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Adiabatic dressed state potentials are created when magnetic substates of trapped atoms are coupled by a
radio-frequency field. We discuss their theoretical foundations and point out fundamental advantages over
potentials purely based on static fields. The enhanced flexibility enables one to implement numerous configu-
rations, including double wells, Mach-Zehnder, and Sagnac interferometers which even allows for internal
state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries
on atom chips.
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I. INTRODUCTION

Magnetic fields are powerful tools to control and manipu-
late the motion of neutral atoms �1,2�. These fields can either
be created by �macroscopic� coils �3�, free standing wires
�4–6�, or—as a result of the growing effort for miniaturiza-
tion and integration—by surface-mounted microfabricated
structures, so-called atom chips �7�. Compared to macro-
scopic setups, atom chips provide high magnetic field gradi-
ents �8� and therefore enable the realization of tightly con-
fining traps. The flexibility of designing complex current and
charge patterns on the chip allows for considerable freedom
to engineer “potential landscapes” for neutral atoms. This
has resulted in numerous designs of atom-optical elements
such as traps, guides, beams splitters, and interferometers
�9–13� with possible applications ranging from quantum in-
formation processing �14,15� to high precision measurements
�16�. Even though many of these designs have been demon-
strated experimentally �7,17,18�, there have been enormous
difficulties to realize a coherent beam splitter using micro-
scopically tailored static or slowly varying fields �19�.

Most of these difficulties stem from the fact that Max-
well’s equations constrain the freedom to design static mag-
netic potentials. One consequence is that the number of po-
tential minima created is less than or equal to the number of
wires used �20�. Whereas regular strongly confining potential
minima are created from quadrupole fields, the merging and
splitting relies on higher order multipoles, usually the hexa-
pole component, and thus results in a significantly weaker
confinement. Consequently any dynamic splitting of a poten-
tial passes through a weakly confining region and creates an
additional unwanted minimum, a loss channel. This splitting
of two in two makes the central splitting region very unstable
and therefore truly adiabatic manipulations are hard to per-
form �21�.

These deficiencies can be overcome by using not only
static fields but combining them with oscillating radio fre-

quency �rf� or microwave near fields. The adiabatic dressed
state potentials created in this way do not show the unwanted
loss channels, keep the confinement tight during the splitting
process, and consequently allow for a smooth transition from
a single to two channels. Well controlled coherent splitting
and simultaneous tight confinement of the atomic motion can
be achieved even far away from the chip surface �22�. In
addition adiabatic potentials permit the creation of nontrivial
topologies like, for example, two-dimensional traps �23,24�,
closed path interferometers, and ring geometries. Also
smooth transformations between different potential forms
can be achieved.

In this paper we first discuss the theoretical foundations of
the underlying coupling creating the adiabatic potentials and
present their advantages. These are then applied to create
basic atom optical elements such as a double well, a Mach-
Zehnder interferometer, and a ring trap. We also outline the
implementation of a state-dependent splitting scheme for
atomic clouds.

II. THEORETICAL DESCRIPTION OF DRESSED rf
POTENTIALS

We develop the theory by starting with the initial ap-
proach by Zobay and Garraway �23� and extending it to fully
account for the vector properties of the magnetic fields in-
volved. Only accounting for the latter leads to a complete
description of the underlying couplings and the increased
versatility of the resulting potentials.

We consider an alkali atom in a hyper-fine level desig-
nated by the quantum number F. Assuming that F remains a
good quantum number even in the presence of a magnetic
field, the atomic dynamics is governed by the Hamiltonian

Hinitial = gF�BB�r,t�F . �1�

Here gF is the g factor of the hyper-fine level and F the
angular momentum operator. We assume B�r , t� to consist of
a static part BS�r� and an oscillatory part of the form
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BO�r,t� = Brf
A�r�cos��t� + Brf

B�r�cos��t + �� . �2�

As a first step we use the unitary transformation US to trans-
form the Hamiltonian into a frame where the interaction of
the atom with BS�r� is diagonal, i.e.,

US
†BS�r�FUS = �RSBS�r��F = �BS�r��Fz. �3�

Here we have exploited that rotating the operator F by using
US is equivalent to rotating the magnetic field vector BS�r�
by applying the appropriate rotation matrix RS. The operator
Fz can be represented as a diagonal matrix with the entries
−F�mF�F and mF denoting the magnetic hyper-fine sub-
levels. We proceed by applying another unitary operation
UR=exp�−i

gF

�gF�Fz�t� which effectuates a transformation into
a frame that rotates with the angular velocity � around the

local direction of the static field eS=
BS�r�

�BS�r�� . The application of

UR leads to the emergence of additional terms that oscillate
with the frequency 2�. In the so-called rotating wave
approximation—which we employ in the following—the os-
cillating terms are neglected. The now time-independent
Hamiltonian reads

H = �gF�B�BS�r�� −
gF

�gF�
� ��Fz +

gF�B

2 �B̄x

B̄y

	T�Fx

Fy
	 .

�4�

The term proportional to ��Fz arises from the transforma-
tion of the time derivative in the time-dependent Schrödinger

equation. The field B̄ is given by

B̄ = RSBrf
A�r� + R�RSBrf

B�r� , �5�

where the matrix R� performs a rotation around the axis eS
by the angle

� = −
gF

�gF�
� . �6�

We want to emphasize that the sign of the rotation angle �
depends on the sign of the g factor. Therefore atoms in dif-
ferent hyperfine states will see different rf potentials even if
they have the same magnetic moment �=mF�gF.

The adiabatic potentials are the eigenvalues of the Hamil-
tonian �4�

Vad�r� = mF��
��BS�r�� −
��

��� �2

+
1

4
�B̄x

2 + B̄y
2� �7�

with �=gF�B.
In the case of zero phase shift ��=0�, i.e., a linear polar-

ized rf field, the last term of the radical can be rewritten in a
more convenient form: B̄x

2+ B̄y
2= �eS� �Brf

A�r�+Brf
B�r���2. Here

it is immediately apparent that only the rf field components
being perpendicular to the static field contribute.

III. REALIZATION OF ATOM OPTICAL ELEMENTS

A. Linear rf polarization—A double well

As a first example we consider the creation of a double-
well potential starting from a Ioffe-Pritchard trap �7,31�
which is one of the most commonly used trapping field con-
figurations. Its magnetic field is given by

BS�r� = G	�cos 
ex − sin 
ey� + BIez. �8�

Here G is the gradient of the quadrupole field and BI the
homogeneous Ioffe field strength. We superimpose a homo-
geneous oscillatory rf field perpendicular to the Ioffe field.
Without loss of generality we take Brf

A�r�=Brfex and Brf
B�r�

=0. The unitary transformation which diagonalizes the static
part of the Hamiltonian �1� is given by

US = exp�iFz
�exp�iFy�� �9�

with cos �=
BI

�BS�r�� and sin �=− G	
�BS�r�� and �BS�r� �

=
G2	2+BI
2. After the transformation into the rotated frame

the adiabatic potential evaluates according to Eq. �7� to

VDW�r� = mF��
��BS�r�� −
��

��� �2

+ � Brf

2�BS�r���2

�BI
2 + G2	2sin2 
� . �10�

Its minima are located at 
1=0 and 
2=�. Assuming that
	
BI /G �37� we can approximate

VDW�	,
1,2� = mF��
G4

BI
2 �	2 − 	0

2

2
	2

+ B0
2 �11�

with the position of the potential minimum

	0 =
1


2G

Brf

2 − BC
2 , �12�

the potential bottom

mF��B0 = mF��
Brf

4BI


4BI
2 + BC

2 − 2G2	0
2 
 mF��

Brf

2

1 +

��

���BI
,

�13�

the critical field strength

BC = 2
BI
��

���
�14�

and the detuning
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�� = �BI − � � . �15�

In order to arrive at the last term of Eq. �13� we have ex-
ploited G	0
BI. For Brf�BC the potential VDW�r� exhibits
only a single well whereas for Brf�BC one encounters a
double-well configuration �see Fig. 1�b��. The trap frequency
in each well evaluates approximately to

�T,rf =
mF��

mB0

G2	0

BI
�16�

with m being the mass of the atom considered.
There are several advantages of a rf interferometer over a

static two-wire configuration �11,25,26�:

�1� The capability of performing a smooth transition
from a true single well to a double well, by varying any of
the parameters �, Brf, and BI. In contrast, in the static case
one encounters a transition from two vertically to two hori-
zontally split minima, if the strength of a homogeneous bias
field is modulated �11�. In the vicinity of the splitting region
this leads to unwanted tunneling processes into the second
vertical �loss� channel just before the intended splitting sets
in �25�. This poses a severe obstacle for establishing an adia-
batic process. In addition the rf realization of the double well

conserves the parabolic confinement perpendicular to the
splitting direction even in the vicinity of the splitting region.
Here the confinement in the static configuration in both di-
rections relies solely on a quartic potential.

�2� In the static realization the distance between the
potential minima scales according to 	0�
b. Here b is the
strength of a homogenous magnetic field which eventually
gives rise to the splitting of the hexapole into two quadrupole
minima �21�. However, in order to have a stable splitting
distance one has to precisely control the field strength b, i.e.,
keep its fluctuations �b small. This is extremely hard in the
vicinity of b=0 since �	0 /�b�b−1/2. Unlike this the split-
ting distance in the rf case obeys 	0�Brf �for zero detuning�.
Thus we find 	0 to be much less sensitive with respect to
fluctuations in Brf particularly if Brf is small.

�3� The rf adiabatic potential keeps much tighter con-
fining wells even far away from the field generating struc-
tures, i.e., the chip surface. This can be illustrated consider-
ing an atom chip with structure size d. For the sake of
simplicity the quadrupole for the rf setup shall be created by
a sideguide configuration �7� in a distance d above the chip
surface. The static implementation of the double well con-
sists of two wires separated by 2d �21�. Provided that the
wire current I and BI are equal for both setups and assuming
for simplicity �=0 the trap frequencies and the height of the
barrier between the wells obey

�T,rf

�T,static
�

d

	0

Brf

BI
, �17�

hT,rf

hT,static
� d2 G2

B0BI
. �18�

The essence of these expressions is their scaling with respect
to the parameter d which refers not only to the structure size
but also to the distance of the potential wells to the chip
surface. Compared to the static two-wire case, a similar rf
trap allows for realizing the same confinement with larger
structures and thus farther away from the chip surface. The
latter is of particular importance as hereby coherence-
destroying surface interactions �27,28� are strongly inhibited.
The stronger increase of the potential barrier in the rf case is
advantageous as it permits a true spatial separation of
trapped atom clouds even for small splitting distances.

The potential of the rf technique to coherently control the
motion of atoms has recently enabled the demonstration of
coherent splitting of a Bose-Einstein condensate �BEC� on
an atom chip �22�.

In Fig. 1�a� we present how a highly integrated realization
of a rf double well could look like. The quadrupole field is
generated by a four-wire structure carrying counter-
propagating dc currents. In between these wires there is a
broad wire flown through by an ac current. Sufficiently close
to this wire, the resultant rf field can be considered to be
homogeneous. The Ioffe field pointing into the plane of view
is generated by additional wires which are not shown here
�7�. The potential bottom of the rf double well increases
proportional to �Brf-BC�2. This provides a convenient mecha-
nism to achieve confinement in the longitudinal direction. A

FIG. 1. �Color online� �a� Experimental realization of the
double-well configuration. The quadrupole field is created by a
surface-mounted dc four-wire structure. The rf field is generated by
a central broad ac wire. Sufficiently close to the surface its rf field
can considered to be homogeneous. �b� Depending on the actual rf
field strength either a single- or a double-well is established. The
potential bottom of the individual curves has been subtracted.
�c�,�d� Longitudinally modulating the shape of the rf wire results in
a z-dependent variation of the rf amplitude. This can either be used
to achieve a confinement along the longitudinal �z� axis �c� or a
spatially dependent splitting which would result in an interferom-
eter �d�. Undesirable variations of the potential bottom can be, for
example, compensated by placing a charged wire underneath the
chip �red structure�.
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z dependence of the rf amplitude, i.e., Brf=Brf�z�, can be
achieved by shaping the rf wire �30�. For example, a wire
geometry creating a symmetric increase of the current den-
sity around z=0, consequently, will lead to a symmetric in-
crease of the rf amplitude �see Fig. 1�c��. Hence, depending
on the actual value of Brf a three-dimensionally confining
single or double well is achieved. Similarly a Mach-Zehnder
interferometer can be realized by varying the rf amplitude
such that Brf�0��BC and Brf�z���z��zS

�BC with zS defining
the length of the splitting region as indicated in Fig. 1�d�.
The variations of the potential bottom can be compensated
by applying either a spatially varying Ioffe field or an addi-
tional external potential. The latter can be realized for in-

stance by placing a charged wire underneath the chip �29�.
The corresponding electric potential readsUel�r�=− �

2 �E�r��2
�7�.

B. Arbitrary rf polarization—A ring interferometer

As a second example we construct a more complex trap-
ping geometry by employing two phase-shifted rf fields. We
consider two orthogonal rf fields of the form Brf

A�r�=
Brf

2

ex and

Brf
B�r�=

Brf

2

ey, which are superimposed on the static BS�r�. Ac-
cording to Eq. �7� the corresponding adiabatic potential
evaluates to

VR�r� = mF��
��BS�r�� −
��

��� �2

+
Brf

2

8�BS�r��2
�G2	2�1 + sin�2
�cos �� + 2BI�BI + �BS�r��sin ��� . �19�

For cos ��0 we find the minima and maxima of the poten-
tial at 
min= 3

4� , 7
4� and 
max= 1

4� , 5
4�, respectively. If

cos ��0 the positions of the minima and maxima simply
swap. Assuming 	
BI /G the radial position of these ex-
trema is

	0 =
1

2G

Brf

2 �1 − cos � sin�2
� + sin �� − 2BC
2 . �20�

Hence for cos ��0 and Brf�
 2
1+cos �+sin �BC or cos ��0 and

Brf�
 2
1−cos �+sin �BC solely a single minimum can be

achieved. For �= 3
2� in any case only a single minimum is

found.
In Fig. 2�a� we present how such a setup can be realized

in a highly integrated way. The static quadrupole field is
generated by a three wire setup. The two outer wires also
serve as rf sources that are positioned such that two orthogo-
nally polarized homogeneous fields in the vicinity of the
quadrupole are created.

The versatility of the potential �19� lies in the fact that by
simply varying the phase shift �, i.e., changing the polariza-
tion of the rf field, one can either accomplish a single well, a
double well, or a ring configuration. Even a rotating double
well is achievable by appropriately tuning the phase and the
rf amplitude. The double-well configuration with the stron-
gest confinement is achieved for �=0, i.e., vanishing relative
phase shift of the rf fields. Increasing the phase shift from
�=0 to �= �

2 , i.e., from linear to circular polarization, results
in a smooth transition to a ring-shaped potential of adjustable
radius. This transition is shown in Fig. 2�b�. The potentials
shown are calculated for the typical set of experimental pa-
rameters BI=1 G, G=0.2 G/�m, Brf=1.3 G, and �=2�
�1.26 MHz. In order to generate a confinement also in the
longitudinal �z� direction we impose a modulation of the rf
amplitude of the form Brf�z�= �Brf+Grf

2 z2�. In Fig. 2�c� the
mFgFE=kB�1.1 �K isosurface for Grf

2 =0.05 G/m2 is de-

picted. The ring-shaped potential is thus capable of confining
BECs as the typical energy scale associated to such matter
waves is in the nano-Kelvin regime.

The setup allows one to examine the collective ground
state of ultracold atoms trapped on a ring �32�. Also building
a ring interferometer �Sagnac interferometer� for matter
waves is possible. Coherence preserving loading of the latter
could be done by preparing an ultra-cold atomic ensemble in
the static wire trap. Switching on the rf fields thereafter, and
establishing the appropriate phase shift � leads to a well-
controlled transition to the ring-shaped potential. Such traps
are particularly suited for building gyroscopes or rotation
sensors. Gupta et al. �33� have recently succeeded in loading

FIG. 2. �Color online� �a� Experimental setup for realizing a
ring-shaped potential. The static quadrupole field is generated by a
three wire configuration. The two outer wires also carry rf currents
which generate two phase shifted and orthogonally polarized oscil-
lating homogeneous fields in the vicinity of the quadrupole center.
�b� Depending on the phase shift � either a single well, a double-
well, or a ring-shaped potential emerge. �c� A 3D confinement is
achieved by introducing a spatially dependent rf amplitude of the
form Brf�z�=1.3 G+0.05 �G/m2�z2. Visualization of the mFgFE
=kB�1.1 �K isosurface for this case.
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a ring-shaped waveguide with a BEC. Their setup consists of
millimeter-sized coils forming a magnetic quadrupole ring
with diameters ranging from 1.2 to 3 mm. However, gener-
ating BECs which are phase coherent over the entire ring is
extremely difficult in such a macroscopic trap. In order to
avoid the necessity of cooling to extremely low temperatures
it is beneficial to use small rings with diameters of a few
micrometers.

Also internal state-dependent manipulation of atoms can
be achieved by using the potential �19�. Let us consider for
instance the two hyperfine states �1� and �2� with the same
magnetic moment �=mFgF�B. Consequently in a static field
atoms in either of these states are subjected to the same trap-
ping potential. Suppose now the rf field is switched on adia-
batically such that mF� =mF. In the case when gF�1�=−gF�2� we
have ��1�=−��2�. Thus for ��1�=

�
2 atoms being in state �1� see

a ring whereas atoms in state �2� are confined to a single
centered potential minimum as seen in Fig. 2�b�.

IV. CONCLUSION

In conclusion dressed rf adiabatic potentials are versa-
tilely applicable to build atom optical elements and offer a
number of significant advantages over their static implemen-
tations. Radio frequency-based traps provide tight confine-

ment even at large surface distances and allow for a smooth
transition from a single to a double well. Moreover, a rf
double well is more robust against experimental fluctuations
against its static counterpart which is certainly advantageous
for performing tunneling experiments. This technique paves
the way to the realization of complex coherence preserving
potentials on a microscale by using simple and highly inte-
grated setups. This is of particular importance for such de-
manding applications as quantum information processing
and high precision measurements based on matter wave in-
terference.

After submission of this manuscript several other works
discussing applications of rf potentials has been published
�34–36,38�.
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