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metric down-conversion, and we demonstrate directly, and with no auxiliary assumptions, that these twin
beams are nonclassical.
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I. INTRODUCTION

The quantum nature of light is exemplified by the fact that
it can exhibit both undular �wavelike� and corpuscular �par-
ticlelike� properties under different circumstances. Using an
atomic cascade to produce a pair of nearly simultaneous pho-
tons �1�, Grangier et al. �2� demonstrated that a heralded
photon can either interfere with itself in a Mach-Zehnder
interferometer or be shown to either wholly transmit or re-
flect by a beam splitter, which demonstrates complementarity
for light. More recently the continuous trade-off of undular
and corpuscular features in a quantum nondemolition mea-
surement �3� was demonstrated using a nondeterministic lin-
ear optical gate �4�. Technically, nonclassical light corre-
sponds to field states whose Glauber-Sudarshan P
representation is singular �5,6�; practically, nonclassicality
can be established by demonstrating photon antibunching �7�
or using optical homodyne tomography �8,9� to demonstrate
that the Wigner function �which is a Gaussian convolution of
the P representation� exhibits squeezing �10� or is negative
over some region �11�.

Recently Waks, Diamanti, Sanders, Bartlett, and Yama-
moto �WDSBY� �12� exploited cutting-edge photon-counting
technology �using the visible light photon counter �VLPC�
�13�� to demonstrate that a single beam emitted by paramet-
ric down-conversion �PDC� is nonclassical by measuring its
photon statistics and avoiding auxiliary assumptions such as
detector efficiency. Here we reinterpret the WDSBY data us-
ing Klyshko’s powerful criterion for direct detection of non-
classicality via photon statistics �14�, and we demonstrate
nonclassicality of twin-beam PDC by using two photon
counters and Lee’s extension of Klyshko’s criterion to two
beams �15�.

Although the simultaneity of photon pair production by
twin-beam, or nondegenerate, PDC is well known �16�, lead-
ing to its applications as a heralded photon source �17� and
for tests of Bell’s inequalities �18�, the joint photon statistics
of the twin beams have not previously been directly mea-
sured. These statistics are necessary for a direct confirmation
of the nonclassicality of twin-beam PDC, which is one of the
most important tools in quantum optics as a source of corre-
lated or entangled pairs of photons �19� and, more recently,
as a source of entangled fourtuples of photons �20�. We have
performed this direct photon-counting experiment and ob-
tained joint photon-counting data for the twin beams and
thereby showed that these twin beams are truly nonclassical.

II. SINGLE-BEAM NONCLASSICAL STATISTICS

Theories generally treat the twin-beam PDC output as a
two-mode squeezed vacuum state �21�

��� = �1 − ���2�
k=0

�

�k�kk� , �1�

with ��C and the argument of � dependent on the phase of
the pump laser field for the PDC. For degenerate PDC, the
state �1� is replaced by

��� = �1 − ���2�
k=0

�

�k�2k� , �2�

and the photon number distribution is

pn = �1 − ���2����2n. �3�

This state corresponds to a joint photon number distribution
for the two beams, which is given by

pn1,n2
= �1 − ���2����2n1�n1,n2

. �4�

Klyshko considered a state of the type emitted by an ideal
degenerate PDC, and Lee’s analysis of photon-counting cor-
relations explicitly assumed two-mode states and included a
treatment of the two-mode squeezed vacuum �1�.

The reality of PDC and photon counting is somewhat
more complicated. The twin beams �known as signal and
idler fields� are each multimode so the theoretical treatments
of these outputs are not immediately applicable. In fact there
are so many modes for each of the signal and idler beams
that we observe a photon distribution over these modes that
is Poissonian. The Poisson distribution originates from the
fact that there so many signal and idler modes that the aver-
age number of pairs per mode is much less than 1. This
means that each mode is predominantly a vacuum state with
a small one-photon contribution and a negligible multiphoton
contribution. Thus, the generated signal is created by a sum
of independent spontaneous emitters �one for each mode�,
and, as each pair is created independently, the pair creation
statistics must be a Poisson distribution.

This discrepancy in photon statistics between the usual
theoretical treatment of PDC output �21� and experimental
reality makes the direct measurement of joint photon-
counting statistics and verification of nonclassicality even
more interesting and important. Properties of twin-beam
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PDC have been explored in an elegant experiment by Ha-
derka et al. �22�, but their approach is different in that they
do not use two distinct photon counters on each beam. Thus,
inferences of nonclassicality rely on auxiliary assumptions
that are not required by our approach such as taking into
account the losses during transmission, quantum efficiency,
and internal noise of the camera and noise due to other light
sources to obtain the joint signal-idler photon number distri-
bution �22�.

To begin, we reanalyze the WDSBY data for single-beam
PDC. WDSBY �12� conclusively demonstrated nonclassical-
ity using their data for one-, two-, and three-photon mea-
sured counts 	�n; n=1,2 ,3
, where we use the symbol p for
the ideal probability and � for the measured probability. We
will now compare their results to Klyshko’s criterion �14�.
We introduce Klyshko’s criterion for two reasons: �i� Klysh-
ko’s criterion demonstrates that the WDSBY data violate
classical bounds beyond the three-photon case studied by
WDSBY, and �ii� Klyshko’s criterion is a basis for Lee’s
criterion �15� which we use for the analysis of the twin
beams.

WDSBY used the fact that nonclassicality of light, de-
fined by the singularity of the Glauber-Sudarshan P repre-
sentation, holds if and only if the photocount distribution for
the beam cannot be expressed as a sum or integral of Poisson
distributions �which corresponds to classical count distribu-
tions�. Specifically the photon count statistics 	�n;
n=1,2 ,3
 were irreconcilable with classical photon statis-
tics; thus photon counting provided a direct means for estab-
lishing that a single-beam light source is nonclassical.

To demonstrate nonclassical photon statistics, WDSBY
pumped a type-I phase-matched Beta Barium Borate �BBO�
crystal set up for collinear degenerate amplification with
20 ns pulses of the fourth harmonic �266 nm� of a
Q-switched neodymium-doped yttrium aluminum garnet
�Nd:YAG� laser. In this configuration, the down-converted
photons had half the energy of the pump �532 nm� and trav-
eled in the same direction. The pump was removed by a
prism, while the down-conversion was focused by a 250 mm
lens onto the VLPC detector. The detector output was ampli-
fied and then sent to a gated boxcar integrator, which was
triggered by the laser. This configuration was used to mea-
sure the photon number distribution of the detected field.
WDSBY achieved a 40 standard deviation violation of clas-
sicality, according to the criterion

� =
�2

�1 + �2 + �3
� �classical �

3

3 + 2�6
� 0.379 �5�

without any auxiliary assumptions about the detector or field.
In fact Klyshko’s criterion preceded the WSBY criterion

and was the first proposal for a direct test of nonclassicality
according to “local properties” of the photon number distri-
bution �PND� �14�,

Kn = �n + 1�
pn−1pn+1

npn
2 � 1, n = 1,2,3, . . . . �6�

By the replacement p��, the criterion applies to measured
photon statistics rather than the ideal photon-counting distri-

bution. Lee �15� refers to such tests of nonclassicality ac-
cording to local properties of the PND as type II, as opposed
to the traditional version �which Lee calls type I� that em-
ploys inequalities on moments �such as the Mandel Q param-
eter �23��.

If criterion �6� is satisfied for any n, then the field is
necessarily nonclassical. To compare with �, consider n=2
for Klyshko’s criterion applied to measured data:

K2 =
3

2

�1�3

�2
2 � 1. �7�

Rearranging the terms in Eq. �7� yields the nonclassicality
criterion

�2 ��3

2
�1�3. �8�

An alternative criterion emerges from the nonclassicality cri-
terion �5�, which yields

�2 �
1

2
�3

2
��1 + �3� . �9�

Thus, combining Klyshko’s result for K2 and the WDSBY
result for �, we obtain the general condition, based on mea-
sured results 	�1 ,�2 ,�3
 for nonclassicality being

�2 � min
�3

2
�1�3,

1

2
�3

2
��1 + �3�� . �10�

This condition is based on the best case by combining the
WDSBY � criterion �5� with Klyshko’s criterion for n=2.

Equation �10� can be further simplified: the two quantities
in this equation coincide in the symmetric case that �1=�3;
then �2��3/2�1. Now suppose that �3=��1. We can thus
rewrite condition �10� as

�2

�2
�

3

2
min
��,

� + 1

2
� . �11�

Except for �=0,1 the first term on the left-hand side of Eq.
�11� is always smaller than the second term, and the two
terms are equal when �=0,1. Thus Klyshko’s condition is
stronger than the WDSBY criterion, and another advantage
of Klyshko’s general criterion over WDSBY’s criterion is
that the latter only applies in the measured photon number
distribution localized around n=2 whereas Klyshko’s crite-
rion explores nonclassicality for local regions of the photon
number distribution around any n	1.

In Fig. 1, we present a plot of Kn vs n for the WDSBY
data. Klyshko’s criterion is violated for even numbers of
photons between n=2 and 8. The limit of our measurement
capability is nine photons, and all odd-number detections fail
to violate Klyshko’s criterion as expected from joint distri-
bution �4�. The reason why even-number counts violate the
classical limit and odd-number counts do not is that the ideal
photon number distribution is nonzero only for even-number
counts. Experimentally we detect odd-number counts due to
finite detector quantum efficiency, but this does not lead to
violation of the classical limit. Figure 1 is especially impor-
tant in demonstrating that nonclassicality of the beam is evi-
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dent for all even photon numbers up to the limits imposed by
our photon counter capabilities.

III. TWIN-BEAM NONCLASSICAL STATISTICS

Now let us consider the twin-beam PDC and its joint
photon-counting statistics. We will use Lee’s generalization
of Klyshko’s type-II criterion to establish nonclassicality of
the twin-beam PDC output directly from the joint photon-
counting data with no adjustments made for photodetection
efficiency. We will need to adapt Lee’s criterion to accom-
modate the multimode aspect of the PDC output.

Lee introduces the nonclassical criterion for two modes of
a light field given by

Rn1n2
= �n2 + 1�

pn1−1,n2+1

2n1pn1,n2

+ �n1 + 1�
pn1+1,n2−1

2n2pn1,n2

� 1, �12�

with n1 ,n2� 	1,2 ,3 , . . . 
. The field is nonclassical if Rn1n2
satisfies inequality �12� for any n1 and n2. Although Lee’s
analysis supposes a two-mode field, this result is equally
valid for a multimode field and the use of two photon
counters, with some modes directed to one detector and other
modes directed to the other detector.

Mode mismatches and lost modes are partially respon-
sible for photon counter inefficiencies. As we do not employ
auxiliary assumptions, the onus is on us to enhance effi-
ciency to ensure that inequality �12� is satisfied, and not to
resort to modeling these losses and adjusting the photon sta-
tistics according to these assumptions.

We define n1 as the number of signal photons and n2 as
the number of idler photons. It is convenient to determine the
conditional probabilities for n2 photons given a count of n1 at
the other detector, denoted by pn2�n1

. The conditional and
joint number-counting probabilities are related by the for-
mula

pn1,n2
= pn2�n1

pn1
. �13�

As explained in the previous section, the counting statistics
for each detector is a Poissonian distribution with

�n = exp�− n̄�n̄n/n! �14�

where n̄ is the mean photon number summed over all the
signal modes. The choice of the Poisson distribution is jus-
tified by the fact that there are many more signal and idler
modes than photons distributed among these modes �22�.

Lee’s expression �12� can be revised in terms of condi-
tional probabilities. Using the simple relation
�n

Poisson/�n−1
Poisson= n̄ /n, we rewrite the criterion as

Rn1n2
=

n̄2�n2−1�n1+1 + n1�n1 + 1��n2+1�n1−1

2n̄n2�n2�n1

� 1. �15�

In our experiments, the mean photon number collected over
all the modes is n̄=1.

The experimental setup for generating twin photon beams
for measuring the Lee nonclassical criterion is shown in Fig.
2. A 266 nm pump source is generated from the fourth har-
monic of a Q-switched Nd:YAG laser. The pump pulses
have a duration of 20 ns and a repetition rate of 45 kHz. A
dispersion prism separates the fourth harmonic from the re-
sidual second harmonic, which is used to illuminate a high-
speed photodiode to generate a triggering signal. The fourth
harmonic pumps a BBO crystal, which is set for noncollinear
degenerate phase matching.

In this condition, the signal and idler waves are both
532 nm in wavelength and have a divergence angle of 1°
from the pump. The pump is loosely focused before the BBO
crystal to achieve a minimum waist at the collection lens.
This results in a sharper two-photon image which enhances
the collection efficiency. The pump power is set to 20 
W.
Using the count rate on the detectors and known values of
the detector quantum efficiency, the average pair creation
rate at this pump power is measured to be one pair per pump
laser pulse.

Two VLPC detectors are used in this experiment. Each
detector is held in a separate helium bath cryostat and cooled
down to 6–7 K, which is the optimum operating tempera-
ture. The VLPC is sensitive to photons with wavelengths of
up to 30 
m, so it must be shielded from room-temperature
thermal radiation. This is achieved by encasing the detector
in a copper shield, which is cooled down to 6 K. Acrylic
windows at the front of the copper shield are used as infrared
filters. These windows are highly transparent at visible wave-
lengths and simultaneously nearly opaque at 2–30 
m
wavelengths.

FIG. 1. �Color online� Experimental results for Klyshko’s figure
of merit K vs photon number n for a single-mode field.

FIG. 2. Experimental setup for measuring violation of Lee’s
inequality.
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VLPC 1 is used as the triggering detector which detects
the number of photons generated in the signal arm on a given
laser pulse. The output of VLPC 1 is amplified by an inte-
grating amplifier, which generates an electrical pulse whose
height is proportional to the number of emitted electrons.
The height of the pulse is discriminated by a single-channel
analyzer �SCA�. A logical AND is performed between the
output of the SCA and the output of the photodiode to reject
all detection events which occur outside of the pulse dura-
tion.

The output of VLPC 2, which measures photons in the
idler arm, is amplified and connected to the signal input of a
boxcar integrator. On each pulse from the SCA, the output of
VLPC 2 is integrated over a 2 
s window, which is suffi-
ciently large to encompass the entire electrical pulse �deter-
mined by the bandwidth of subsequent amplifiers�. The pulse
area is proportional to the number of detected photons. By
measuring the pulse area histogram of the VLPC, we can
therefore measure pn2�n1

, where n1 and n2 are the number of
photons in the signal and idler arms, respectively.

The experimental results are given in Table I. Since we
can measure n1 only from one to four photons, we obtain
expressions for the Lee bound only for n1=2 ,3. In the ideal
case where we have perfect detection efficiency and no dark
counts, we would have Rn1n2

=0 when n1=n2. When n1�n2

the Lee bound would not be well defined because pn1,n2
=0,

causing a divergence. In the presence of detection losses, we
would still expect the best violations when n1=n2, with
worse results in the off-diagonal term. As can be seen in
Table I, this is indeed the case. When n1=n2� 	2,3
, we
obtain extremely good violations of the Lee criterion,
whereas off-diagonal terms yield worse violations or no vio-
lations at all.

V. CONCLUSIONS

In summary we have demonstrated directly that twin-
beam PDC produces nonclassical light. As PDC is one of the
most important tools for quantum optics, it seems surprising
that the nonclassical nature of PDC output has not been di-
rectly verified before. One reason for not having previously
establishing nonclassicality of twin-beam PDC is the require-
ment for sophisticated, modern photon counters and correla-
tions of their data. Another reason is that only recently has
direct testing of nonclassicality via the local properties of the
measured photon count distribution been understood
�12,14,15�. Our method of directly measuring photon counts
for twin beams applies to multiple-beam fields and testing
the local properties of the measured photon count distribu-
tion provides a valuable, practical means for establishing
nonclassicality of light, especially in cases where the photons
are not antibunched.

ACKNOWLEDGMENTS

This work was supported in part by the MURI Center
for Photonic Quantum Information Systems �ARO/DTO
Program No. DAAD19-03-1-0199�. B.C.S. acknowledges
financial support from iCORE and the Australian Research
Council.

�1� C. A. Kocher and E. D. Commins, Phys. Rev. Lett. 18, 575
�1967�; S. J. Freedman and J. F. Clauser, ibid. 28, 938 �1972�.

�2� P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173
�1986�.

�3� B. C. Sanders and G. J. Milburn, Phys. Rev. A 39, 694 �1989�.
�4� G. J. Pryde, J. L. O’Brien, A. G. White, S. D. Bartlett, and T.

C. Ralph, Phys. Rev. Lett. 92, 190402 �2004�.
�5� E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 �1963�.
�6� R. J. Glauber, Phys. Rev. 130, 2529 �1963�; 131, 2766 �1963�.
�7� H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett.

39, 691 �1977�.
�8� U. Leonhardt, Measuring the Quantum State of Light �Cam-

bridge University Press, Cambridge, U.K., 1997�.
�9� A. I. Lvovsky and M. G. Raymer, in Quantum Information

with Continuous Variables of Atoms and Light, edited by N.
Cerf, G. Leuchs, and E. Polzik �Imperial College Press, Lon-
don, in press�.

�10� D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys.
Rev. Lett. 70, 1244 �1993�.

�11� A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,

and S. Schiller, Phys. Rev. Lett. 87, 050402 �2001�.
�12� E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y.

Yamamoto, Phys. Rev. Lett. 92, 113602 �2004�.
�13� E. Waks, K. Inoue, W. Oliver, E. Diamanti, and Y. Yamamoto,

IEEE J. Sel. Top. Quantum Electron. 9, 1502 �2003�.
�14� D. N. Klyshko, Phys. Lett. A 213, 7 �1996�.
�15� C. T. Lee, J. Opt. Soc. Am. B 15, 1187 �1998�.
�16� D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84

�1970�.
�17� C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 �1986�.
�18� Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 �1988�.
�19� P. Hariharan and B. C. Sanders, Prog. Opt. 36, 49 �1996�.
�20� P. Walther, J.-W. Pan, M. Aspelmeyer, S. Gasparoni, and A.

Zeilinger, Nature �London� 429, 158 �2004�.
�21� B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093

�1985�.
�22� O. Haderka, J. Peřina Jr., M. Hamar, and J. Peřina, Phys. Rev.

A 71, 033815 �2005�.
�23� L. Mandel, Phys. Rev. Lett. 49, 136 �1982�.

TABLE I. Experimental results for Lee’s figure of merit R vs
photon number n for twin beams.

n2

n1 1 2 3 4

2 0.69±0.023 0.27±0.007 0.47±0.012 1.37±0.04

3 2.23±0.08 0.70±0.022 0.33±0.008 0.47±0.012

WAKS et al. PHYSICAL REVIEW A 73, 033814 �2006�

033814-4


