is proportional to the field intensity,

Frad�t� = 2 � kI�t� , �5�

where the intracavity intensity I= �a�2 is normalized as a pho-
ton flux. In the framework of linear response theory �29�, the
Fourier transform Xm��� of the mirror displacement at fre-
quency � linearly depends on the applied force F���,

Xm��� = ����F��� , �6�

where ���� is the mechanical susceptibility of the mirror.
Assuming that the mirror motion can be described as the one
of a single harmonic oscillator with a resonance frequency
�M, a mass M, and a damping rate �, the susceptibility has
the simple form

���� =
1

M��M
2 − �2 − i���

. �7�

The steady state is obtained by cancelling the time deriva-
tive in �2�. One gets the steady states ā and āout of the intra-
cavity and output fields as a function of the incident mean

field āin and the mean detuning �̄ of the cavity,

ā =
�2�

� − i�̄
āin =

�2�

� + i�̄
āout. �8�

As expected for a lossless cavity, the outgoing mean intensity
�āout�2 is equal to the incident one �āin�2. For a nonzero detun-

ing �̄, the mean fields āin, ā, and āout have different phases.
We choose by convention the arbitrary global phase of the
fields in such a way that the intracavity field ā is real. The
phases 	in and 	out of the input and output mean fields are
then given by

e−i	in
=

� − i�̄

��2 + �̄2
, e−i	out

=
� + i�̄

��2 + �̄2
. �9�

According to Eqs. �1�–�6�, the mean detuning �̄ depends
on the intracavity intensity through the mirror recoil induced
by the intracavity radiation pressure,

�̄ = �0 + � 
2��0� , �10�

where �0�2kL0�2�� is the detuning without light and

=2k � ā�. The coupled equations �8� and �10� give a third

order relation between ā and �̄, which leads to the well
known bistable behavior of a cavity with a movable mirror
�30�. The stability condition of the system can be written as

�2 + �̄2 + 2 � 
2��0��̄ � 0. �11�

III. MIRROR DYNAMICS

We derive in this section the basic input-output relations
for the fluctuations and we study the modification of the
mirror dynamics induced by the radiation pressure in the
cavity. We will show that the mechanical response of the
mirror to an external force is modified by the optomechanical
coupling with the light. It can be described by an effective
mechanical susceptibility similar to the one obtained with an
active control of the mirror by a feedback loop �21,31,32�.

The linearization of the Fourier transform of Eq. �2�
around the mean state gives the intracavity field a���, at a
given frequency �, as a function of the incident field fluc-
tuations ain and the cavity length variations Xm and Xsig,

�� − i�̄ − i���a��� = �2�ain��� + i
Xm��� + i
Xsig��� .

�12�

According to Eq. �5�, the radiation pressure Frad��� depends
on the intensity fluctuations of the intracavity field at fre-
quency �. From Eq. �12� it can be written as the sum of
three forces,

Frad
�in���� = � 
� 2�

�2 + �̄2
��2 + �̄2 − i���

�
pin���

−
i�̄��

�
qin���	 , �13�

FIG. 1. A length variation Xsig is measured by a single-ended
Fabry-Perot cavity through the phase shift induced on the reflected
field aout. Radiation pressure effects are taken into account via the
displacement Xm of the movable end mirror.
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Frad
�m���� = − 2 � 
2 �̄

�
Xm��� , �14�

Frad
�sig���� = − 2 � 
2 �̄

�
Xsig��� , �15�

where �= ��− i���2+ �̄2 and the operators pin��� and qin���
correspond to the amplitude and phase quadratures of the
incident field, respectively,

pin��� = ei	in
ain��� + e−i	in

ain†��� , �16�

qin��� = − iei	in
ain��� + ie−i	in

ain†��� �17�

�the same definitions hold for the intracavity quadratures
with an angle 	=0 and for the reflected ones with the angle
	out�. The first force Frad

�in� represents the radiation pressure
induced by the quantum fluctuations of the incident field. It
is the usual force obtained in the case of a resonant cavity,
which is responsible for the generation of squeezing in a
cavity with a movable mirror �14�. Since it induces a dis-
placement of the mirror proportional to the field fluctuations,
it is also responsible for the standard quantum limits in in-
terferometric measurements �4–6�. For a resonant cavity

��̄=0�, this force only depends on the incident intensity fluc-
tuations pin filtered by the cavity bandwidth �cav=� /�.

The two other forces Frad
�m� and Frad

�sig� only exist when the

cavity is detuned ��̄�0�. In that case the working point of
the cavity is on one side of the Airy peak. According to Eqs.
�4� and �8�, the intracavity intensity depends on the cavity
length variations with a slope

dĪ

dX
= − 2


�̄

�2 + �̄2
ā . �18�

Any length variation changes the intracavity intensity and
induces a variation of the radiation pressure exerted on the
mirror. This variation corresponds to the forces Frad

�m� and
Frad

�sig� that are actually proportional to the slope �18� of the
Airy peak,

Frad
�j� ��� = 2 � k

�2 + �̄2

�

dĪ

dX
Xj��� , �19�

where j= �m , sig�. The first fraction in �19� is a low-pass filter
associated with the cavity storage time. The sign of the
forces depends on the sign of the slope �18�. Depending on

the sign of �̄, the force Frad
�m� is either a repulsive or an attrac-

tive force, and the force Frad
�sig� induces a mirror displacement

which may either amplify or compensate the signal Xsig. We
will see in the next section that this signal amplification by
the mirror motion is at the basis of the sensitivity improve-
ment obtained with a detuned cavity.

The force Frad
�m� is proportional to the mirror displacement

Xm. Its effect is to change the mechanical response of the
mirror to an external force that is now given by Eq. �6� with
an effective susceptibility �eff related to the free susceptibil-
ity � by

�eff
−1��� = �−1��� + 2 � 
2 �̄

�
. �20�

If the frequencies � and �M are much smaller than the cav-
ity bandwidth �cav, the additional term in �20� is real. As a
consequence, its effect is to change the spring constant of the
mechanical motion �24�, that is to shift the resonance fre-
quency �M of the oscillator �Eq. �7��, either to low or high

frequencies depending on the sign of �̄. If the frequencies �
and �M are of the order of �cav, the additional term in �20�
becomes complex and also changes the imaginary part of the
susceptibility. If we consider a mirror with a high quality
factor ��
�M�, the mechanical response �20� can still be
considered as Lorentzian with an effective damping �eff,
given by

�eff = � −
4 � 
2

M�cav

�2�̄

���2
, �21�

where the denominator � is estimated at frequency �M. The
mechanical resonance is widened or narrowed depending on

the sign of �̄.
The coupling with the intracavity field thus changes the

dynamics of the mirror, both via its spring constant and its
damping. The effect is somewhat similar to the one obtained
with an external feedback control. In both cases it is possible
to carry out a cold damping mechanism that increases the
damping without adding extra thermal fluctuations, thus
leading to a reduction of the effective temperature of the
mirror �21,33�. In this paper we will use these effects in
another way, in order to amplify the response of the mirror to
an external force. Together with the sensitivity of the mirror
motion to the signal via the force Frad

�sig�, this will allow us to
greatly amplify the sensitivity of the cavity to the signal.

Let us note that the modification of the dynamics can lead
to an instability where the mirror enters a self-oscillating
regime. The dynamic stability condition is usually given by
the Ruth-Hurwitz criterion applied to the determinant of the
linear relations between the field and the mirror position
�14,34�. It is actually equivalent to the condition that the
mirror motion has to be characterized by a positive damping
in order to have a nondivergent motion,

�eff � 0. �22�

IV. SENSITIVITY OF THE MEASUREMENT

We now determine the sensitivity of the measurement and
how it is modified by the cavity detuning. We consider for
simplicity that the low-pass filtering by the cavity can be
neglected, that is, all frequencies of interest ��, �M� are
much smaller than �cav. This assumption will be relaxed in
Sec. VIII.

The measurement is done by monitoring the phase
quadrature qout of the field reflected by the cavity, as shown
in Fig. 1. The linearized input-output relations for the field
are deduced from Eqs. �3� and �12�,

pout��� = pin��� , �23�
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qout��� = qin��� + 2��Xm��� + Xsig���� , �24�

where the optomechanical coupling parameter � is given by

� =� 2�

�2 + �̄2

 = 2k

2�

�2 + �̄2
�āin� . �25�

The working point of the cavity will be defined in the fol-

lowing by the two independent parameters �̄ and �. Other
parameters such as the incident and intracavity intensities
can be deduced from Eqs. �8� and �25�.

Equations �23� and �24� show that as long as we consider
the quasistatic regime �
�cav, the input-output relations
are similar for a resonant and a detuned cavity. Due to the
preservation of the photon flux in a lossless single-ended
cavity, the reflected amplitude fluctuations are equal to the
incident ones and only the reflected phase quadrature is sen-
sitive to the variation Xm+Xsig of the cavity length. This
variation is superimposed to the incident phase noise qin.

The mirror is submitted to the radiation pressure of the
intracavity field. As shown in the previous section, the re-
sponse to the forces Frad

�in� and Frad
�sig� �Eqs. �13� and �15�� is

characterized by the effective mechanical susceptibility �eff
�Eq. �20��. In the limit �
�cav, this susceptibility and the
resulting motion are given by

�eff
−1��� = �−1��� + � �2 �̄

�
, �26�

Xm��� = �eff������pin��� − � �2 �̄

�
Xsig���	 . �27�

The mirror motion reproduces the signal Xsig with a dynam-
ics characterized by the effective susceptibility �eff. Depend-

ing on the sign of �̄�eff���, the mirror displacement is in
phase or out of phase with the signal, thus leading to an
amplification or a reduction of the signal in the output phase
quadrature. This quadrature is obtained from Eqs. �24� and
�27�,

qout��� = qin��� + 2 � �2�eff���pin��� + 2�
�eff���
����

Xsig��� .

�28�

The signal Xsig is amplified by the coupling parameter � and
by the dynamics of the mirror �eff /� �last term in �28��. The
signal is superimposed to two noises proportional to the
phase and amplitude incident fluctuations, respectively �first
terms in �28��. These noises are nothing but the usual phase
noise and radiation pressure noise in interferometric mea-
surements.

It is instructive to compare the cases of detuned and reso-
nant cavities. For a resonant cavity, there is no modification
of the mechanical susceptibility ��eff=�� and the mirror mo-
tion does not depend on the signal. The output quadrature is
simply obtained from Eq. �28� by replacing �eff by �. There
is no amplification of the signal and the minimum noise cor-

responds to the standard quantum limit which is reached
when both the phase and radiation pressure noises are of the
same order, that is 2��2 �� � 
1.

For a detuned cavity, the signal is amplified by the ratio
��eff /��, and the radiation pressure noise is also increased by
the same factor �second term in Eq. �28��. As long as we are
only concerned by the noises, the system is thus equivalent
to a resonant cavity with a mirror having an effective sus-
ceptibility �eff. Due to the signal amplification, this is no
longer true if we are looking at the signal to noise ratio. The
sensitivity of the measurement can be increased beyond the
standard quantum limit by choosing the optomechanical pa-

rameters � and �̄ in such a way that the signal is amplified
���eff � � �� � �, whereas the quantum noises are still at the stan-
dard quantum limit, that is 2��2 ��eff � 
1.

To derive a more precise evaluation of the sensitivity im-

provement, we define an estimator X̂sig of the signal, equal to
the measured quadrature qout normalized as the length varia-
tion Xsig,

X̂sig��� =
1

2�

����
�eff���

qout��� . �29�

From Eq. �28�, this estimator appears as the sum of the signal
Xsig and two equivalent input noises proportional to the inci-
dent fluctuations qin and pin. The sensitivity of the measure-
ment is limited by the spectrum Ssig��� of these noises. For a
coherent incident beam, the quantum fluctuations of the two
incident quadratures pin and qin are two independent white
noises with a unity spectrum �Sp

in���=Sq
in���=1�. The

equivalent noise spectrum Ssig��� is then given by

Ssig��� = � ������� ����
�eff���

� ���� + 1/����
2

, �30�

where the dimensionless parameter � is defined as

���� = 2 � �2��eff���� . �31�

The last fraction in Eq. �30� is always greater than 1 and
reaches its minimum for ����=1. In that case, the phase and
radiation pressure noises are equal and their sum is mini-
mum. For a resonant cavity, this corresponds to the standard
quantum limit which is reached at a given frequency � for
the following value �SQL��� of the optomechanical param-
eter, and corresponds to a minimum noise level Ssig

SQL���,
given by

�SQL��� =
1

�2 � ������
, �32�

Ssig
SQL��� = � ������ . �33�

It is clear from Eq. �30� that the standard quantum limit is
not a fundamental limit. It is possible to go beyond this limit
with a detuned cavity, by choosing the optomechanical pa-
rameters so that �����1 and ��eff��� � � ������. The sensi-
tivity is then increased by the amplification factor
��eff��� /����� given by �see Eq. �26��
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��eff���/����� = �1 + � �2 �̄

�
�����−1

. �34�

Note that the term inside the absolute value, taken at fre-
quency �=0, exactly corresponds to the stability condition
of the bistable behavior �Eq. �11��. This term is strictly posi-
tive in the stable domain, thus preventing the amplification
factor to diverge. We study in the next sections the sensitivity
improvement in two particular cases of experimental interest,
corresponding to a frequency � either below or beyond the
mechanical resonance frequency �M.

V. SENSITIVITY IMPROVEMENT AT LOW FREQUENCY

We first consider the sensitivity improvement at a fre-
quency lower than the mechanical resonance frequency. This
situation is of interest for the displacement measurements
made with small and compact high-finesse cavities, where
the radiation pressure effects are mainly due to the excitation
of high-frequency internal acoustic modes of the mirrors
�31,35�. The susceptibility ���� at frequency well below the
mechanical resonance can be approximated as a real and
positive expression �Eq. �7��,

��� 
 �M� � ��0� =
1

M�M
2 . �35�

According to Eq. �34�, �̄ has then to be negative in order to
obtain an amplification factor ��eff /�� larger than 1. For any

arbitrary negative value of the detuning �̄, the condition
��0�=1 is reached for the value of the optomechanical pa-
rameter given by

�2 =
�SQL

2 �0�

1 − �̄/2�
, �36�

and the corresponding noise spectrum is equal to

Ssig�0�
Ssig

SQL�0�
=

1

��eff�0�/��0��
=

1

1 − �̄/2�
. �37�

It is then possible to arbitrarily reduce the equivalent input
noise and to increase the sensitivity by choosing a large
negative detuning. Note that although the optomechanical
parameter � given by Eq. �36� decreases as the noise spec-
trum, it corresponds to a larger incident intensity �see Eq.
�25��. Increasing the sensitivity thus requires a larger input
power.

Figure 2 shows the equivalent input noise Ssig�0� as a
function of the optomechanical parameter �, for different val-

ues of the detuning �̄. Curve a is obtained at resonance

��̄=0�. The noise reaches the standard quantum limit for
�=�SQL and is larger than this limit elsewhere. Since �2 is
proportional to the incident intensity �Eq. �25��, the addi-
tional noise for ���SQL corresponds to the phase noise that
is dominant at low intensity, whereas the additional noise for
���SQL corresponds to the radiation pressure noise, domi-
nant at high intensity. The behavior is similar for a detuned
cavity �curves b to d�, with a minimum noise reached at

decreasing values of � as the detuning increases. The mini-
mum noise is actually better than the one given by Eq. �37�.
A more accurate optimization of the noise spectrum �30�
leads to

�min
2 =

�SQL
2 �0�

�1 + ��̄/2��2
, �38�

Ssig
min�0�

Ssig
SQL�0�

= �1 + ��̄/2��2 + �̄/2� , �39�

which tends to � / ��̄� for large detunings. As an example, the

curve d corresponding to a detuning �̄=−10� exhibits a
noise reduction by a factor 10. Finally, note that as the am-
plification by the mirror increases with the detuning, the op-
timum working point becomes nearer and nearer to the un-
stable domain shown as dashed curves in Fig. 2. It, however,
always stays in the stable domain of the bistable behavior
given by Eq. �11�.

VI. SENSITIVITY IMPROVEMENT AT HIGH
FREQUENCY

We now study the sensitivity improvement at frequency
larger than the mechanical resonance frequency. This situa-
tion corresponds, for example, to gravitational-wave interfer-
ometers, where the main motion of the mirror is due to the
pendular suspension, which has very low resonance frequen-
cies �1,2�. In this case, the susceptibility ���� can be ap-
proximated as a real but negative expression �Eq. �7��,

��� � �M� � −
1

M�2 , �40�

so that the amplification factor ��eff /�� is now larger than 1

for a positive detuning �̄. Since the susceptibility is fre-
quency dependent, the condition ����=1 can be satisfied at
only one frequency. As a consequence, for a resonant cavity

FIG. 2. Equivalent input noise Ssig at low frequency as a func-
tion of the optomechanical parameter �2, normalized to the SQL
values �SQL

2 and Ssig
SQL. Curves a to d are plotted for a normalized

detuning �̄ /� equal to 0, −2, −5, and −10, respectively. Dashed
lines correspond to the unstable domain.
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��̄=0� and for a fixed optomechanical parameter �, the stan-
dard quantum limit is reached at a single frequency �SQL
given by Eq. �31�,

M�SQL
2 = ����SQL��−1 = 2 � �2. �41�

Curve a of Fig. 3 shows the resulting noise spectrum at reso-
nance, which reaches the standard quantum limit �dashed
line� at frequency �SQL. The radiation pressure noise is
dominant at lower frequency with a 1/�4 dependence,
whereas the constant phase noise limits the sensitivity at
higher frequency.

Curves b–d show the noise obtained for a detuned cavity
with the same optomechanical parameter �. Although these
curves exhibit a larger noise at low frequency than in the
resonant case, one gets a significant noise reduction below
the standard quantum limit in the intermediate frequency do-
main. The noise reduction becomes larger and larger as the
detuning increases. An optimization of the noise spectrum

�30� for a given detuning �̄ and optomechanical parameter �
leads to the optimal frequency �min and noise spectrum Ssig

min,

�min
2 = �SQL

2 �1 + ��̄/2��2, �42�

Ssig
min��min�

Ssig
SQL��min�

= �1 + ��̄/2��2 − �̄/2� . �43�

The noise spectrum has an expression similar to Eq. �39�
obtained at low frequency, except for the sign of the detuning

�̄. As previously, the noise ratio �43� tends to � / �̄ for large
detunings and one gets a noise reduction by a factor 10 for a

detuning �̄=10�.

VII. ULTIMATE QUANTUM LIMIT

The results of the previous sections seem to indicate that
an arbitrarily large sensitivity improvement can be obtained

both in the low and high frequency regimes since the equiva-

lent input noise evolves in both cases as � / �̄ for large de-
tunings. This actually is a consequence of the approximation
made on the mechanical susceptibility, which was assumed
to have no imaginary part. It is possible to derive the optimal
sensitivity improvement at a given frequency � without any
assumption on the mechanical susceptibility ����. An opti-
mization of the noise spectrum �30� with respect to the op-
tomechanical parameter � leads to

�min
2 =

�SQL
2 ���

�1 + ��̄/2��2
, �44�

Ssig
min���

Ssig
SQL���

= �1 + ��̄/2��2 +
�̄

2�

Re������
������

, �45�

where �SQL��� is the optomechanical parameter for which
the standard quantum limit is reached at frequency � for a
resonant cavity �Eq. �32��. As compared to Eqs. �38� and �39�
obtained at low frequency and for a real mechanical suscep-
tibility, the only difference is the last term in Eq. �45�, which
has a smaller amplitude when the susceptibility has a non-
zero imaginary part. As a consequence, the equivalent input

noise no longer decreases as � / �̄ for very large detunings,
and it reaches a nonzero minimum value at a finite detuning,
given by

�̄min/2� = −
Re������
�Im�������

, �46�

Ssig
min��� = � �Im������� . �47�

One then gets a limit to the sensitivity improvement which is
only related to the dissipation mechanism of the mechanical
motion, via the imaginary part of the susceptibility. This is
nothing but the ultimate quantum limit already predicted in
the case of interferometric measurements with squeezed-state
injection �5�. The same ultimate limit is thus reached by
cavity detuning.

VIII. CAVITY WITH A FINITE BANDWIDTH

We finally study the effect of a finite cavity bandwidth
�cav=� /�. The optical equations in the case of a detuned
cavity with a finite bandwidth are much more complex than
the ones given in the previous sections. As an example, the
input-output relation for the phase quadrature is derived from
Eqs. �12�, �16�, and �17�,

qout��� = 2�
�2 + �̄2 − i���

�
�Xm��� + Xsig����

+
1

�
��2 + �̄2 + �2�2�2 − �̄2

�2 + �̄2
	qin���

−
2

�
�2�2 ��̄

�2 + �̄2
pin��� , �48�

FIG. 3. Equivalent input noise Ssig��� at high frequency as a
function of frequency �, normalized to the SQL values �SQL and
Ssig

SQL��SQL�. Curves a–d are plotted for the same optomechanical

parameter � and for increasing normalized detunings �̄ /�, equal to
0, 2, 5, and 10, respectively. The dashed line corresponds to the
standard quantum limit.
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and can be compared to the simpler relation �24� obtained in
the case of an infinite cavity bandwidth. We have computed
the equivalent input noise Ssig from the previous input-output
relation and from Eqs. �13�–�15�, by using the formal lan-
guage MATHEMATICA. Figure 4 shows the resulting noise ob-
tained at high frequency, that is, for a mechanical suscepti-
bility approximated by the real and negative expression �40�.
All curves are plotted for the same optomechanical param-
eter � and, except for curve f , with a cavity bandwidth �cav
equal to 2�SQL, where �SQL is related to � by Eq. �41�.

Curve a of Fig. 4 shows the equivalent input noise at

resonance ��̄=0�. As compared to a cavity with an infinite
bandwidth �curve a of Fig. 3�, the noise is no longer constant
at high frequency but increases with the frequency. This is a
consequence of the low-pass filtering of the signal by the
cavity for frequencies larger than the cavity bandwidth.
Curves b–d show the equivalent noise spectrum obtained for
positive and increasing detunings. One clearly observes two
resonant dips with a structure very similar to the one already
predicted for signal-recycled gravitational-wave interferom-
eters �12�. These two resonances become deeper and more
separated as the detuning increases.

The dip at the lowest frequency is very similar to the one
obtained for an infinite cavity bandwidth, as well in fre-
quency, width, and noise reduction �compare curves b to d of
Figs. 3 and 4�. In both cases, the dip can be associated with
the resonance of the amplification factor ��eff /��. From Eq.
�20�, one indeed finds that the effective susceptibility �eff has
a Lorentzian shape with a resonance frequency �− very close
to the dip position �min �Eq. �42�� and given for a large
detuning by

�− � �SQL� �̄

2�
. �49�

Taking a finite cavity bandwidth thus changes the width of
the effective mechanical resonance, as already discussed in
Sec. III �see Eq. �21��, but it has no apparent effect on the
sensitivity improvement around the resonance frequency �−.

The second dip only exists for a finite cavity bandwidth
and is a consequence of the optical dynamics in the cavity.
Its frequency actually corresponds to the resonance fre-
quency �+ of the term 1/� that appears both in the input-
output relation �48� and in the radiation pressure forces
�13�–�15�,

�+ = �cav�1 +
�̄2

�2 . �50�

In contrast to the first dip for which the signal amplification
is only obtained with a positive detuning, the second dip
exists both for positive and negative detunings. This is
clearly visible in Fig. 4, where curves d and e are plotted for
the same parameters, but for reverse detunings. Note, how-
ever, that the stability conditions are very different in the two
situations. In particular, the dynamic stability condition �22�
is always satisfied for a negative detuning whereas it is very
restrictive for a positive detuning. Curves b to d of Fig. 4 are

actually unstable for a reasonably not too large mechanical
damping �.

The sensitivity improvement at the resonance frequencies
�± can be computed from the analytic expression given by

MATHEMATICA. One gets for a large detuning �̄,

Ssig��±�
Ssig

SQL��SQL�
�

2�2

�̄2
. �51�

The two dips have thus the same depth, as it can be observed
in Fig. 4. In this expression, the noise is normalized to the
standard quantum limit at frequency �SQL. It is also of inter-
est to compute the noise reduction below the standard quan-
tum limit, that is the ratio between the noise at frequency �±
and the standard quantum limit �33� at the same frequency,

Ssig��±�
Ssig

SQL��±�
�

2�2

�̄2
� �±

�SQL
	2

. �52�

From Eq. �49�, the ratio tends to � / �̄ at the resonance fre-
quency �− of the first dip. This result is identical to the one
obtained in Sec. VI for an infinite cavity bandwidth. At the
resonance frequency �+ of the second dip �Eq. �50��, the
noise ratio �52� is equal to 2��cav/�SQL�2. The noise is then
reduced below the standard quantum limit only if the cavity
bandwidth is small enough, as shown by curves e and
f in Fig. 4 obtained for �cav=2�SQL and �cav=�SQL/3, re-
spectively.

Finally, note that Eq. �51� seems to indicate that an arbi-
trarily small equivalent input noise can be reached by in-
creasing the detuning. As for an infinite cavity bandwidth
�Sec. VII�, it can be shown that the noise is always larger

FIG. 4. Equivalent input noise Ssig��� at high frequency as a
function of frequency �, normalized to the SQL values �SQL

and Ssig
SQL��SQL�. All curves are plotted for the same optomechanical

parameter �, and for the same finite cavity bandwidth �cav

=2�SQL, except curve f , for which �cav=�SQL/3. Curves a to d

correspond to positive normalized detunings �̄ /� equal to 0, 2, 5,
and 10, respectively. Curves e and f are obtained for a negative
normalized detuning of −10. The dashed line is the standard quan-
tum limit.
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than the ultimate quantum limit �47�, which can be reached
at every frequency � by an appropriate choice of the param-

eters �, �̄, and �cav.

IX. CONCLUSION

We have studied the quantum limits of an optomechanical
sensor based on a detuned high-finesse cavity with a mov-
able mirror. We have shown that the sensitivity to a variation
of the cavity length can be improved beyond the standard
quantum limit, up to the ultimate quantum limit, which only
depends on the dissipation mechanisms of the mirror motion.
This improvement is due to an amplification of the signal by
the mirror displacements. The coupling between the mirror
motion and the intracavity light field actually changes the
dynamics of the mirror, both via its spring constant and its

damping. But the mirror motion also becomes sensitive to
the signal and can amplify the effect of the signal on the
intracavity field. For a finite cavity bandwidth, one gets a
sensitivity improvement very similar to the one predicted in
signal-recycled gravitational-wave interferometers, with two
dips in the equivalent input noise that are related to the ef-
fective mechanical resonance of the mirror and to the optical
dynamics in the cavity. A high-finesse cavity with a movable
mirror thus appears as a model system to test quantum ef-
fects in large-scale interferometers.
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