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We propose two schemes for the generation of cluster states. One is based on cavity quantum electrody-
namics �QED� techniques. The scheme only requires resonant interactions between two atoms and a single-
mode cavity. The interaction time is very short, which is important in view of decoherence. Furthermore, we
also discuss the cavity decay and atomic spontaneous emission case. The other is based on atomic ensembles.
The scheme has an inherent fault tolerance function and is robust to realistic noise and imperfections. All the
facilities used in our schemes are well within the current technology.
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I. INTRODUCTION

In the realm of quantum information, entanglement is a
universal resource. Some striking applications of entangle-
ment have been proposed, such as quantum dense coding �1�,
quantum teleportation �2�, quantum cryptography �3�, etc.
Generally, entangled states are used as a medium to transfer
quantum information in quantum communication protocols.
Moreover, they are used to speed up computation in quantum
algorithms. While bipartite entanglement is well understood,
multipartite entanglement is still under extensive exploration.
For a tripartite-entangled quantum system, it falls into two
classes of irreducible entanglement �4–6�. Recently, Briegel
and Raussendorf �7� introduced a class of N-qubit entangled
states—i.e., the cluster states—which have some special
properties. The cluster states share the properties of both
Greenberger-Horne-Zeilinger- �GHZ-� and W-class en-
tangled states. But they still have some unique properties;
e.g., they have a large persistency of entanglement—that is,
they �in the case of N�4� are harder to be destroyed by local
operations than GHZ-class states. In addition, they can be
regarded as a resource for other multiqubit entangled states.
Thus cluster states become an important resource in many
branches of physics, especially in quantum information.
Therefore, a number of applications using cluster states in
quantum computation have been proposed �8–11�.

The generation of cluster states has attracted much atten-
tion. Recently Zou et al. proposed probabilistic schemes for
generating cluster states of four distant trapped atoms in
leaky cavities �12�, generating cluster states in resonant mi-
crowave cavities �13�, and generating cluster states in linear
optics systems �14�. Barrett and Kok proposed a protocol for
the generation of cluster states using spatially separated mat-
ter qubits and single-photon interference effects �15� and so
on �16,17�.

On the other hand, the cavity quantum electrodynamics
�QED� technique is a promising candidate for realizing quan-
tum processors. Meanwhile, much attention has been paid to
atomic ensembles in realizing scalable long-distance quan-

tum communication �18�. Schemes based on atomic en-
sembles have some peculiar advantages compared with
schemes of quantum information processing by the control
of single particles. First, the schemes have an inherent fault
tolerance function and are robust to realistic noise and im-
perfections. Laser manipulation of atomic ensembles without
separately addressing the individual atoms is dominantly
easier than the coherent control of single particles. In addi-
tion, atomic ensembles with suitable level structure could
have some kinds of collectively enhanced coupling to certain
optical modes due to multiatom interference effects. Due to
the above distinct advantages, a lot of novel schemes for the
generation of quantum entangled states and quantum infor-
mation processing have been proposed by using atomic en-
sembles �19–23�. Thus, in this paper, we propose two
schemes for the generation of the cluster states using the
cavity QED technique and atomic ensembles. Our cavity
QED scheme is different from that in Refs. �12,13�. The
scheme only requires resonant interactions between two at-
oms and a single-mode cavity. The interaction time is very
short, which is important in view of decoherence. More im-
portant, we consider the cavity decay and atomic spontane-
ous emission, which is unavoidable in the real process of
generation. The proposal can be used to realize logic gates
and directly transfer quantum information from one atom to
another one �24� without using the cavity mode as the
memory required in the previous experiment of Ref. �25�.
The scheme is very simple and can be generalized to the ion
trap system.

The paper is organized as follows: In Sec. II, we introduce
the cavity-QED model for generating a two-atom cluster
state with and without cavity decay and atomic spontaneous
emission, and then extend the scheme for a two-atom cluster
state to the multiatom cluster-state case. Necessary discus-
sions are also given at the end of the section. In Sec. III, we
discuss the scheme for generating the cluster states via
atomic ensembles and then conclude the section and discuss
the feasibility of our scheme. The conclusions appear in Sec.
IV.

II. GENERATION OF CLUSTER STATES WITH
RESONANT INTERACTIONS

In this section, we first use the resonant interaction be-
tween two atoms and a single-mode cavity to generate a
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two-atom cluster state. Three-level atoms are used in this
model. The relevant atomic level structure is shown in Fig. 1.
The third level �i� is not affected during the atom-cavity reso-
nant interaction. Thus the Hamiltonian of the atom-cavity
interaction can be expressed as, in the interaction picture
�assuming �=1� �24�,

H = g1�a†S1
− + aS1

+� + g2�a†S2
− + aS2

+� , �1�

where g1 and g2 are the coupling strength of atoms 1 and 2
with the cavity, respectively. S+= �e��g� and S−= �g��e� and �g�
are the ground state of the atoms, and �e� is the excited state
of the atoms. a† and a are the creation and annihilation op-
erators for the cavity mode. Assume that the cavity mode is
initially prepared in the vacuum state �0�. In order to generate
a two-atom cluster state, we prepare atom 1 in the state
���1= 1

�2
��g�1+ �e�1� and atom 2 in the state ���2= 1

�2
��g�2

+ �i�2�. So the initial state of the system is

���12v = 1
2 ��g�1 + �e�1� � ��g�2 + �i�2� � �0� . �2�

Then we send the two atoms through the vacuum cavity;
we can obtain the evolution �24�

�eg�12�0� →
g1

E
	 1

E

g1 cos�Et� +

g2
2

g1
��eg�12�0�

+
1

E
g2�cos�Et� − 1��ge�12�0� − i sin�Et��gg�12�1�� ,

�3a�

�ei�12�0� → �cos�g1t��e�1�0� − i sin�g1t��g�1�1���i�2, �3b�

�gg�12�0� → �gg�12�0� , �3c�

�gi�12�0� → �gi�12�0� , �3d�

where E=�g1
2+g2

2. If we choose

t =
�

g1
, g2 = �3g1, �4�

which can be achieved by choosing coupling strengths and
interaction time appropriately, we thus have

�eg�12�0� → �eg�12�0� , �5a�

�ei�12�0� → − �ei�12�0� , �5b�

�gg�12�0� → �gg�12�0� , �5c�

�gi�12�0� → �gi�12�0� . �5d�

Then send atom 2 through a classical field tuned to the tran-
sition

�i�2 → − �e�2. �6�

These lead the state of atoms 1 and 2 to

���12 =
1

2
��g�1��g�2 − �e�2� + �e�1��g�2 + �e�2��

=
1

2
��g�1�z

2 + �e�1���g�2 + �e�2� . �7�

Obviously we get a standard two-atom cluster state, while in
the real processing, the cavity decay and atomic spontaneous
emission are unavoidable. Thus the discussion of these is
necessary. Taking the cavity decay and atomic spontaneous
emission into consideration, the Hamiltonian of the atom-
cavity interaction can be expressed as �under the condition
that no photon is detected either by the spontaneous emission
or by the leakage of a photon through the cavity mirror and
assuming �=1�

H = g1�a†S1
− + aS1

+� + g2�a†S2
− + aS2

+� − i
�

2
a+a − i

�

2
� j=1

2 �e� j�e� ,

�8�

where � is the cavity decay rate and � is the atomic sponta-
neous emission rate. If we send the atoms 1 and 2 through
the vacuum cavity, choose the coupling strengths, interaction
time g2=�3g1, and t= �

g1
appropriately and set �=�=0.1g1,

and then send the atom 2 through a classical field as in Eq.
�6�, the state of the atoms 1 and 2 thus becomes

���12 =� 1

2�1 + e−�/10�
��g�1��g�2 − �e�2� + e−�/20�e�1��g�2

+ �e�2�� . �9�

The fidelity of this state relative to the standard two-atom

cluster state in Eq. �7� is
�1+e−�/20�2

2�1+e−�/10� 
0.994 and the probability

of success is 1+e−�/10

2 
0.865. The fidelity and probability ap-
proach perfection.

Multiatom entanglement is a very important source in
quantum information processing and quantum computation.
Especially multiatom cluster states have attracted much sci-
entific attention recently, and some of their applications have
been proposed �26–29�. Thus the generation of multiatom

FIG. 1. The level structure of the atoms. �g� is the ground state,
and �e� is the excited state. The cavity mode is resonantly coupled to
the �e�↔ �g� transition. The third level �i� is not affected by the
interaction.
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cluster states is vital for the construction of practical quan-
tum computers. Here, we generalize the above scheme of a
two-atom cluster state to the multiatom cluster-state case.

We first prepare N �N	2� atoms in the states

���1 =
1
�2

��g�1 + �e�1� , �10a�

��� j =
1
�2

��g� j + �i� j� , �10b�

where j=2,3 , . . . ,N. The N−1 cavities are all prepared in
vacuum states �0�. So the total state of atoms is

���1j =
1

2N/2 ��g�1 + �e�1� �
j=2

N

��g� j + �i� j� . �11�

For the case of an ideal cavity, first, we send atoms 1 and
2 through a vacuum cavity. The interaction between atoms 1,
2 and the cavity mode is governed by the Hamiltonian of Eq.
�1�. Meanwhile, we choose the coupling strengths and inter-
action time appropriately as in Eq. �4�. Then we send atom 2
through a classical field as in Eq. �6�. These lead Eq. �11� to

���1j =
1

2N/2 ��g�1�z
2 + �e�1���g�2 + �e�2� �

j=3

N

��g� j + �i� j� .

�12�

Next, we send atoms 2 and 3 through another vacuum cavity.
After the same interaction as on atoms 1 and 2, we send atom
3 through a classical field as in Eq. �6�, Here, Eq. �12� be-
comes

���1j =
1

2N/2 ��g�1�z
2 + �e�1���g�2�z

3 + �e�2���g�3 + �e�3� �
j=4

N

��g� j

+ �i� j� . �13�

From the form of the above states, we can conclude if we
send two atoms through a vacuum cavity every time and then
send one �the bigger subscript� of the two atoms through a
classical field, step by step, we can obtain the multiatom
cluster states easily. In other words, first we send atoms 1
and 2 through a vacuum cavity, then send atom 2 through a
classical field. Second, we send atoms 2 and 3 through an-
other vacuum cavity, then send atom 3 through another clas-
sical field, etc. Finally, we send atoms N−1 and N through
the last vacuum cavity, then send atom N through a classical
field. Thus the multiatom cluster states can be obtained:

���N =
1

2N/2 �
j=1

N

��g� j�z
j+1 + �e� j� , �14�

where �z
N+1�1.

For the case of real processing �with cavity decay and
atomic spontaneous emission�, we can obtain the cluster state
by the same process as in the above ideal case and set �
=�=0.1g1. We can obtain the cluster states

���N =� 1

2�1 + e−�/10�N−1 �
j=1

N−1

��g� j�z
j+1 + e−�/20�e� j�

� ��g�N�z
N+1 + �e�N� . �15�

While the fidelity of this state relative to the standard mul-

tiatom cluster state in Eq. �14� is � �1+e−�/20�2

2�1+e−�/10� �N−1
and the suc-

cessful probability of obtaining the multiatom cluster state is
� 1+e−�/10

2
�N−1

, it is shown that the successful probability and
fidelity both decrease exponentially with the increase of N.

Next, we briefly consider the feasibility of the current
scheme. The scheme requires two atoms in a vacuum cavity,
which have different coupling strengths with the cavity
mode. The coupling depends on the atomic positions g
=
e−r2/�2

, where 
 is the coupling strength at the cavity
center, � is the waist of the cavity mode, and r is the distance
between the atom and cavity center �30�. The condition g2
=�3g1 in our scheme can be satisfied by locating one atom at
the center of the cavity and locating the other one at the
position r=��ln �3. According to recent experiments with
Cs atoms trapped in an optical cavity �31�, the condition can
be obtained.

For the resonant cavity, in order to generate the cluster
states successfully, the relationship between the interaction
time and the excited atom lifetime should be taken into con-
sideration. The interaction time should be much shorter than
that of atom radiation. Hence, atoms with a sufficiently long
excited lifetime should be chosen. For Rydberg atoms with
principal quantum numbers 50 and 51, the radiative time is
T1
3�10−2 s. From the analysis in Ref. �32�, the interac-
tion time is on the order of T
2�10−4 s, which is much
shorter than the atomic radiative time. So the condition can
be satisfied by choosing Rydberg atoms. Our scheme re-
quires that two atoms be simultaneously sent through a cav-
ity; otherwise, there will be an error. Assume that during the
generation of a two-atom cluster state one atom enters the
cavity 0.01t sooner than another atom, with t being the time
of each atom staying in the cavity. We can obtain the fidelity
F
0.999 for the generation of a two-atom cluster state. Ob-
viously in this case the operation is only slightly affected.

Furthermore, one needs to reach the Lamb-Dicke regime
in order to generate the cluster states successfully. For the
initial state of Eq. �2�, in the Lamb-Dicke regime, the infi-
delity caused by the spatial extension of the atomic wave
function is about 

�ka�2�, where k is the wave vector of
the cavity mode and a is the spread of the atomic wave
function. Setting 

0.01, we have a
0.01�, where � is the
wavelength of the cavity mode. If the atom trajectories cross
the cavity with a deviation of less than 0.1° from its prede-
termined direction, we can ensure that the fidelity is about
0.999 for the generation of a two-atom cluster state, while in
order to maintain g2=�3g1 in the process of atomic motion
in the cavity, we can choose the parameter of cavity z
�0.5z0, where z0= ��2

� and 2z is the length of the cavity. We
can obtain that the error is only about 10−3. In these cases,
we can obtain the fidelity F
0.999 for the generation of a
two-atom cluster state, which is bigger than the case of cav-
ity decay and atomic spontaneous emission in the process of
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generation. Therefore our scheme is feasible with the current
cavity QED technology.

The scheme for generating the cluster states in cavity
QED only requires resonant interactions between two atoms
and a single-cavity mode. The interaction time is very short,
which is very important in view of decoherence. For the
ideal case, the successful probability and the fidelity are both
perfect �equal to 1.0�. For the real case, the successful prob-
ability is 0.865 and the fidelity is 0.994 for the two-atom
cluster states, while the successful probability and the fidelity
for the multiatom cluster states both decrease exponentially
with the increase of N. The scheme is very simple and can be
generalized to the ion trap system.

III. GENERATION OF CLUSTER STATES WITH ATOMIC
ENSEMBLES

In this section, we first introduce the basic system used in
this paper. Atomic ensembles consist of a large number of
identical alkali-metal atoms. The relevant level structure of
the alkali-metal atoms is shown in Fig. 2. �g� is the ground
state, �e� is the excited state, and �h� and �v� are two meta-
stable states for storing a qubit of information—e.g., Zeeman
or hyperfine sublevels. For the three levels �g�, �h�, and �v�,
which can be coupled via a Raman process, two collective
atomic operators can be defined as

s = �1/�Na��
i=1

Na

�g�i�s� ,

where s=h ,v and Na�1 is the total number of atoms. s is
similar to independent bosonic mode operators provided that
all the atoms remain in ground state �g�. The states of the
atomic ensemble can be expressed as �s�=s†�vac� �s=h ,v�
after the emission of the single Stokes photon in a forward
direction, where �vac�� � i=1

Na �g�i denotes the ground state of
the atomic ensemble.

It is necessary to discuss the realization of the controlled-
NOT �CNOT� gate for the generation of cluster states. The
controlled-NOT gate can be realized via atomic ensembles
with the help of Raman laser manipulations, beam splitters,
and single-photon detections. Realization of the Bell-basis

measurement and generation of tripartite GHZ states is im-
portant for the realization of controlled-NOT gates. The Bell-
basis measurement can be realized using the setup in Fig. 3.
The four Bell states of the system are ���AB

±

= �hA
+hB

+ ±vA
+vB

+��vac�AB /�2 and ���AB
± = �hA

+vB
+ ±vA

+hB
+�

�vac�AB /�2. We can use the setup to achieve the task, as
shown in Fig. 3. First, we apply antipump laser pulses to the
two atomic ensembles A and B to transfer their h excitations
to optical excitations and detect the anti-Stokes photons by
detectors D1 and D2. If only detector D1 �or D2� clicks, we
will apply single-qubit rotations to both ensembles to rotate
their v modes to h modes by shinning �-length Raman
pulses or radio-frequency pulses on the two ensembles A and
B. Then we apply antipump laser pulses to two atomic en-
sembles A and B again and detect anti-Stokes photons by D1
and D2. Now, there are two different results of the detection:
�1� If detector D1 �or D2� clicks �one detector clicks twice in
the two detections�, post-selecting the cases that each en-
semble has only one excitation, atomic ensembles A and B
are projected into ���AB

+ = �hA
+vB

+ +vA
+hB

+��vac�AB /�2. �2� If D2
�or D1� clicks �detectors D1 and D2 click, respectively, in
the two detections�, post-selecting the cases that each en-
semble has only one excitation, atomic ensembles A and B
are projected into ���AB

− = �hA
+vB

+ −vA
+hB

+��vac�AB /�2. Obvi-
ously, if we add single-qubit rotations in the above
process, we can realize the projection of ���AB

±

= �hA
+hB

+ ±vA
+vB

+��vac�AB /�2 in a post-selecting sense.
Tripartite GHZ states can be prepared using the protocol

of Ref. �19� with atomic ensembles. First, atomic ensembles
1 and 2 can be prepared in the state ���12

±

= �h1
+±ei�h2

+��vac�12/�2 as in Ref. �18�. Then we can omit ei�

by the way in �19� and perform a single-qubit rotation on
atomic ensemble 2. The state of atomic ensembles 1 and 2
becomes ���12= �h1

++v2
+��vac�12/�2. Second, we prepare the

atomic ensembles 2, 3 and 3, 1 in the states ���23= �h2
+

+v3
+��vac�23/�2 and ���31= �h3

++v1
+��vac�31/�2. So the total

state becomes ���123= ���12 � ���23 � ���31. Post-selecting the
case that each ensemble has only one excitation, we can
obtain the GHZ state ���123= �h1

+h2
+h3

++v1
+v2

+v3
+��vac�123/�2.

In the same way, we can prepare another GHZ state
using atomic ensembles 4, 5, and 6: ���456= �h4

+h5
+h6

+

+v4
+v5

+v6
+��vac�456/�2.

FIG. 2. The relevant atomic-level structure of alkali-metal at-
oms. The transition of �e�→ �h� can emit a forward-scattered Stokes
photon copropagating with the laser pulse. The excitation in the
mode h can be transferred to optical excitation by applying an an-
tipump pulse.

FIG. 3. Setup of realizing Bell-basis measurements. The two
atomic ensembles A and B are pencil-shaped, which are illuminated
by the synchronized laser pulses. The forward-scattered anti-Stokes
photons are collected and coupled to an optical channel �fiber� after
the filter. BS is a 50-50 beam splitter, and the outputs are detected
by two single-photon detectors D1 and D2.
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In order to realize the CNOT gate, we prepare two atomic
ensembles 7 and 8 �ensemble 7 as control, ensemble 8
as target�, which are in ���7= �h7

++v7
+��vac�7 and

���8= �h8
+−v8

+��vac�8 by single-qubit rotations. First, we apply
Hadamard transformations on atomic ensembles 1, 2, and 3,
respectively, and then make a Bell-basis measurement on
atomic ensembles 3 and 4. Then the state ���123456 collapses
to one of the following four unnormalized states:

���1256 = ��h1
+h2

+ + v1
+v2

+�h5
+h6

+ ± �h1
+v2

+ + v1
+h2

+�v5
+v6

+��vac�1256,

�16a�

���1256 = ��h1
+h2

+ + v1
+v2

+�v5
+v6

+ ± �h1
+v2

+ + v1
+h2

+�h5
+h6

+��vac�1256,

�16b�

where ���1256 and ���1256 are the results of the projection into
���34

± and ���34
± , respectively. They can unify as ���1256

= ��h1
+h2

++v1
+v2

+�h5
+h6

++ �h1
+v2

++v1
+h2

+�v5
+v6

+��vac�1256 with the
help of simple single-qubit operations.

Then we make Bell-basis measurements on atomic en-
sembles 1, 8 and 6, 7. The state of atomic ensembles 2 and 5
collapses to one of the following states:

���25 = �h2
+ − v2

+��h5
+ − v5

+��vac�25/2, �17a�

���25 = �h2
+ − v2

+��h5
+ + v5

+��vac�25/2, �17b�

where Eq. �17a� corresponds to the measurement results of
���67

+ and ���67
+ and Eq. �17b� corresponds to ���67

− and ���67
− .

We can transform state �17b� to state �17a� by single-qubit
rotations. Obviously, the CNOT gate has been realized and the
state of atomic ensembles 7 and 8 has been mapped onto
ensembles 2 and 5.

Next, we discuss the generation of bipartite cluster states.
The atomic ensembles 1 and 2 are initially prepared in the
state

���12 = v1
+v2

+�vac�12 �18�

using Raman pulses. The entire single-qubit transformation
can be achieved by laser pulses in atomic ensembles. Sec-
ond, we perform a single-qubit operation on atomic
ensemble 1:

v1
+�vac�1 → �h1

+ + v1
+��vac�1/�2. �19�

Then, we perform a controlled-NOT transformation on the
two atomic ensembles, with atomic ensemble 1 serving as
control qubit and atomic ensemble 2 as target qubit. Now, the
above procedures lead Eq. �18� to

���12 = �h1
+v2

+ + v1
+h2

+��vac�12/�2. �20�

Finally, we perform a single-qubit operation on atomic
ensemble 1,

h1
+�vac�1 → v1

+�vac�1, v1
+�vac�1 → h1

+�vac�1, �21�

and another single-qubit operation on atomic ensemble 2,

h2
+�vac�2 → �h2

+ − v2
+��vac�2/�2,

v2
+�vac�2 → �h2

+ + v2
+��vac�2/�2. �22�

Here, the quantum state of atomic ensembles 1 and 2
becomes

���12 = �h1
+�h2

+ − v2
+� + v1

+�h2
+ + v2

+���vac�12/2

= ��h1
+�z

2 + v1
+��h2

+ + v2
+���vac�12/2. �23�

Obviously the state is a standard bipartite cluster state
�N=2�. The cluster states �N=2,3� can be also generated
without a controlled-NOT transformation �18,19�. However,
for the generation of multipartite cluster states, use of the
proposals of Refs. �18,19� is very hard, while it can be real-
ized by the above method with controlled-NOT transforma-
tions, as shown below.

For the generation of arbitrary N-particle cluster states
�N	2�, we can use the single-qubit operations and
controlled-NOT transformations to achieve the task perfectly.
Here, we discuss the process in detail. First, we prepare N
atomic ensembles, which are all in the states vi

+�vac�i
�i=1,2 , . . . ,N�. So the state of the whole system is

���12,. . .,N = �v1
+v2

+
¯ vN

+��vac�12,. . .,N. �24�

Second, we perform appropriately transformations as the
above process on atomic ensembles 1 and 2 �Eqs. �19�–�22��,
which lead the initial state to

���12,. . .,N = �h1
+�z

2 + v1
+��h2

+ + v2
+��v3

+v4
+
¯ vN

+��vac�12,. . .,N/2.

�25�

Then, we perform the same transformations on atomic en-
sembles 2 and 3 as atomic ensembles 1 and 2. We obtain the
result

���12,. . .,N = �h1
+�z

2 + v1
+��h2

+�z
3 + v2

+��h3
+ + v3

+��v4
+v5

+
¯ vN

+�

��vac�12,. . .,N/2�2. �26�

In a word, if we perform the transformations of Eqs.
�19�–�22� on atomic ensembles 1 and 2, then on atomic en-
sembles 2 and 3, up to on atomic ensembles N−1 and N, we
will obtain the perfect multipartite cluster states

���12,. . .,N =
1

2N/2 �h1
+�z

2 + v1
+��h2

+�z
3 + v2

+� ¯ �hN
+ + vN

+�

��vac�12,. . .,N

=
1

2N/2 �
i=1

N

�hi
+�z

i+1 + vi
+��vac�12,. . .,i, �27�

where �z
N+1�1.

We briefly discuss the feasibility of the current scheme. If
we want to generate a high-fidelity entangled state of about
16 ensembles, a time Timp
50 s will be needed by choosing
other parameters appropriately, which has been proved �19�.
With such a short preparation time Timp, the noise that we
have not included is negligible, such as the nonstationary
phase drift induced by the pumping phase or by the optical
channel. As long as the number n of ensembles is not huge,
we also can safely neglect the single-bit rotation error �below
10−4 with the use of accurate polarization techniques for Zee-
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man sublevels �33�� and the dark count probability of single-
photon detectors �about 10−5 in a typical detection time win-
dow of 0.1 �s �19��. Thus it seems reasonable to generate
cluster states over tens of ensembles with the current tech-
nology. Furthermore, the scaling can be made polynomial by
dividing the whole preparation process into small steps,
checking each step, and repeating these steps instead of the
whole process in case it fails. So our scheme has an inherent
fault tolerance function and is robust to realistic noise and
imperfections �18,19�.

The physical scheme for generating the cluster states
based on atomic ensembles has some peculiar advantages
compared with the schemes by the control of single particles;
e.g., the schemes have an inherent fault tolerance function
and are robust to realistic noise and imperfections. Laser
manipulation of atomic ensembles without separately ad-
dressing the individual atoms is dominantly easier than the
coherent control of single particles. Atomic ensembles with
suitable level structure could have some kind of collectively
enhanced coupling to certain optical modes due to multiatom
interference effects and so on �18�. At the same time, we can
generate the N-qubit cluster state simply by extending the
two-qubit case.

IV. CONCLUSIONS

We propose two schemes for the generation of cluster
states. One scheme is based on cavity quantum electrody-

namics technique. The scheme only requires resonant inter-
actions between two atoms and a single-mode cavity. The
interaction time is very short, which is important in view of
decoherence. We first introduce the two-atom case and then
extend it to the mulitatom case. Furthermore, we consider the
cavity decay and atomic spontaneous emission cases; the
successful probability and fidelity for multiatom cluster
states both decrease exponentially with an increase of N. The
scheme is very simple and can be generalized to the ion trap
system. The other is based on atomic ensembles. The scheme
has as inherent fault tolerance function and is robust to real-
istic noise and imperfections. The generation of cluster states
from the two-qubit case to the multiqubit case is simple and
feasible. All of the facilities used in our schemes are well
within the current technology.
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