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We employ mean-field, Bogoliubov and many-body theories to study critical fluctuations in the position and
momentum of a Bose-Einstein condensate whose translation symmetry is spontaneously broken due to attrac-
tive interactions. In a homogeneous system, the many-body ground state of the symmetry-preserving Hamil-
tonian is very fragile against superposition of low-lying states, while the mean-field theory predicts a stable
bright soliton which spontaneously breaks translation symmetry. We show that weak symmetry-breaking per-
turbations cause the translation-symmetric many-body ground state to cross over to a many-body bright
soliton. We argue that the center-of-mass fluctuations in the soliton state arise primarily from the depletion of
the condensate to translation modes. We develop an extended mean-field theory to analytically reproduce these
results obtained by the exact diagonalization method.
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I. INTRODUCTION

Ultracold matter waves offer the possibility of observing
quantum-mechanical fluctuations associated with low-
dimensional many-body effects and phase diffusions �1–5�.
In Bose-Einstein condensates �BECs� of dilute gases, various
techniques of controlling experimental parameters enable us
to study a rich variety of phase transitions. A standard way to
study a ground-state phase of the condensate is to introduce
an order parameter with spontaneously broken symmetry. On
the other hand, quantum fluctuations play a crucial role in the
emergence of the order parameter, and the related issues have
been widely studied in the systems of BECs �6–13�. Further-
more, since atomic condensates are on the mesoscopic scale,
we may expect interesting finite-size effects which are absent
in the thermodynamic limit.

The exact many-body ground state of a one-dimensional
�1D� system with translation symmetry does not exhibit the
off-diagonal long-range order in thermodynamic limit. The
ground state has the translation symmetry of the original
Hamiltonian, but is extremely fragile against localization to a
bright soliton when the interaction is attractive. By investi-
gating the many-body energy spectrum of this system, we
have found that there exists a large number of low-lying
quasidegenerate many-body eigenstates, and the localization
to a soliton is due to the superposition of these states �14�. In
the thermodynamic limit, the energy gap between the ground
and low-lying states vanishes, and therefore the localization
occurs no matter how small the symmetry-breaking pertur-
bation is. Such a localized soliton �15� can be well described
by the Gross-Pitaevskii �GP� equation. However, in a meso-
scopic system, an energy gap between the ground and low-
lying excited states remains finite, and therefore we can ex-
pect a crossover between the state with the translation
symmetry and the soliton state as a function of the strength
of interaction. In such a crossover regime, quantum fluctua-
tions are expected to be large and the localization process is
nontrivial.

The aim of this paper is to examine the critical fluctua-
tions in a soliton formation of an attractive BEC. We con-

sider two cases for the breaking of translation symmetry, that
is, symmetry-breaking potentials and quantum measure-
ments. We tackle this problem using the numerical diagonal-
ization of the Hamiltonian and an extended mean-field
theory. In particular, we explicitly calculate the uncertainty
relation between the center-of-mass position and momentum,
and show that the inclusion of center-of-mass fluctuations of
the soliton is crucial for understanding the nature of the
many-body ground state. These fluctuations emerge as a
depletion of the condensate, and decrease with increasing the
magnitude of the symmetry-breaking potential or the number
of the measurements.

This paper is organized as follows. In Sec. II, we intro-
duce a model of a 1D attractive Bose system with the peri-
odic boundary condition, and briefly review the many-body
energy spectrum and ground-state properties of the uniform
system. In Sec. III, we introduce as symmetry-breaking per-
turbations a symmetry-breaking potential, a double-well po-
tential, and quantum measurements, and discuss critical fluc-
tuations in the position and momentum of symmetry-broken
states. In Sec. IV, we construct the Bogoliubov ground state
that incorporates the effect of center-of-mass fluctuations due
to the presence of the infinitesimal potential. We also pro-
pose an extended mean-field theory to describe the effect of
quantum measurements on the uncertain relation between the
position and the momentum. In Sec. V, we summarize the
main results of this paper.

II. QUANTUM PHASE TRANSITION
IN AN ATTRACTIVE BEC

A. Many-body eigenstates

We consider a system of weakly interacting bosons on a
quasi-1D torus with radius R as schematically illustrated in
Fig. 1. Throughout this paper the length, angular momentum,
and energy are measured in units of R, �, and �2 / �2�R�,
respectively. The Hamiltonian of the system is given by
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�̂†2����̂ 2���� , �1�

where � is the azimuthal angle, �̂ is the boson field operator

obeying the periodic boundary condition �̂���= �̂��+2��,
and the interaction is assumed to be attractive �g�0�. Al-
though the Hamiltonian �1� is exactly solvable and the exact
solution is analytically obtained by the Bethe ansatz �16�, in
principle, the solution is intractable for a large number of
atoms. On the other hand, the configuration interaction
method can evaluate the ground-state energy rather accu-
rately �17�. Experimentally the quasi-1D ring-shaped BEC
has recently been realized in a circular magnetic trap �18�.

We employ a numerical diagonalization method to inves-
tigate many-body eigenstates of the Hamiltonian �1� by re-
stricting the Hilbert space to that spanned by the angular-
momentum l=0, ±1 states. It is possible to extend the
calculation to including the l= ±2, ±3 states. However, all
results obtained for l=0, ±1 remain qualitatively unchanged,
and we thus restrict ourselves to l=0, ±1 unless otherwise
stated �see Sec. III B�. The Fock-state bases are thus written
as �n−1 ,n0 ,n1	, where nl is the number of atoms with angular
momentum l. The number of atoms and the total angular
momentum are given by 
lnl=N, and 
llnl=L, respectively.
The field operator is thus expanded as

�̂��� =
1

�2�
�ĉ0 + ĉ1ei� + ĉ−1e−i�� , �2�

where ĉl is the annihilation operator of a boson with angular
momentum l.

Figure 2 shows the low-lying many-body spectrum of the

Hamiltonian Ĥ, in which extensive rearrangement of the dis-
tribution of the eigenstates is seen to occur at gN�1 due to
the quantum phase transition. We see that in gN�1 the spec-
trum is classified by two indices: that is, the band index �
and the angular-momentum index L characterize each level
as

Ĥ�L	� = E�,L�L	�, �3�

where

�L	� = 

n

An�n,N − 2n − L,n + L	 . �4�

The energy levels E�,L in band � are distributed according to
E�,0�E�,±1�E�,±2 , . . . , . For 0	gN�1, on the other hand,

some E�,L’s are almost degenerate. To understand the nature
of the rearrangement at gN�1, we first study the eigenstates
in the absence of interaction gN=0, where the eigenstates
can be described by Fock states �n−1 ,n0 ,n1	. We define the
Jth state �J=0,1 ,2 , . . . , � as the one in which J atoms are
excited. For examples, the J=0 state corresponds to the non-
interacting ground state given by

J = 0: �0	�=0 = �0,N,0	 , �5�

and the excited states are given as

J = 1: �− 1	�=0 = �1,N − 1,0	 ,

J = 1: �1	�=0 = �0,N − 1,1	 ,

J = 2: �− 2	�=0 = �2,N − 2,0	 ,

J = 2: �0	�=1 = �1,N − 2,1	 ,

J = 2: �2	�=0 = �0,N − 2,2	 ,

J = 3: �− 3	�=0 = �3,N − 3,0	 ,

] . �6�

The Jth state is hence �J+1�-fold degenerate. The index �,
which is the band index in gN�1, corresponds to the num-
ber of l= ±1 pairs in the Fock state for each Jth state at
gN=0, i.e., ��J− �L�� /2=0,1 ,2 , . . . , . For 0
gN�1, the
levels are characterized by J alone, since the degeneracy
with respect to � at gN=0 is maintained.

The excitations in 0	gN�1 have substantial energy
gaps until the critical point gN�1 is reached. On the other
hand, for gN�1, the energy difference between the ground
and the first excited states scales as 1 /N. We thus expect that
the ground state for gN�1 is vulnerable for large N, and
perturbations of the order 1 /N can cause drastic reconstruc-

FIG. 1. Schematic illustration of a quasi-one-dimensional
torus.

FIG. 2. �Color online� Many-body excitation spectrum E�,L
−E0,0 of the Hamiltonian Ĥ with N=200, where L is the angular-
momentum index and � is the index of the bands that appears for
gN�1. We plot only low-lying states with indices �=0, 1, and 2.
The state �L	� denotes the many-body eigenstate whose total angu-
lar momentum is L and band index is �.
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tion of the ground state. The emergence of these quasidegen-
eracies in the energy spectrum may be regarded as a precur-
sor of symmetry breaking, and interesting effects such as the
enhancement of the condensate fraction �14� can be expected
as a consequence of symmetry breaking.

B. Ground-state properties

We study properties of the ground state �L=0	�=0 as a
function of the strength of interaction gN. According to the
standard definition of the BEC �19�, the condensate fraction
and the condensate wave function for a many-body state ��	
are given in terms of the maximum eigenvalue �M and the
corresponding eigenfunction of the reduced single-particle

density matrix ��� ,��= ����̂†�����̂�����	 /N. If the maxi-
mum eigenvalue �M is on the order of unity and the other
ones are on the order of 1 /N, there exists a usual single
condensate described by the corresponding eigenfunction.
For the case of gN�1, however, the ground state does not
fall into this category of BEC.
By calculating the eigenvalue of  for the ground state as
a function of gN, we find that �M is on the order of 1 for
gN�1, but for gN�1 there appears more than one eigen-
value on the order of unity. The ground state is thus a con-
ventional single condensate for gN�1, and fragmented �20�
for gN�1.

Since we consider the Hamiltonian with translation sym-
metry, the expectation value of the number density of par-
ticles n���=N�� ,�� of the ground-state wave function is
constant for 0	�
2�. In contrast, the two-body correlation
function,

g�2���,��� =
��̂†����̂†�����̂�����̂���	

��̂†����̂���	��̂†�����̂����	
, �7�

is found to deviate greatly from unity for gN�1, while it is
almost unity for gN�1 �21�. We show in Fig. 3 the Fano
factor of the ground state defined by

F��� 
�n2���	 − �n���	2

n���
= 1 + n����g�2���,�� − 1� . �8�

The large deviation of F��� from unity for gN�1 indicates
that the number density of particles has quantum fluctua-
tions, which may also be regarded as a precursor of forma-
tion of the broken-symmetry state.

III. SYMMETRY-BREAKING PERTURBATIONS

In this section, we investigate on how the many-body
ground state responds to infinitesimal symmetry-breaking
potentials or quantum measurements.

A. Infinitesimal potential

1. Superposition of low-lying states

We employ the exact diagonalization method to obtain the
ground state of the Hamiltonian

K̂1 = Ĥ + �1V̂1, �9�

where V̂1=�0
2�d� �̂†���cos ��̂��� is a symmetry-breaking po-

tential. Since we discuss here only low-lying modes ��=0,
L�0� close to the ground state ��=0, L=0�, we simplify
the notations of the eigenstates by omitting the index �.

We consider the energy change in the many-body ground
state as a function of the magnitude �1 of the potential. Be-
cause of the degeneracy EL=E−L with respect to the angular
momentum, we assume that the broken-symmetry ground

state ���
��1�	 of the Hamiltonian K̂1 is described by

���
��1�	 = e−iL̂���0�0	 + 


L�0
�L��L	 + �− L	�� , �10�

where the coefficients �L satisfy the normalization condition,

L��L�2=1.

In Fig. 4, we show the energy change in the ground states

�Egs  ���
��1��K̂1���

��1�	 − �0�Ĥ�0	 �
0� , �11�

multiplied by N, as a function of

FIG. 3. �Color online� Fano factor F��� in Eq. �8� of the many-
body ground-state wave function as functions of the strength of the
interaction gN and azimuthal angle � with N=200.

FIG. 4. The amount of decrease in the ground-state energy given
by Eq. �11� in the presence of a symmetry-breaking potential for
gN=1.5, where �1�1N2. The superimposed dashed line shows the
result of the mean-field calculation given in Eq. �37�.
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�1  �1N2. �12�

The slope of the �1 dependence of �Egs changes near �1
�1. The �1 dependence of �Egs for 0	�1�1 can be esti-
mated by perturbation theory. The first-order correction to
the ground-state energy is zero, and the second-order correc-
tion is given by

E�2� = 

L�0

��L��1V̂�0	�2

E0 − EL
, �13�

where the denominator and the numerator are on the order of
N−1 and ��1N�2, respectively. The energy difference �Egs

therefore depends on −�1
2N3=−�1

2 /N. At the transition point
�1�1, the shift in the ground-state energy due to the
symmetry-breaking perturbation is ��Egs��1/N, which is on
the same order of magnitude as the energy gap. As �1 ex-
ceeds unity, the energy scale of the potential exceeds the
energy gap E±1−E0 and the matter wave begins to localize
by superposing the ground and low-lying excited states as
shown in Fig. 5�a�. The perturbation theory, therefore breaks
down for �1�1. The �1 dependence in this regime can be
well described by the mean-field theory as shown in Sec.
IV B 1. In the absence of the symmetry-breaking potential,
the formation of the broken-symmetry state ���

��1�	 costs en-
ergy by an amount of

Esup = ���
��1��Ĥ���

��1�	 − �0�Ĥ�0	 = 

L

�EL − E0���L�2 ��0� ,

�14�

which gives an energy increase associated with the superpo-
sition of the low-lying state.

The symmetry breaking must be associated with a
Nambu-Goldstone mode, which plays the role of restoring
the symmetry. In the present context, the Nambu-Goldstone
mode should be the translation zero mode ���

��1�	 of the lo-
calized state ���

��1�	 which is defined as

���
��1�	 

d

d�
���

��1�	 = − ie−iL̂� 

L�0

L�L��L	 − �− L	� .

�15�

The broken-symmetry state with the excitation to the trans-
lation mode is thus given by

��̃�
��1�	 =

1
�1 + ���2

����
��1�	 +

�

Ntr
���

��1�	� , �16�

where � denotes the relative amplitude of the excitation, and
the energy difference associated with the excitation of the
translation mode is given by

Etr  ��̃�
��1��K̂1��̃�

��1�	 − ���
��1��K̂1���

��1�	

=
���2

1 + ���2�− ���
��1��K̂1���

��1�	

+
1

�Ntr�2
���

��1��K̂1���
��1�	� , �17�

where Ntr����
��1� ���

��1�	. We note that Etr becomes zero in
the limit of �→0.

2. Quantum fluctuations in position and momentum

Let us investigate the quantum fluctuations in the ground
state ���

��1�	 as a function of the magnitude of the symmetry-
breaking potential. The angular-momentum distribution is
given by ��L�2= ��L ���

��1�	�2, which becomes Gaussian-like
for �1�1 as shown in Fig. 6�a�. In Fig. 6�b� we plot the
variance ��L�2 of the angular-momentum distribution with
open circles. The deviation in k1 dependence of ��L�2 in 0
	�1�1 arises because in this region the energy scale of the
symmetry-breaking potential is smaller than the energy gap
between the ground and the first excited states, and the
angular-momentum fluctuation is suppressed. Once the mat-
ter wave is localized by the superposition of the form �10�,
the fluctuation �L of the angular-momentum distribution is
proportional to �1

1/4.
It follows from the uncertainty relation �L��c.m.�1 that

the center-of-mass fluctuation of the localized state ���
��1�	

for �1�1 is given by

��c.m. � ��L�−1 � �1
−1/4, �18�

which is significant for small perturbations �22�. In Sec.
IV B, we will show that this �1 dependence is well described

FIG. 5. �Color online� �a� Density profile n��� of the many-body
wave function and �b� the peak density as a function of �1.
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by the Bogoliubov ground state that takes into account this
position fluctuation by the depletion of the condensate.

3. Condensate fraction

By using the many-body ground state ���
��1�	 in the pres-

ence of the symmetry-breaking potential, and diagonalizing
the single-particle density matrix �l , l��= ���

��1��ĉl�
† ĉl���

��1�	,
we obtain the three eigenvalues in the truncated bases. We
define the number of depleted atoms N� of the many-body
ground state as N� /N1−���1�, where ���1� is the maximum
eigenvalue of . We plot N� /N in Fig. 7 as a function of �1.
For �1=0, the maximum depletion is obtained due to the
fragmentation of the many-body ground state, and it remains
constant for �1�1. The depletion N� suddenly begins to de-
crease at �1�1, and the �1 dependence for �1�1 is found to
be �1

−1/2. The condensate fraction thus increases when the
ground state begins to localize.

B. Case of a double-well potential

We next discuss what happens when there exists a sym-
metric double-well potential of the form V2���=cos 2�, and
discuss the ground state of the Hamiltonian

K̂2 = Ĥ + �2V̂2, �19�

where

V̂2 = �
0

2�

d� �̂†���V2����̂��� . �20�

In the double-well potential, a rich variety of experiments,
e.g., diagnosing the correlation functions from interference
and uncertainty relations, become possible �3,23�.

For an attractive condensate in a sufficiently deep sym-
metric double-well potential, the ground state may form a
Schrödinger’s cat state, where the localized macroscopic
states on the left and the right wells are in a superposition

state �24–27�. We diagonalize the Hamiltonian K̂2 including
angular-momentum states l=0, ±1, ±2 because the symme-
try of the potential requires the inclusion of the l= ±2 states.
The solid curves in Fig. 8 show eigenvalues of the reduced
single-particle density matrix. The presence of more than one
large eigenvalue is a signature of the Schrödinger’s cat state.
While the maximum eigenvalue �1 increases with increasing
�1, it decreases slowly with increasing �2, and simulta-
neously the second maximum eigenvalue �2 begins to grow.

FIG. 6. �Color online� �a� Distribution ��L�2 of the angular mo-
mentum L in the many-body ground state ���

��1�	 for gN=1.5. �b�
Width of angular-momentum distribution in the many-body ground
state ����1�	 �open circles� and that in the Bogoliubov ground state
���B�	 �solid line� given by Eq. �55�.

FIG. 7. Depletions of the condensate obtained by the diagonal-
ization of the Hamiltonian �open circles�, and by the Bogoliubov
theory given in Eq. �57� �solid line�.

FIG. 8. �Color online� Eigenvalues of the reduced single-particle
density matrix for the double-well potential �solid curves� as a func-
tion of �2�2N2. Dashed curves show the results obtained for a
single-well potential as a function of �1�1N2. In the latter case
only one large eigenvalue survives for �1�1.
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These eigenvalues �1,2 eventually approach 1
2 , corresponding

to the states localized on the one or the other well.
In the case of the double-well potential, the many-body

ground state is also described by the superposition in the
form of Eq. �10�. Figure 9 shows that the �2 dependence of

the energy difference ���
��2��K̂2���

��2�	− �0�Ĥ�0	 is similar to
that of the single-potential case shown as a dashed curve.
This indicates that the superposition begins near �2�1, since
the energy at that point is of the order 1 /N.

C. Quantum measurement

We next consider quantum fluctuations caused by re-
peated measurements. The issue of interference of the two
independent BECs was discussed from the viewpoint of
quantum measurements in Refs. �28,29�. Below we discuss
an analogous process in which a fragmented condensate
makes a transition to a single condensate via a quantum mea-
surement �14,30�.

1. Quantum fluctuations in position and momentum

The action of the quantum measurement at the position � j
relates the postmeasurement state ���j�	 to the premeasure-
ment state ���j−1�	 as

���j�	 =
�̂�� j����j−1�	

����j−1���̂†�� j��̂�� j����j−1�	
, �21�

where j is the number of measurements, and the initial state
���j=0�	 is taken to be the many-body ground state. The sub-
sequent measurement position � j+1 after the jth measurement
is probabilistically determined according to the density dis-
tribution nj���=Nj

�j��� ,�� of the premeasurement state,
where Nj =Ninit− j is the number of atoms.

We perform 2000 runs of the numerical simulation of 50
quantum measurements �21� �0	 j	50� starting from the
ground state with Ninit atoms. By the measurements, the den-
sity distribution nj��� is found to localize, and we denote the
center-of-mass position of nj��� by �c.m.

�j� . We find that as j

increases, �c.m.
�j� converges to a certain position, which is ran-

dom from run to run. We therefore rotate the system so that
�c.m.

�j=50� is located at the origin, and plot the distribution
of �c.m.

�j� for 2000 runs of measurements in Fig. 10�a�.
Hence, this distribution represents the center-of-mass fluc-
tuation after the jth measurement. The variance of the distri-
bution is plotted in Fig. 10�b�, which shows that

����2 � 1/j . �22�

Because of the translation symmetry of the initial state
���j=0�	, the center-of-mass fluctuation is maximal before the
measurement. The repeated measurement process reduces
the position fluctuation, and eventually projects the
translation-invariant state ���j=0�	 onto a broken-symmetry
state whose center-of-mass localizes at a certain position.

Because the quantum measurement is a stochastic pro-
cess, we consider the ensemble average of ��L�2
= ��L ���j�	�2 over the 2000 runs of independent simulations.
The result is shown in Fig. 11�a�. We find from Fig. 11�b�
that the distribution of the ensemble-averaged angular mo-
mentum obeys the Gaussian with its width given by

FIG. 9. Ground-state energy as a function of �2 �solid curve� in
the presence of a double-well potential measured from E0

= �0�Ĥ�0	. Dashed curve shows the results of a single-well potential.

FIG. 10. �Color online� �a� Cumulative number of counts for the
center-of-mass position obtained by 2000 runs of independent simu-
lation of quantum measurements for gNinit=1.6 and Ninit=300. �b�
Center-of-mass fluctuations obtained by the numerical simulations
�open circles�. The solid straight line obeys ���c.m.�2� j−1 and is
drawn as a guide to the eye.
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��L�2 � j . �23�

In the present 1D system, the center-of-mass position �c.m.
=
k=1

N �k /N and the angular momentum L=
k=1
N �−i�� / ���k�

obey the commutation relation

��c.m.,L� = i . �24�

Their fluctuations ��c.m.�c.m.− ��c.m.	 and �LL− �L	
therefore obey

��c.m.�L �
1
2 . �25�

From Figs. 10 and 11, we found the uncertainty

��c.m.�L � 0.73, �26�

which is larger than that of the minimum uncertainty state.

2. Condensate fraction

We study the change in the condensate fraction as a func-
tion of the number of measurements j. In Fig. 12, we show
the ensemble-averaged depleted fraction of the condensate in
the state ���j�	 for three different values of the initial number
of atoms Ninit. The depletion decreases monotonically with

increasing j. The change in the condensate fraction with re-
spect to the number of measurements j is not sensitive to the
initial number of atoms Ninit, and is determined by gNinit.
Like a symmetry-breaking potential, the repeated quantum
measurements change the fragmented condensate having a
translation symmetry into a translation-symmetry broken
single condensate with reduced center-of-mass fluctuations.

IV. BOGOLIUBOV AND EXTENDED
MEAN-FIELD THEORIES

In the previous sections we showed that center-of-mass
fluctuations are significant when the symmetry-breaking per-
turbations are sufficiently small. We here analytically treat
the many-body state with large center-of-mass fluctuations
for both cases of the symmetry-breaking potential and the
quantum measurement.

A. Mean-field ground state in a homogeneous ring

By replacing the field operator with a c-number wave

function as �̂���→����, we obtain GP energy functional

E0
�GP���� = N�

0

2�

d������2 − �gN���4� . �27�

We employ a variational wave function

���� =
1

�2�
��0 + �1ei� + �−1e−i�� , �28�

where �0,±1 are complex variational parameters which obey
the normalization condition ��−1�2+ ��0�2+ ��1�2=1 and are to
be determined so as to minimize E0

�GP�. For gN
1, E0
�GP� is

minimized when �0=1, �±1=0, i.e., the condensate wave
function is uniform, ����=1/�2�.

For gN�1, E0
�GP� is minimized when

�0 =�3gN + 2

7gN
, �1 = �−1

* = e−i�c.m.�2�gN − 1�
7gN

,

�29�

where the global phase is chosen so that �0 is real without
loss of generality. The corresponding wave function

FIG. 11. �Color online� �a� Ensemble average of the angular-
momentum distribution ��L�2 obtained from 2000 runs of the nu-
merical simulation, and �b� its width �open circles� for gNinit=1.6
and Ninit=300. The solid line is given by Eq. �65�.

FIG. 12. Depletion of the condensate for gNinit=1.6. Symbols
��,�,�� show the results of numerical simulations, and the solid
curve shows a theoretical one in Eq. �69�, where j is the number of
measurements.
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��� − �c.m.� =
1

�2�
��0 + 2�1 cos�� − �c.m.�� , �30�

is a spontaneously broken-symmetry state. Note that all
states described by Eq. �30� are degenerate with respect to an
arbitrary center-of-mass coordinate �c.m.. The critical point
gN=1 of the quantum phase transition obtained by the
present mean-field theory agrees with the exact analysis of
the 1D GP equation, and Eq. �29� indeed corresponds to the
dominant coefficients of the plane-wave expansion of the
exact solution of the 1D GP equation for gN�1 �21,31�,

��� − �c.m.� � dn�K�m�
�

�� − �c.m.��m�
= 1 + 


l=1

�
eil��−�c.m.� + e−il��−�c.m.�

cosh��lK�/K�
, �31�

where dn is one of the Jacobian elliptic functions, K�m�
�0

�/2dx /�1−m sin2 x is the complete elliptic integral of the
first kind, and 0	m	1. From the definition of the GP mean-
field theory, all atoms occupy the same single-particle state
�, and the condensate fraction is unity for all gN. For
gN�1, the ground state of the GP equation given in Eq. �30�
is thus qualitatively different from the many-body ground
state �0	�=0 in both the condensate fraction and the transla-
tion symmetry.

B. Infinitesimal potential

1. Gross-Pitaevskii and Bogoliubov analyses

We introduce the symmetry-breaking potential V1���
which is assumed to be infinitesimal, i.e., of the order of
1 /N. The GP energy functional in the presence of a
symmetry-breaking potential V1���=cos � is given by

E1
�GP���� = N�

0

2�

d� ��������2 + �1V1�� − ��������2

− �gN������4� . �32�

When we employ the same variational function of the form
in Eq. �28�, E1

�GP� is minimized when the variational coeffi-
cients �0 and �1=�−1 are given by

�1
2 =

2�gN − 1�
7gN

+
8 − gN

7gN�2�gN − 1��3gN + 4�
�1 + O��1

2� ,

�33�

�0
2 = 1 − 2�1

2, �34�

where we assume that the center-of-mass position is located
at �c.m.=0. The corresponding chemical potential and energy
read

� =
8 − 15gN

14
−

1

7gN
� �2�8 − gN�

��gN − 1��3gN + 4�

+ �2�gN − 1��3gN + 4���1 + O��1
2� , �35�

E1
�GP�/N =

1

28gN
�− 15g2N2 + 16gN − 8�

+
2�2

7gN
��gN − 1��3gN + 4��1 + O��1

2� . �36�

From Eq. �36� we obtain

N�E1
�GP� − E0

�GP�� =
2

7gN
�2�gN − 1��3gN + 4��1 + O��1

2� ,

�37�

which agrees with the �1 dependence of N�Egs �see the
dashed curve in Fig. 4�.

In the case of uniform space ��1=0�, the translation mode
can be excited without energy cost for gN�1 �21�, which
corresponds to the Nambu-Goldstone mode. In the presence
of a nonuniform potential, the translation mode slightly costs
energy. By solving the Bogoliubov–de Gennes equations

�− ��
2 − �1V1��� − � − 2�gN���2 − �gN�2

��
2 + �1V1��� + � + 2�gN���2 �gN�*2 ��u

v
� = ��u

v
� ,

�38�

we obtain the eigenvector corresponding to the lowest-
energy translation mode as

�u

v
� � sin ��1 + ��/2 − �/4 + O��3/2�

1 − ��/2 − �/4 + O��3/2�
� , �39�

� = ± �� 2 + 2� , �40�

where � is given by

� 
7�1

2 + 5gN
�3gN + 4

2gN − 2
. �41�

The corresponding quasiparticle operator is given by

b̂ � uT̂ + vT̂†, �42�

where

T̂ =
1
�2

�ĉ1 − ĉ1
†� . �43�

The GP ground state whose center-of-mass position is lo-
cated at �c.m. is written as

���c.m.

�GP�	 =
1

�N!
��0ĉ0

† + �1�ĉ1
†ei�c.m. + ĉ−1

† e−i�c.m.��N�vac	 ,

�44�

and the derivative with respect to �c.m. gives

� �

��c.m.
���c.m.

�GP�	�
�c.m.=0

� T̂���c.m.=0
�GP� 	 . �45�

Thus, the operator T̂ serves as the generator of the translation
of the GP ground state ���GP�	.
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2. Quantum fluctuations in position and momentum

We consider the Bogoliubov ground state. Since the trans-
lation costs little energy, the center-of-mass fluctuation is ex-
pected to be dominant in the Bogoliubov ground state. We
therefore take into account the translation mode only. The
Bogoliubov quasiparticle operator �42� is written as

b̂ = e−r/2�T̂†2−T̂2�T̂er/2�T̂†2−T̂2� = T̂ cosh r + T̂† sinh r , �46�

where the parameter r is related to the Bogoliubov quasipar-
ticle and hole amplitudes u and v by �cosh r , sinh r�� �u ,v�.
We evaluate the angular-momentum distribution in the Bo-
goliubov ground state

���B�	 = er/2�T̂†2−T̂2����c.m.=0
�GP� 	

= er/2�T̂†2−T̂2� 1
�N!

��0ĉ0
† + �2�1Ŝ†�N�vac	 , �47�

where

Ŝ 
1
�2

�ĉ1 + ĉ−1� . �48�

Let us approximate the angular-momentum operator

L̂ = n̂1 − n̂−1 = Ŝ†T̂ + ŜT̂†, �49�

as

L̂ → L̂  �2N�1�T̂ + T̂†� , �50�

by the replacement of Ŝ with its mean-field value �2N�1
under the assumption that the ratio of the condensate atoms
to the excited atoms is sufficiently large. By using the rela-
tion �see Appendix A for proof�

e−r/2�T̂†2−T̂2��vac	 =� 1 + �

cosh r
e−�/2�T̂ + T̂†�2

�vac	 , �51�

we obtain the Bogoliubov ground state as

���B�	 � NB exp�−
�L̂2

4N�1
2����c.m.=0

�GP� 	 , �52�

where NB is the normalization constant, and

� =
tanh r

1 − tanh r
=

v/u

1 − v/u

=�5gN + 2

14
�2gN − 2

3gN + 4
�1/4

�1
−1/2 −

1

2
+ O��1

1/2� . �53�

We thus find that the angular-momentum distribution in the
Bogoliubov ground state is given by

��L���B�	�2 =
1

�2���L�B��2
e−L2/�2��L�B��2�, �54�

where the width of this distribution is calculated to be �see
Appendix B�

��L�B��2 = N�1
2/� =

2gN − 2

7gN
��2F + F��1���1 � �1

1/2,

�55�

with

F 
7

5gN + 2
�3gN + 4

2gN − 2
. �56�

The distribution of the angular momentum in ���B�	 is in
excellent agreement with the distribution coefficient ��L�2

= ��L ���
��1�	�2 in the many-body ground state �10� which is

obtained numerically by the diagonalization of the Hamil-

tonian K̂1 in Eq. �9�.

3. Condensate fraction

The condensate fraction of the Bogoliubov ground state is
less than unity because of virtual particle-pair excitations
mainly to the translation mode. The virtual excitations are
the physical origin of quantum fluctuations in the position
and momentum described above. The number of depleted
atoms is calculated from Eq. �39� as

NB� = �
0

2�

v2���d� =
1

�8�
−

1

2
+ O���� , �57�

where � is given in Eq. �41�. The result is shown as the solid
line in Fig. 7 which agrees well with the results of the exact
diagonalization for �1�1.

We thus find that in the presence of the symmetry-
breaking potential, the Bogoliubov ground state very well
reproduces the energy, the angular-momentum distribution,
and the depletion of the condensate obtained by the exact
diagonalization for �1�1. This is because the virtual excita-
tions described by the Bogoliubov ground state lead to the
center-of-mass fluctuations above the mean-field ground
state.

C. Quantum measurement

1. Quantum fluctuations in position and momentum

In this section the suppression of the center-of-mass fluc-
tuation via repeated quantum measurements shown in Fig. 10
is investigated semiclassically by generalizing mean-field
theory. We assume as an initial state superposition state of
the GP solution ���c.m.

�GP�	 with respect to the center-of-mass
position �c.m.,

��cl
�j�	  � d�c.m.Aj��c.m.����c.m.

�GP�	 . �58�

We assume that for j=0, A0��c.m.� is a constant. The repeated
measurements would select a localized soliton at a certain
�c.m., ���−�c.m.�= ��0+2�1 cos��−�c.m.�� /�2� with prob-
ability Aj

2��c.m.�. If the first atom is detected at a position �1,
the postmeasurement distribution may be approximated by
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A1��c.m.� =
1

�2�
��0 + 2�1 cos��1 − �c.m.�� , �59�

where �0 and �1 are given by Eqs. �29�. Likewise, after the
jth measurement, the distribution becomes

Aj��c.m.� � �
i=0

j
1

�2�
��0 + 2�1 cos��i − �c.m.�� . �60�

If we rotate the system so that �c.m.→0 for j→� �corre-
sponding to the case of Fig. 10�, the distribution of �i should
become ��0+2�1 cos ��2 / �2��. Equation �60� is then simpli-
fied for j�1 as

ln Aj��c.m.� = 

i=0

j

ln��0 + 2�1 cos��i − �c.m.�� + const,

� j� d� n���ln��0 + 2�1 cos��i − �c.m.�� + const

� − 2j�1
2�c.m.

2 + const + ¯ . �61�

The distribution function of the center-of-mass position �c.m.
can thus be approximated as

Aj��c.m.� � e−2j�1
2�c.m.

2
. �62�

It follows then that the center-of-mass position fluctuates ac-
cording to

��c.m. �
1
�j

. �63�

The angular-momentum distribution of the state �58�, can
also be analytically calculated. Substituting Eq. �62� in Eq.
�58� we find that the angular-momentum distribution func-
tion is given by

��L��cl
�j�	�2 �

1

�2���L�2
e−L2/�2��L�2�, �64�

with the width

��L�2 = 2�1
2j . �65�

It follows from Eqs. �63� and �65� that during the repeated
measurements the fluctuations in the center of mass and the
angular momentum are found to obey the uncertainty rela-
tion

��c.m.�L � 1. �66�

Both Eqs. �63� and �65� are in excellent agreement with the
ensemble averages of the corresponding results obtained by
the numerical simulation as shown in Figs. 10 and 11.

2. Condensate fraction

We showed in the previous section that the repeated mea-
surements suppress the center-of-mass fluctuations. We show
here that this leads to an enhancement of the condensate
fraction. The reduced single-particle density matrix of ��cl

�j�	
is obtained from Eqs. �44�, �58�, and �62� as

�l,l�� = �ĉl�
† ĉl	 → � �1

2 �0�1e−�/2 �1
2e−2�

�0�1e−�/2 �0
2 �0�1e−�/2

�1
2e−2� �0�1e−�/2 �1

2 � ,

�67�

where �1/ �8�1
2j�, and we assumed

���c.m.� ���c.m.
	 � ���c.m.� − �c.m.� , �68�

for simplicity. The largest eigenvalue �M
�j� of �l , l�� is given

by

�M
�j� = 1

2 �1 − �1
2 + �1

2e−2�

+ ��1 − �1
2 + �1

2e−2��2 − 4�1
2�1 − 2�1

2��1 − e−��2� .

�69�

Figure 12 compares Eq. �69� with the results obtained by
numerical diagonalization, where the quantitative agreement
is found. Like a symmetry-breaking potential, the repeated
quantum measurements also change the fragmented conden-
sate with a translation symmetry to a single condensate with
a broken translation symmetry. In terms of the generalized
mean-field theory developed in this section, the depletion of
atoms is described by the amplitude Aj in the state �58�, the
absolute square of which represents the semiclassical distri-
bution function of the center of mass of the bright soliton.

V. SUMMARY AND CONCLUSIONS

We have investigated the critical fluctuations associated
with the formation of broken-symmetry state by explicitly
introducing symmetry-breaking potentials or quantum mea-
surements.

In the absence of the symmetry-breaking potential, the
many-body ground state, obtained by the diagonalization of
the symmetry-preserving Hamiltonian, is found to be fragile
against a formation of a localized state. The localized state
corresponds to a superposition state of quasidegenerate low-
lying modes. The localization is also reflected in the en-
hancement in the two-body correlation.

In Sec. III A, we have studied the many-body localized
state in the presence of an infinitesimal symmetry-breaking
potential. We have shown that the localization of the many-
body ground state begins when the energy scale of the
symmetry-breaking potential becomes of the same order of
the energy gap between the ground and the first excited state
of the symmetry-preserving Hamiltonian, i.e., 1 /N. We have
evaluated center-of-mass fluctuations in the regime of the
crossover between the state with the translation symmetry
and the broken-symmetry state, and found that these fluctua-
tions are the origin of the depletion of the condensate frac-
tion. In the presence of the double-well potential, we have
shown that as the magnitude of the potential is increased, the
ground state becomes a Schrödinger’s cat state, i.e., the mac-
roscopic superposition of two localized states.

In a manner similar to the single-potential case, repeated
quantum measurements also cause the crossover from the
uniform state to the localized state with significant enhance-
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ment in the condensate fraction. We have shown that the
center-of-mass and the angular-momentum fluctuations obey
the uncertainty relation �26� during quantum measurements.

In the latter part of this paper, we have developed an
analytic method to treat the many-body states with quantum
fluctuations. Starting from the broken-symmetry ground state
of the GP equation, we have taken into account the transla-
tion mode of the soliton as a Bogoliubov fluctuation in the
presence of an infinitesimal symmetry-breaking potential.
We have found that the angular-momentum fluctuations and
the condensate fraction of the Bogoliubov ground state very
well agrees with those of the numerically obtained many-
body localized state.

The effects of the quantum measurement of the bright
soliton on the localization have been studied by developing a
generalized mean-field theory, where we introduce a semi-
classical distribution function of the center-of-mass position
of the soliton. Assuming as an initial state an isotropic su-
perposition of soliton states, we have argued that the mea-
surement process reduces the center-of-mass fluctuation and
selects a soliton state having a definite center of mass. The
results obtained by the extended mean-field theory and those
obtained by the numerical simulation using the symmetry-
preserving Hamiltonian agree excellently in terms of the
angular-momentum fluctuation, the center-of-mass fluctua-
tion, and the condensate fraction.

We have thus shown that the critical fluctuations associ-
ated with the formation of a localized BEC with an attractive
interaction arise from quantum fluctuations in the position of
the matter wave, which is also interpreted as the depletion of
the condensate to the translation modes of the bright soliton.
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APPENDIX A: DERIVATION OF OPERATOR
RELATION (51)

In order to prove the relation �51�, we disentangle two
operators

Ô1  e−r/2�T̂†2−T̂2�, �A1�

Ô2  e−�/2�T̂† + T̂�2
. �A2�

We define an unnormalized state

��	  e�T̂†
�vac	 , �A3�

where � is a c number, and define the expectation value of

Ô j �j=1,2� with respect to the state ��	 as

Q j  ���Ô j��	 . �A4�

The derivatives of Q j with respect to � and �* are given by

�Q j

��
= ���Ô jT̂

†��	 = ���Ô jT̂
†Ô j

−1Ô j��	 , �A5�

�Q j

��* = ���T̂Ô j��	 = ���Ô jÔ j
−1T̂†Ô j��	 . �A6�

By using the relations

Ô1
−1T̂Ô1 = T̂ cosh r − T̂† sinh r . �A7�

Ô1T̂†Ô1
−1 = T̂† cosh r + T̂ sinh r , �A8�

Ô2
−1T̂Ô2 = T̂ − ��T̂ + T̂†� , �A9�

Ô2T̂†Ô2
−1 = T̂† − ��T̂ + T̂†� , �A10�

we obtain

�Q1

��
= �* cosh rQ1 + sinh r

�Q1

��* , �A11�

�Q1

��* = � cosh rQ1 − sinh r
�Q1

��
, �A12�

�Q2

��
= �1 − ���*Q2 − �

�Q2

��* , �A13�

�Q2

��* = �1 − ���Q2 − �
�Q2

��
. �A14�

The differential equations for Q j are then given by

�Q1

��
=

�* + � sinh r

cosh r
Q1, �A15�

�Q1

��* =
� − �* sinh r

cosh r
Q1, �A16�

�Q2

��
=

1

1 + �
��* − ���Q2, �A17�

�Q2

��* =
1

1 + �
�� − ��*�Q2. �A18�

By integrations of these equations, the expectation values Q1
and Q2 are found to be

Q1 � exp�−
1

2
tanh r�*2 +

1

cosh r
���2 −

1

2
tanh r�2� ,

�A19�
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Q2 � exp�−
1

2

�

1 + �
�*2 +

1

1 + �
���2 −

1

2

�

1 + �
�2� .

�A20�

The operators Ô j are thus written as

Ô1 � exp�−
1

2
tanh rT̂†2�

�exp�− ln�cosh r�T̂†T̂�exp�1

2
tanh rT̂2� ,

�A21�

Ô2 � exp�−
�

2�1 + ��
T̂†2�exp�− ln�1 + ��T̂†T̂�

�exp�−
�

2�1 + ���T̂2, �A22�

and we finally obtain

exp�−
r

2
�T̂†2 − T̂2���vac	 = N1exp�−

1

2
T̂†2 tanh r��vac	 ,

�A23�

exp�−
�

2
�T̂ + T̂†�2��vac	 = N2exp�−

�

2�1 + ���T̂†2�vac	 ,

�A24�

where the normalization constants N j are determined by

1 = �vac�Ô1
−1Ô1�vac	 = N 1

2

n

2n!

�n!�2�−
1

2
tanh r�2n

= N 1
2 cosh r , �A25�

1 = �vac�Ô2
−1Ô2�vac	 = N 2

2

n

2n!

�n!�2�−
1

2

�

1 + �
�2n

= N 2
2�1 + �� . �A26�

APPENDIX B: EVALUATION OF ANGULAR-MOMENTUM
FLUCTUATION IN THE BOGOLIUBOV

GROUND STATE

We justify the approximation, Eq. �54� with Eq. �55�, that
has been used in order to evaluate the angular-momentum
fluctuation ��L�B��2 in the Bogoliubov ground state

���B�	 = er/2�T̂†2−T̂2� 1
�N!

��0ĉ0
† + �2�1Ŝ†�N�vac	 . �B1�

The angular-momentum distribution of the GP ground state
���c.m.=0

�GP� 	=1/�N!��0ĉ0
†+�2�1Ŝ†�N�vac	 is calculated to give

��L���c.m.=0
�GP� 	�2 � 


n=1

N/2
1

�N − L − 2n�!�L + n�!n!
� ��1�

��0��
4n

�
1

�2���L�GP��2
e−L2/�2��L�GP��2�, �B2�

where �0 and �1 are given in Eqs. �33� and �34�, and the
width is given by

��L�GP��2 =
2N

2 + ��0�2/��1�2
. �B3�

On the other hand, from the form of Eq. �52�, the angular-
momentum-fluctuation operator er/2�T̂†2−T̂2� approximately
gives the factor

exp�−
L2

2��L�B��2� �B4�

to the state with an angular momentum L, where the width
��L�B�� is given in Eq. �55�. The angular-momentum distri-
bution of ���B�	 is given by the product of Eqs. �B2� and
�B4�. We compare Eqs. �B3� and �55� in Fig. 13, where the
former is much larger than the latter for �1�104. Therefore,
the contribution from Eq. �B2� is negligible, and the angular-
momentum distribution of ���B�	 can be approximated by
Eq. �B4�.

FIG. 13. Width of the angular-momentum fluctuations in the GP
ground state ���GP�	 �dashed curve� and that in the state

er/2�T̂†2−T̂2��vac	 �solid curve�.
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