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Considering a three-level �-type atom with both transitions coupled to a single photonic-band-gap reservoir,
we investigate the upper-state population and spontaneous emission spectra by using the resolvent operator for
the isotropic dispersion model, and give their analytical solutions. For the case of two transitions coupled to the
same reservoir, the upper-state population always displays an oscillatory behavior and finally reaches a steady-
state value. For atomic transition frequencies in the vicinity of the band-gap edge or inside the gap, the
spontaneous emission spectra become strongly non-Lorentzian.
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I. INTRODUCTION

Since the pioneering work of Yablonovitch �1� and John
�2�, the robust characteristics of a photonic crystal �PC� have
stimulated investigations of a broad range of problems per-
taining to the interaction of few-level atoms with unusual
reservoirs. The unconventional photonic density of states
�DOS� associated with such material leads to the prediction
of many interesting effects �3�, such as modified reservoir-
induced transparency �4�, population trapping in a two-atom
system �5�, enhanced quantum interference effect �6�,
anomalous Lamb shift �7�, phase-dependent behavior of the
population dynamics �8�, and transient lasing without inver-
sion �9�, among others.

Three-level atomic systems are of particular interest in
quantum optics, including V-, cascade-, or �-type arrange-
ments. For the V-type system, its decay properties have been
discussed �10–13� considering both transitions coupled to the
same reservoir with one or two band gaps for isotropic and
anisotropic dispersion models. The spontaneous emission
spectrum for an atomic cascade system where one transition
is coupled near resonantly to the edge of a photonic band gap
�PBG� and the other transition is coupled to a flat back-
ground of radiation modes was investigated, and shown to be
strongly non-Lorentzian �14�. For the same atomic system,
the problem with both photons strongly coupled to the PBG
continuum has been treated by Nikolopoulos et al. �15�
through replacing the DOS by a sufficiently large set of dis-
crete modes, which leads to the formation of a two-photon
“photon-atom bound state.” In addition, Dalton et al. �16�
gave a general discussion about the dynamical behavior of a
three-level atomic system in a cascade configuration in
which both transitions are coupled to a single or two separate
structured reservoirs of electromagnetic field modes using
Laplace transform methods. For the �-type system, John et
al. �17� have studied its spontaneous emission properties by
Laplace transform methods, considering one transition
coupled to the edge of a PBG and the other to a flat back-
ground of radiation modes in an isotropic model. In addition,
the spontaneous emission, absorption, and dispersion proper-

ties of a �-type three-level atom where one transition inter-
acts near resonantly with a double-band PC were investi-
gated in an isotropic model by Angelakis et al. �18�. The
oscillatory behavior of spontaneous emission and the occur-
rence of dark lines �zeros in the spectrum at certain values of
the emitted photon frequency� in the emission spectrum were
noted.

To our knowledge, previous studies for the �-type system
were limited to the case of only one transition coupled to a
PBG reservoir. In this paper we study the population evolu-
tion and spontaneous emission spectra of a three-level
�-type system, concentrating on the case of both transitions
coupled to the same PBG reservoir. The paper is organized as
follows. In Sec. II, we apply the resolvent operator to de-
scribe the interaction of our system with the PBG reservoir
and derive the matrix elements of the resolvent operator G.
In Sec. III, by using the matrix elements of G we obtain the
analytical expression for the upper-state population and the
spontaneous emission spectrum for a three-level � atom in
the case of two transitions coupled to the same reservoir for
the isotropic model. Finally, we summarize our findings in
Sec. IV.

II. THEORY

The three-level �-type atom we studied is shown in Fig.
1, where two lower levels �b� and �c� are coupled by corre-
sponding electric dipoles to the common excited level �a�.
The atom is assumed to be initially in the state �a�. The
transitions �a�↔ �c� and �a�↔ �b� are coupled to the same
modified reservoir. The Hamiltonian that describes the dy-
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namics of this system, in the rotating wave approximation, is
given by

H = H0 + V ,

H0 = ��2�aa + ���2 − �1��bb + ��
�

��a�
†a� + ��

�

��a�
†a�,

V = i��
�

�g�
ab�baa�

† − �g�
ab�*�aba�� + i��

�

�g�
ac�caa�

†

− �g�
ac�*�aca�� , �1�

where the atomic transition frequencies are �2 for �a�→ �c�
and �1 for �a�→ �b�, �i,j are atomic pseudospin operators,
while a�

†�a�
†� and a��a�� are the creation and annihilation

operators of the structured continuum, which is coupled to
the atomic transitions via the respective coupling constants
g�

ac and g�
ab. �������� is the energy of the �th ��th� reservoir

mode. Operators H0 and V represent the noninteraction
Hamiltonian and the interaction Hamiltonian, respectively.
Setting �=1 and introducing the resolvent operator �19�

G�z� =
1

z − H
, �2�

we have �z−H0�G�z�=1+VG�z�. The wave function of the
system is given by

���t�� = ca�t��a;0� + �
�

cb,��t��b;1�� + �
�

cc,��t��c;1��

� U�t����0�� , �3�

where U�t� is the time evolution operator. With the system
initially in the state �a�, the resolvent operator equations read

�z − �a�Gaa = 1 + �
�

Vab�
Gb�a + �

�

Vac�
Gc�a,

�z − �b�
�Gb�a = Vb�aGaa,

�z − �c�
�Gc�a = Vc�aGaa, �4�

where �a=�2, �b�
=�2−�1+��, �c�

=��, Vij = 	i�V�j�, and
Gij = 	i�G�j�. From Eq. �4� we obtain

Gaa =
1

z − �a − Rac − Rab
, �5�

Gb�a =
Vb�a

z − �b�

1

z − �a − Rac − Rab
, �6�

Gc�a =
Vc�a

z − �c�

1

z − �a − Rac − Rab
, �7�

where

Rac = �
�

Vac�

2

�z − �c�
�
, Rab = �

�

Vab�

2

�z − �b�
�

.

III. RESULTS AND DISCUSSION

A. Upper-state population for the isotropic dispersion model

As we know from Eq. �3�, ���t��=U�t����0��, where
���0��= �a ;0� is the initial atomic wave function. To obtain
the population evolution Uij�t�, it is necessary to carry out
the contour integral of Gij�z� by the residue method, i.e.,

Uij�t� =
1

2	i



+
+i�

−
+i�

dz e−iztGij�z� , �8�

where � is an infinitesimal small positive quantity. To evalu-
ate the integral, we close the contour with a semicircle in the
lower half of the complex plane and use the residue theorem.
Using the identity 1 / �x± i��= p�1/x� i	��x� with p denot-
ing the principal value part of the integral. The values of Rac
and Rab near the real axis are given by

Rac = �ac − i
�ac

2
, �9�

Rab = �ab − i
�ab

2
, �10�

where �ij and �ij represent the level shift and the spontane-
ous emission rate of a photon from the excited state to a state
of lower energy, respectively. Here, neglecting �ij, �ij can be
written as �ij�z�=2	�gij�2��z�; thus we have

Rab = − i	c1��z�, Rac = − i	c2��z� , �11�

where the constants c1 and c2 represent the effective coupling
of two atomic transitions to the reservoir and equal the
squares of the coupling constants, respectively. In general,
the coupling constants g�

ac and g�
ab are unequal and thus for

the rest of this paper we assume that c1 and c2 are different
from each other.

From Eqs. �11� and �5�, we obtain

Gaa�z� =
1

z − �a + i	�c1 + c2���z�
. �12�

For the isotropic dispersion model, ��z�= �1/2	���z
−�e� /�z−�e, where �e is the upper-band-edge frequency.
Through the change of variable z→z+�2−�1+�a, Eq. �12�
can also be written as

Gaa�z� =
1

z + �2 − �1 + i�c1 + c2�/�z + �2 − �1 + �a − �e/2
.

�13�

For simplicity, we define �2=�2−�e ,�1=�1−�e as detuning
of the two transition frequencies from the band edge, respec-
tively. Through some algebraic manipulations, �2−�1=�2
−�1 ,�2−�1+�a−�e=2�2−�1, we obtain

Gaa�z� =
1

z + �2 − �1 + i�c1 + c2�/�z + 2�2 − �1/2
. �14�

Substituting Eq. �14� into Eq. �8�, we can get the upper-state
population. Figure 2 gives the upper-state population evolu-
tion of a �-type system with two transitions coupled to the
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same reservoir for various transition frequencies.
In Ref. �17�, for various spontaneous decay rates, the

excited-state population was given with one transition
coupled to the PBG reservoir and the other to free space. For
a nonzero value of the decay rate into the open space, the
oscillations characterizing the photon-atom bound state are
damped with the atom ending up in the lower state. For our
system with both transitions coupled to the same structured
reservoir, the excited-state population is stable and nonzero
for transition frequencies inside the gap, but dissipates into
the open space for transition frequencies far outside the gap.
In Fig. 2�a� where both transition frequencies are outside the
gap, we find that the spontaneous emission is partially inhib-
ited, but the steady-state value is very small and decreases
with increasing �2. In Fig. 2�b� where the transition fre-
quency �1 ��2� is inside �outside� the gap, the spontaneous
emission is still inhibited partially but the upper-state popu-
lation can reach a much larger steady-state value and in-
creases with decreasing �2. In Fig. 2�c�, for both transition
frequencies sufficiently inside the gap, the spontaneous emis-
sion is almost completely inhibited with the steady-state
value increasing to relatively high values.

For the upper-state population in all figures, we can iden-
tify a transient regime, within a very short time period,
where part of the atomic population is lost. On a longer time
scale, populations in atomic levels undergo oscillations and
are strongly dependent on the relative detuning from the
band edge, which reflects the emission and reabsorption of
photons. The period of oscillations is determined by the real
pole and the real part of the complex roots of the denomina-
tor of Gaa�z�. That implies that the effective frequency of
oscillations is determined by �1, �2, c1, and c2. For fixed c1
and c2, the effective frequencies of the oscillation increase
with increasing values of �1 and �2. In addition, it is clear
that, once an atom is trapped in the dark state, it will not
oscillate between the excited level and the ground levels.
That is, only the bright state contributes to the population
oscillation, while the dark state does not.

In general, the poles in the expressions of the resolvent
operator amplitudes are strongly connected with the behavior
of the atomic system as indicated by Eq. �8�. The pole with a
positive imaginary part falls outside the contour of integra-
tion, while the complex poles with negative imaginary part
lead to a transient dissipative behavior but do not contribute

FIG. 2. The upper-state population evolution of a � system with two transitions coupled to the same reservoir versus dimensionless time
c2/3t. �a� Both transition frequencies are outside the gap; �b� transition frequency �1 is inside the gap, with the other transition frequency �2

outside the gap; �c� both transition frequencies are inside the gap for the isotropic dispersion model.
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to the stable behavior. The purely real poles, on the other
hand, represent a stable nondecaying state of the system and
thus determine the behavior in the long-time limit. In Fig. 2,
for both transition frequencies near the band edge or far out-
side the gap, Gaa�z� has a pure real pole and two conjugated
complex poles. Only the pure real pole and the complex
poles with negative imaginary part will contribute to the os-
cillatory behavior of spontaneous emission. If both transition
frequencies far inside the gap, Gaa�z� has two real poles,
corresponding to two nondecaying states, which leads to
strongly inhibited spontaneous emission.

In the language of dressed states, the oscillations in the
populations of the atomic levels reflect the interference be-
tween the dressed states of the atom. The dressed state out-
side the gap will lose all its population through a long time
evolution, while the one inside the gap is protected from
dissipation and thus is stable. In Fig. 2�a�, both transition
frequencies are outside the gap, the corresponding dressed
states represent two propagating modes decreasing with time
in the emitted field. These two decaying states lead to the
loss of upper-state population. But in the vicinity of the band
edge we find the partial trapping of population. In Fig. 2�b�,
the dressed state corresponding to transition frequency inside
the gap is a nondecaying photon-atom bound state, but a
propagating state corresponding to transition frequency out-
side the gap. It is the interference between the photon-atom
bound state and the propagating state that leads to the qua-
siperiodic oscillatory behaviors of the population. In Fig.
2�c�, both frequencies are inside the gap and the correspond-
ing dressed states are nondecaying localized states, while the
interference between the bound dressed states results in
strong oscillation and inhibition of the spontaneous emission.

B. Spectral distribution of photons spontaneous emitted by an
excited atom

To obtain the spectral distribution of emitted photons, we
must calculate the emission amplitude Ub�a�t� and Uc�a�t� for
a time t sufficiently long. From Eqs. �11� and �6�, we obtain

Gb�a�z� =
1

z − �2 + �1 − ��

�c1

z − �a + i	�c1 + c2���z�
.

�15�

Substituting Eq. �15� into Eq. �8�, using the residue method,
and considering a time t long enough so that only one pole
z=�2−�1+�� contributes to the integral, we have

Ub�a�t → 
�

=
�c1

�2 − �1 + �� − �a + i	�c1 + c2����2 − �1 + �� − �e�
.

�16�

For the isotropic dispersion model we get

Ub�a�t → 
�

=
�c1

��� − �e − �1 + �2

��� − �e − �1���� − �e − �1 + �2 + i�c1 + c2�/2
,

�17�

where the definitions of �1 and �2 are the same as before.
Through a similar derivation process we obtain

Gc�a�z� =
1

z − ��

�c2

z − �a + i	�c1 + c2���z�
. �18�

Substituting Eq. �18� into Eq. �8�, using the residue method,
and considering a time t sufficiently long so that only one
pole z=�� contributes to the integral, we get

Uc�a�t → 
� =
�c2

�� − �a + i	�c1 + c2����� − �e�
. �19�

Substituting the DOS into the above equation, we have

Uc�a�t → 
� =
�c2

��� − �e

��� − �e − �2���� − �e + i�c1 + c2�/2
.

�20�

The long-time spontaneous emission spectrum in our system
is given by

S��� − �e� = ���� − �e���Ub�a�t → 
��2 + �Uc�a�t → 
��2� .

�21�

The spontaneous emission spectrum is calculated and the
results are given in Figs. 3–5, which show the spontaneous
emission spectra of a three-level �-type system with two
transitions coupled to the same reservoir for various �1 and
�2.

If a three-level �-type system with two transitions is
coupled to free space, the corresponding spectrum is the non-
coherent superposition of two Lorentzian line shapes �20�.
The spontaneous emission spectrum shows different line
shapes for a three-level atom interacting with differently
structured reservoirs. Compared with the case of only one
transition coupled to the PBG reservoir as discussed in Ref.
�17�, the spectra shown in Figs. 3–5 are greatly different and
the spectrum profile is fairly sensitive to the detuning of the
atomic transition frequency from the band edge. In Fig. 3�a�,
with both transition frequencies outside the gap, each spec-
trum shows two Lorentzian-like peaks. In Fig. 4�a�, when
one transition frequency �1 is inside the gap while the other
�2 is outside the gap, the spectrum approaches a Lorentzian
profile with �2 far outside the gap, or the spectrum distribu-
tion has a “shoulder” with both transition frequencies near
the band-gap edge. Figure 5�a� shows a divergent tail and
becomes strongly non-Lorentzian when both transition fre-
quencies are far inside the gap.

For our system, both transitions are coupled to the same
modified reservoir. The dressed states were formed due to the
upper-atomic-level splitting. When two transition frequen-
cies are outside the gap, the corresponding dressed states are
two propagating states. The corresponding spectrum is a
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noncoherent superposition of two Lorentzian profiles as
shown in Fig. 3�b�. In Fig. 4�b�, with one transition fre-
quency inside the gap and the other outside, one localized
state and one propagating state are formed. Thus, the corre-
sponding spectrum is a noncoherent superposition of a
Lorentzian profile and a non-Lorentzian profile. In Fig. 5,
two localized states occur when both transition frequencies
lie in the gap. The corresponding spectrum is a strongly non-
Lorentzian profile.

In Ref. �17� the result that the spontaneous emission spec-
trum splits into a double peak with a dark line is given. This
doublet is coupled to free space, which corresponds to a
V-type three-level system with spontaneously generated co-
herence �21�. Then the atom from the excited state decays to
the ground state with two relaxation channels and the quan-
tum interference between them leads to the formation of a
dark line �22�. For our system, from Eqs. �17�, �20�, and �21�,
it is concluded that the dark line exists in the spectra when
��−�e−�1+�2=��−�e=0, i.e., �1=�2. In Figs. 3–5, how-

ever, no dark line appears that is due to �1−�2=�1−�2�0
for a three-level �-type system. The lack of the dark line in
the spectra can also be rationalized in a language more fa-
miliar to quantum optics. Due to the strong spike in the DOS
at the edge, the coupling in the vicinity of �=0 causes a
strong Autler-Townes splitting. For the double PBG � case,
for each transition, one of the two levels in the doublet is
pushed into the gap, and hence does not radiate, thus sup-
pressing quantum interference. By contrast, in the single
PBG � case, the doublet line inside the gap can also radiate
via the open channel, providing an effective V-type system
for interference.

IV. CONCLUSION

Concerning a three-level �-type atom with both transi-
tions coupled to a single PBG reservoir, the upper-state
population evolution and the spontaneous emission spectrum
have been studied. The upper-state population shows an os-

FIG. 3. A � system with two transitions coupled to the same reservoir for both transition frequencies outside the gap: �a� spontaneous
emission spectra S���� for various �1 and �2 �in arbitrary units�; �b� individual spectral lines and their sum.

FIG. 4. A � system with two transitions coupled to the same reservoir for transition frequency �1 inside the gap and the other transition
frequency �2 outside the gap: �a� spontaneous emission spectra S���� for various �1 and �2 �in arbitrary units�; �b� individual spectral lines
and their sum.

NON-MARKOVIAN DECAY OF A THREE-LEVEL ¼ PHYSICAL REVIEW A 73, 033802 �2006�

033802-5



cillatory behavior but always reaches a constant for any de-
tuning value. The steady population gradually decreases
when one transition frequency is outside the gap with in-
creasing detuning. When both transition frequencies are in-
side the gap, strong inhibition of the spontaneous emission
can be realized, which then results in a larger steady-state
population with increase of the detuning. In addition, for the
spontaneous emission spectra we obtain the usual Lorentzian
spectrum when the atomic transition frequencies are tuned
far outside the gap. For atomic frequencies in the vicinity of
the band-gap edge or far inside the gap, the spectra become
strongly non-Lorentzian. The fact that no dark lines appear in
the spontaneous emission spectra is due to the fact that the

quantum interference of two adjacent transitions is sup-
pressed. When the frequency difference between the two low
levels is large enough, the corresponding spectrum connected
with two transitions can be completely distinguished.
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