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Two-component Fermi gases with tunable repulsive or attractive interactions inside quasi-one-dimensional
�Q1D� harmonic wells may soon become the cleanest laboratory realizations of strongly correlated Luttiger and
Luther-Emery liquids under confinement. We present a microscopic Kohn-Sham density-functional theory of
these systems, with specific attention to a gas on the approach to a confinement-induced Feshbach resonance.
The theory employs the one-dimensional Gaudin-Yang model as the reference system and transfers the appro-
priate Q1D ground-state correlations to the confined inhomogeneous gas via a suitable local-density approxi-
mation to the exchange and correlation energy functional. Quantitative understanding of the role of the inter-
actions in the bulk shell structure of the axial density profile is thereby achieved. While repulsive
intercomponent interactions depress the amplitude of the shell structure of the noninteracting gas, attractive
interactions stabilize atomic-density waves through spin pairing. These should be clearly observable in atomic
clouds containing of the order of up to 100 atoms.
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I. INTRODUCTION

Ultracold atomic gases, which are highly tunable and ide-
ally clean, are attracting a great deal of interdisciplinary in-
terest. In particular their study may help us understand a
number of phenomena that have been predicted in solid-state
and condensed-matter physics �1�. Several effects, known in
these subfields of physics for decades, have already been
observed and quantitatively analyzed in ultracold atomic
gases. Three beautiful examples are the Bloch oscillations
under an applied force in a one-dimensional �1D� optical
lattice �2�, the formation of highly ordered Abrikosov lattices
of vortices in rapidly rotating harmonic traps �3�, and the
superfluid-to-Mott insulator transition of a condensate in a
3D optical lattice �4�.

Cold atoms have also been successfully trapped in low-
dimensional geometries �5�. Typical 1D quantum phenomena
have already been observed in both Bose and Fermi gases.
For instance, in the work of Paredes et al. �5� and of Ki-
noshita et al. �5� a 87Rb gas has been used to realize experi-
mentally a Tonks-Girardeau system �6�. The more recent
preparation of two-component Fermi gases in a quasi-1D
�Q1D� geometry �7� provides a unique possibility to experi-
mentally study phenomena that were predicted a long time
ago for electrons in a 1D solid-state environment, such as
spin-charge separation in Luttinger liquids �8,9� and charge-
density waves in Luther-Emery liquids �10�. The experiment
by Moritz et al. �7� also offers the opportunity of testing a
Q1D integrable model of the BCS-BEC crossover �11,12�,
which is based on the idea of a confinement-induced reso-
nance �CIR� �13�.

In �11,12� the gas has been assumed to be translationally
invariant along the axial direction, and thus the authors have
been able to provide an analytical description of the cross-

over by employing the exact Bethe-Ansatz solution of the
homogeneous Gaudin-Yang model �14� and of the homoge-
neous Lieb-Liniger model �15�. The present work focuses
instead on inhomogeneous Q1D Fermi gases inside highly
elongated harmonic traps and treats the axial confinement by
means of the Hohenberg-Kohn-Sham density-functional
theory �DFT� �9,16�. With a few exceptions �17–20�, most
applications of DFT have used so far as the underlying ref-
erence fluid the homogeneous electron gas, which is a nor-
mal Fermi liquid over a wide range of density. In our present
study we use the homogeneous Gaudin-Yang model as the
reference fluid, in order to transfer to the inhomogeneous gas
the Luttinger and Luther-Emery 1D correlations.

It is appropriate at this point to refer to related theoretical
studies dealing with Q1D inhomogeneous Fermi gases
�21–24�. In Ref. �21� a bosonization technique has been used
to calculate analytically the density profile, the momentum
distribution, and several correlation functions of two-
component Fermi gases with inclusion of intercomponent
forward-scattering processes. In Refs. �22–24� the Thomas-
Fermi approximation �see the discussion in Sec. II A below�
and the so-called inhomogeneous Tomonaga-Luttinger liquid
model have been used to calculate the density profile of a
large system and to discuss spin-charge separation in two-
component Fermi gases. In the present work we perform
microscopic calculations of the ground-state density profile
of systems with arbitrary size, without having to assume nei-
ther peculiar intercomponent interactions �as in the bosoniza-
tion scheme of Ref. �21�� nor very large atom numbers �as in
Refs. �22–24��. We give a fully quantitative study of how
exchange and correlations modify the bulk shell structure of
the axial density profile. In particular we show that for suf-
ficiently strong attractive interactions, experimentally detect-
able atomic-density waves �ADWs� are formed by spin pair-
ing along the axial direction, which should be clearly
observable in systems with a relatively low number of atoms
�Nf �100�. Oversimplified Thomas-Fermi treatments cannot
predict ADWs.*Electronic address: m.polini@sns.it
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The contents of the paper are briefly as follows: In Sec. II
we introduce the Hamiltonian that we have used to describe
the system of present physical interest, summarize the prop-
erties of the model in the absence of external potentials, and
describe the self-consistent DFT scheme that we have used
to deal with the inhomogeneity. In Sec. III we report and
discuss our main numerical results and finally in Sec. IV we
draw our main conclusions. An Appendix contains the exact
solution of the inhomogeneous model for two atoms only,
which is used in the main text for a test of the local density
approximation in the extreme limit of low particle numbers.

II. THEORETICAL APPROACH

We consider a two-component Fermi gas with Nf atoms
confined inside a strongly elongated harmonic trap. The two
species of fermionic atoms are assumed to have the same
mass m and different pseudospin �, �=↑ or ↓. The trapping
potential is axially symmetric and is characterized by angular
frequencies �� and �� in the radial and the longitudinal di-
rections, with �� ���. Correspondingly we introduce the
harmonic-oscillator lengths a�=�� / �m��� and a�

=�� / �m���.
The gas is dynamically 1D if the anisotropy parameter of

the trap is much smaller than the inverse atom number,
�� /���Nf

−1. It can thus be described by the Hamiltonian
�24�

H = −
�2

2m
�
i=1

Nf �2

�zi
2 + g1D�

i=1

N↑

�
j=1

N↓

��zi − zj� + Vext, �1�

neglecting intracomponent p-wave interactions. Here,

g1D =
2�2a3D�B�

ma�
2

1

1 − Aa3D�B�/a�

�2�

is the effective 1D Olshanii coupling parameter �13�, with
A= ���1/2�� /�2	1.0326 and ��x� being the Hurwitz zeta
function, and Vext=�i=1

Nf Vext�zi�= �m��
2 /2��i=1

Nf zi
2 is the exter-

nal static potential associated with the axial confinement.
The 3D scattering length a3D can be tuned by means of a
magnetic field B and has the resonant structure a3D�B�
=abg�1−�B / �B−BF��, BF being the position of a Feshbach
resonance, �B its width, and abg the so-called background
scattering length �7�.

Choosing the harmonic-oscillator length a� as unit of
length and the harmonic-oscillator quantum ��� as unit of
energy, the Hamiltonian �1� can be shown to be governed by
the dimensionless coupling parameter

� =
g1D

a����

. �3�

The parameter � diverges at the CIR, i.e., when the external
magnetic field takes the value B�=BF−�B�a3D

� /abg−1�−1

with a3D
� =a� /A. The coupling parameter is negative for

B�	B	BF+�B and positive everywhere else. At the 3D
Feshbach resonance, i.e., when B=BF, the coupling param-
eter has the finite value �F=−2a� / �Aa��. In Fig. 1 we show
the dependence of � on the magnetic field B.

For B
B� and Vext=0 the Hamiltonian �1� reduces to the
homogeneous Gaudin-Yang model, which can be solved ex-
actly by means of the Bethe-Ansatz technique for both repul-
sive �g1D
0� and attractive �g1D	0� interactions �14�. In
the thermodynamic limit �Nf, L→�, L being the system size�
and for a pseudospin-compensated system �N↑=N↓�, the
properties of the homogeneous Gaudin-Yang model are de-
termined by the linear density n=Nf /L and by the effective
coupling g1D. These can be conveniently combined into a
single dimensionless parameter �=mg1D/ ��2n�.

The energy per atom can be written in terms of the “mo-
mentum distribution” 
�k� as

�GS�n,g1D� =
�b

2
+

2��

n



−Q

+Q dk

2�

�2k2

2m

�k� , �4�

where �b=0, �=1 for g1D
0 and �b=−mg1D
2 / �4�2�, �=2 for

g1D	0. The function 
�k� can be calculated by solving the
Gaudin-Yang Bethe-Ansatz integral equation �14�,


�k� =
�

2�
+

�

�n



−Q

+Q dq

2�
K�2�k − q�/��n��
�q� , �5�

where Q is determined by the normalization condition



−Q

+Q


�k�dk =
n

�
�6�

and the kernel K�x� is given by

FIG. 1. The dimensionless coupling parameter � as a function of
the magnetic field B �in units of the Feshbach resonance field BF�.
Here we have chosen the following values for the relevant param-
eters: m=6.642�10−26 kg �mass of a 40K atom�, ��=2�
�100 kHz, and �� =2��200 Hz �the anisotropy parameter of the
trap is 2�10−3�, BF=202.1 G, �B=7.8 G, and abg=174 Bohr radii.
For these parameters B�=0.991BF. At the 3D Feshbach resonance
�F=−43.309 �see inset�.
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K�x� =�
−�

+�

dy
sech��y/2�

�1 + �x + y�2�
for g1D 
 0

1

1 + x2/4
for g1D 	 0.� �7�

For g1D
0 the homogeneous Gaudin-Yang model describes
a Luttinger liquid �8,9�, while for g1D	0 it describes a
Luther-Emery liquid �10�.

Before proceeding to discuss the properties of the inho-
mogeneous model under confinement, we should stress that
Eqs. �4�–�6� describe the homogeneous limit of the model
only for B
B�, i.e., before the CIR. After the CIR, as dis-
cussed in Refs. �11,12�, the fermion pairs become unbreak-
able spin-singlet dimers, behaving like bosons with mass 2m
and density n /2. Thus the appropriate homogeneous limit for
B	B� is the Lieb-Liniger gas of interacting bosons �15�, and
one should resort in treating inhomogeneity to a DFT ap-
proach such as that proposed by Griffin �17� �see also the
work of Oliveira et al. �17��.

A. Density-functional theory of Q1D gas in the Kohn-Sham
scheme

In the presence of a longitudinal external potential the
Hamiltonian H in Eq. �1� cannot be diagonalized exactly. We
calculate the ground-state properties of H for B
B� by re-
sorting to the fermionic DFT scheme �9,16�.

Within the Kohn-Sham version of DFT the ground-state
density, nGS�z�= 
GS��i��z−zi��GS�, can be calculated by
solving self-consistently the Kohn-Sham equations �16�,

�−
�2

2m

�2

�z2 + VKS„z;�nGS�z��…����z� = �����z� �8�

with VKS(z ; �nGS�z��)=vH(z ; �nGS�z��)+vxc(z ; �nGS�z��)
+Vext�z�, together with the closure

nGS�z� = �
�,occ.

������z��2. �9�

Here the sum runs over the occupied orbitals and the degen-
eracy factors �� satisfy the sum rule ����=Nf. The first
term in the effective Kohn-Sham potential VKS is the Hartree
term vH=g1DnGS�z�, while the second term is the exchange-
correlation potential defined as the functional derivative of
the exchange-correlation energy Exc�n�z�� evaluated at the
ground-state density profile, vxc= ��Exc�n�z�� /�n�z��GS. The
total ground-state energy of the system is given by

EGS�nGS�z�� = �
�

���� − 

−�

+�

dzvxc�z;�nGS�z���nGS�z�

−
g1D

2



−�

+�

nGS
2 �z�dz + Exc�nGS�z�� . �10�

Equations �8� and �9� provide a formally exact scheme to
calculate nGS�z� and EGS, but Exc and vxc need to be approxi-
mated. The local-density approximation �LDA� has been
shown to provide an excellent description of the ground-state
properties of a variety of inhomogeneous systems �9,16�. In

the following we employ a Bethe-Ansatz-based LDA
�BALDA� functional �19,20� for the exchange-correlation
potential,

vxc
BALDA�z;�nGS�z��� = �vxc

hom�n,g1D��n→nGS�z�. �11�

Here the exchange-correlation potential of the homogeneous
Gaudin-Yang model is defined by

vxc
hom�n,g1D� =

�

�n
�n�GS�n,g1D� − n��n�� − ng1D, �12�

��n�=�2�2n2 / �24m� being the kinetic energy of the nonin-
teracting gas per atom.

Before discussing specific calculations of the exchange-
correlation potential of the homogeneous Gaudin-Yang
model, several important remarks are in order at this point:

�i� In the limit �=0 the Kohn-Sham equations correctly
yield the ground-state density profile of a noninteracting
paramagnetic Fermi gas,

�nGS�z���=0 =
2

a�
��

exp�− z2/a�
2� �

n=0

Nf/2−1
Hn

2�z/a��
2nn!

, �13�

given in terms of the Hermite polynomials Hn�x� of degree
0�n�Nf /2−1. This density profile exhibits a shell struc-
ture characterized by Nf /2 oscillations, whose origin lies in
the fermionic statistical correlations: the occupation prob-
ability P�n�=��
ĉn,�

† ĉn,�� of the 1D harmonic-oscillator
states is unity for 0�n�Nf /2−1 and zero for n�Nf /2. The
existence of this sharp “Fermi edge” is ultimately respon-
sible for the bulk shell structure, which is analogous to the
Friedel oscillations originating in a normal Fermi liquid from
the sharply defined Fermi surface �9�. The occupation prob-
abilities and the shell structure are expected to be strongly
affected by many-body exchange-correlation effects �see
Sec. III below�.

�ii� In the limit �= +� the ground-state density profile
should become that of a fully spin-polarized noninteracting
Fermi gas,

�nGS�z���=+� =
1

a�
��

exp�− z2/a�
2� �

n=0

Nf−1
Hn

2�z/a��
2nn!

, �14�

exhibiting a shell structure characterized by Nf oscillations
�25�. This asymptotic property can be checked explicitly for
Nf =2 �see the Appendix� and originates from the fact that an
infinitely strong repulsion between antiparallel-pseudospin
atoms in 1D acts like the Pauli principle between parallel-
pseudospin atoms �22,24�. The present formalism does not
apply to such a strong coupling regime �note also that for
B
B� the value of � is bounded from above�.

�iii� The main difference between the present BALDA
scheme and the Thomas-Fermi approach is that in the latter
�22–24� the LDA is also used to approximate the noninter-
acting kinetic energy functional Ts�nGS�z��, which is written
as
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TTF�nGS�z�� = 

−�

+�

�n��n��n→nGS�z�dz . �15�

The �Hohenberg-Kohn� Thomas-Fermi equation reads

� ��n��n��
�n

�
n→nGS�z�

+ VKS�z;�nGS�z��� = constant, �16�

the constant being fixed by normalization. The Thomas-
Fermi profile misses the shell structure as well as atom tun-
nel beyond the Thomas-Fermi radius ZTF. In our approach,
instead, Ts�nGS�z�� is treated exactly through the Kohn-
Sham mapping

Ts�nGS�z�� = −
�2

2m
�
�



−�

+�

��
��z�

�2

�z2���z�dz , �17�

the single-particle orbitals ���z�=���z ; �nGS�z��� being
unique functionals of the ground-state density �9,16�.

B. The exchange-correlation potential

In what follows we propose two different ways to calcu-
late the exchange-correlation potential of the homogeneous
Gaudin-Yang model.

1. BALDA-1

The potential vxc
hom�n ,g1D� can be calculated by applying

its definition �12� directly to Eqs. �4�–�6�. It is easy to show
that the exchange-correlation potential of the homogeneous
Gaudin-Yang model is exactly given by the following equa-
tion:

vxc
hom�n,g1D� =

�b

2
+ 2�

�2Q2

2m

�Q�

�Q

�n

+ 2��

−Q

+Q dk

2�

�2k2

2m

�
�k�
�n

−
�2

8
�2n2 − ng1D,

�18�

where �nQ and �n
 satisfy the coupled Bethe-Ansatz equa-
tions

�
�k�
�n

=
�

2��n
�K�2�k − Q�/��n�� + K�2�k + Q�/��n���

�Q

�n

+
�

�n



−Q

+Q dk�

2�
K�2�k − k��/��n��

�
�k��
�n

�19�

and

2
�Q�
�Q

�n
+ 


−Q

+Q �
�k�
�n

dk =
1

�
. �20�

An accurate numerical solution of these coupled Bethe-
Ansatz equations leads to the exact exchange-correlation po-
tential of the homogeneous Gaudin-Yang model.

The results for nGS�z� that are obtained with vxc
hom�n ,g1D�

determined according to this route will be termed with the
acronym BALDA-1.

2. BALDA-2

As an alternative vxc
hom�n ,g1D� can also be calculated from

accurate analytical parametrizations of the ground-state en-
ergy of the homogeneous Gaudin-Yang model, which incor-
porate exactly known limiting behaviors both at weak and
strong coupling. This route will reduce the numerical effort
and affords a test of the sensitivity of the results to the details
of the implementation of the theory.

Let us introduce the Fermi wave number kF=�n /2 and
the Fermi energy �F=�2kF

2 / �2m�. For repulsive interactions
we find that the ground-state energy of the homogeneous
Gaudin-Yang model in units of the Fermi energy, e
=�GS/�F, can be very accurately parametrized by the simple
formula

e�x 
 0� =
4x2/3 + apx + bp

x2 + cpx + dp
, �21�

where x=2� /�, ap=5.780126, bp=−�8/9�ln 2+�ap /4, cp

= �8/��ln 2+3ap /4, and dp=3bp. Equation �21� embodies
the exact behaviors �18,24�

FIG. 2. Ground-state energy �GS�n ,g1D� of the homogeneous
Gaudin-Yang model �per particle and in units of the Fermi energy
�F� as a function of the coupling strength 2� /� for a paramagnetic
Fermi gas with repulsive interactions �top� and attractive interac-
tions �bottom�. The exact results, obtained from the solution of the
Bethe-Ansatz equations �4�–�6�, are compared with the fitting for-
mulas in Eq. �21� and in Eq. �23� �solid lines�.
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e�x� = �1/3 + x/� + ¯ for x → 0+

4/3 − 32 ln 2/�3�x� + ¯ for x → + � .
� �22�

The fitting formula �21� is compared with the exact Bethe-
Ansatz results in Fig. 2 �top�. Note that in the weak coupling
limit our formula gives e�x→0+�=1/3+x /�−0.080x2,
where the coefficient of the x2 differs by about 4% from the
exact value determined by Magyar and Burke �18� by dia-
grammatic perturbation theory. On the other hand, the pa-
rametrization formula proposed by Magyar and Burke �18�
incorporates exactly this second-order weak-coupling term,
but violates the strong-coupling asymptotic result in Eq.
�22�. In fact, the Magyar-Burke coefficient of the 1/x
term, c−1=−1.829, differs from the exact value c−1
=−32 ln 2/ �3�� by about 22%.

Turning to the case of attractive interactions, we find the
following parametrization formula to be very accurate:

e�x 	 0� =
1

3
−

�x�
�

− A��x��
x2

4
, �23�

where the function A�x�, which modulates the amplitude of
the strong-coupling term −x2 /4, is given by

A�x� =
x2 + amx + bm

x2 + cmx + dm
�24�

with am=−0.331 117, bm=0.458 183, cm=am+4/�, and dm
=4am /�+bm+16/�2−1. Equation �23� embodies the exact
asymptotic behaviors �24�

e�x� = �1/3 + x/� + ¯ for x → 0−

− x2/4 + 1/12 + ¯ for x → − � .
� �25�

Equation �23� is compared with the exact Bethe-Ansatz re-
sults in Fig. 2 �bottom�.

The exchange-correlation potential can be calculated ana-
lytically using its definition in Eq. �12� applied to Eqs. �21�
or �23�. The results for nGS�z� that are obtained with
vxc

hom�n ,g1D� determined according to this parametrization
procedure will be termed with the acronym BALDA-2.

FIG. 3. Density profile nGS�z� �in units of a�
−1� as a function of

z /a� for a paramagnetic Fermi gas with Nf =10 atoms at �= +2 and
−2. The results of the BALDA-1 scheme are compared with those
of the BALDA-2 scheme. The thin solid line corresponds to the
noninteracting �=0 case. The inset shows the absolute value of the
dimensionless interaction parameter ��z��mg1D/ ��2nGS�z��
=� / �nGS�z�a�� as a function of z /a� �see Sec. II�.

FIG. 4. Evolution of the density profile nGS�z� �in units of a�
−1�

with increasing � in the BALDA-1 scheme, for a paramagnetic
Fermi gas of Nf =10 atoms with repulsive interactions �top� and
attractive interactions �bottom�. The curve at �= +� is the theoret-
ical result given in Eq. �14�.

FIG. 5. Density profile nGS�z� �in units of a�
−1� as a function of

z /a� for a paramagnetic Fermi gas with Nf =20 atoms at �= +2 and
−2. The thin solid line corresponds to the noninteracting �=0 case.
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III. NUMERICAL RESULTS

We proceed to illustrate our main numerical results, which
are summarized in Figs. 3–9. In Fig. 3 we show the ground-
state density profile of a Fermi gas with Nf =10 atoms at �
= +2 and −2. Repulsive interactions depress the amplitude of

the shell structure, while attractive interactions enhance the
oscillations of the profile leading to an ADW with Nf /2 dis-
tinct maxima related to the formation of Nf /2 spin pairs. The
two BALDA schemes that we have proposed are in excellent
agreement with each other, showing no visible difference on
the scale of the figure. In Fig. 4 we report a summary of our
BALDA-1 results for the ground-state density profiles of a
paramagnetic Fermi gas with Nf =10 atoms for increasing
repulsive or attractive interactions.

The shell structure is also sensitive to the system size,
with larger clouds tending to have a relatively weaker struc-

FIG. 6. Density profile nGS�z� �in units of a�
−1� as a function of

z /a� for paramagnetic Fermi gases with Nf =20 and 50 atoms at �
= +2 �top� and �=−2 �bottom�. The results of the BALDA-1
scheme are compared with the Thomas-Fermi results.

FIG. 7. Amplitude of the bulk oscillations Abulk �in units of a�
−1�

as a function of Nf for various values of �. The thin solid lines are
a power-law fit Abulk=A���Nf

−���� to the data �the values of the
fitting parameters A��� and ���� are reported in Table I�.

FIG. 8. Density profile nGS�z� �in units of a�
−1� as a function of

z /a� for two Fermi atoms with opposite pseudospins at �= +1 and
−1 �top�, �= +2 and −2 �middle�, and �= +10 and −10 �bottom�.
The results of the BALDA-1 scheme are compared with the exact
results.
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ture. In Fig. 5 we show the ground-state density profile of a
cloud with Nf =20 atoms at �= +2 and −2. Comparing this
figure with Fig. 3 it is clear that the amplitude of the oscil-
lations is decreasing with increasing Nf. In particular for
Nf =50 atoms at �= +2 �see Fig. 6, top� the Thomas-Fermi
results are a good representation of the actual density profile,
except at the edges of the cloud. On the other hand, for the
same system size attractive interactions at �=−2 still lead to
a clearly visible ADW, though this is absent in the Thomas-
Fermi theory �see Fig. 6, bottom�. In Fig. 7 we show the
amplitude of the oscillations in the bulk, Abulk=nGS�zmax�
−nGS�zmin�, as a function of Nf for various �positive and
negative� values of �. Here, zmax and zmin correspond to the
maximum and minimum of the shell structure at the trap
center. For Nf �10 the simple power law Abulk�Nf�
=A���Nf

−���� with two interaction-dependent parameters A���
and ���� �see Table I� fits the BALDA data very well.

Finally, the problem of two atoms with opposite pseu-
dospins in Q1D harmonic confinement is exactly solvable
�see Appendix�. A priori we do not expect an LDA approach
to be applicable to such a small system, but from Fig. 8 it is
seen that the BALDA scheme still yields some reasonable
results for both repulsive and attractive interactions. For
strong repulsive interactions it is not able to reproduce the
formation of a hole at the center of the trap �see the discus-
sion under point �ii� of the previous section�, while in the
case of strong attractive interactions it overestimates the
value of the density in the same region �see Fig. 8�. The
method is nevertheless usefully reliable for the ground-state
energy over a wide range of values of � �see Fig. 9�; for
instance, at �=−30 we find EGS

BALDA/ �Nf����=−224.810 as

compared to the exact value EGS/ �Nf����=−224.499, and at
�= +30 we find EGS

BALDA/ �Nf����= +1.01 as compared to the
exact value EGS/ �Nf����= +0.975.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a novel Kohn-Sham DFT
study of two-component Fermi gases with repulsive or at-
tractive intercomponent interactions in Q1D harmonic traps.
The present BALDA theory, which is expected to be accurate
in a weak-to-intermediate range of coupling strength, pro-
vides a quantitative microscopic understanding of how
many-body exchange and correlations modify the bulk shell
structure of the ground-state density profile. Repulsive inter-
component interactions depress the amplitude of the shell
structure while attractive interactions stabilize atomic-
density waves through Luther-Emery spin pairing. Such
atomic-density waves should be observable in gaseous
clouds containing of the order of up to 100 atoms, a suitable
experimental technique being the search for satellites in the
elastic diffraction pattern as discussed in Ref. �20�. It would
also be important to re-examine numerically these ground-
state exchange and correlation properties in relatively small
systems with Nf �10 atoms by exact-diagonalization or
quantum Monte Carlo methods.

The present work can be extended in several directions.
For instance, it would be interesting to generalize the present
scheme to the composite-boson region B	B� in order to
have a DFT treatment of the BCS-BEC crossover in the pres-
ence of axial confinement, generalizing the theories by Fuchs
et al. �11� and by Tokatly �12�. Secondly, it would be inter-
esting to study dynamical phenomena such as spin-charge
separation in these strongly correlated gases using time-
dependent DFT and/or current-DFT �9,26�, instead of resort-
ing to the inhomogeneous Tomonaga-Luttinger liquid model
�22,23�. From a more formal DFT viewpoint, a functional
better than in Eq. �11� is desirable and necessary to deal with
the strong coupling regime.
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APPENDIX: EXACT SOLUTION OF THE TWO-ATOM
PROBLEM

The problem of two antiparallel-spin fermions interacting
with a zero-range delta-function potential in 1D is exactly
solvable thanks to the separation of centre-of-mass and rela-
tive variables, which is allowed by the harmonic trapping
potential. Performing a canonical transformation to centre-
of-mass �Z= �z1+z2� /2 , P= p1+ p2� and relative �zrel=z1

−z2 , p= �p1− p2� /2� coordinates and momenta, the Hamil-

TABLE I. Parameters of the power-law fit in Fig. 7.

� A��� /a� ����

+1 0.291 0.309

−1 0.797 0.490

+2 0.167 0.178

−2 1.312 0.567

FIG. 9. Ground-state energy per atom EGS/Nf �in units of ����
as a function of � for two Fermi atoms with opposite pseudospins.
The results of the BALDA-1 scheme are compared with the exact
results.
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tonian can be written as H=HCM�Z , P�+Hrel�zrel , p�. Here,
the center-of-mass Hamiltonian HCM= P2 / �2M�+M��

2Z2 /2
describes a free particle of mass M =2m in a 1D harmonic
oscillator, while the relative-motion Hamiltonian Hrel
= p2 / �2��+V�zrel� describes a free particle of mass �=m /2
in the potential V�zrel�=���

2zrel
2 /2+g1D��zrel�.

The spatial part of the ground-state wave function can
thus be written as

�GS�z1,z2� = N exp�− Z2/a�
2��rel

�0��zrel� , �A1�

where N is a normalization constant and �rel
�0��zrel� is the

ground-state wave function of the relative-motion problem
with energy �0. Introducing the dimensionless coordinate
z̄rel=zrel /a�, the Schrödinger equation for the relative motion
reads

�−
d2

dz̄rel
2 +

1

4
z̄rel

2 + ���z̄rel���rel
�n��z̄rel� = �̄n�rel

�n��z̄rel� , �A2�

where �̄n=�n / �����. Due to the antisymmetric �spin-singlet�
nature of the spinorial part of the ground-state wave func-
tion, we need to search for the lowest �n=0� even eigenso-
lution of Eq. �A2�.

The singular delta-function term in Eq. �A2� imposes a
cusp on the wave functions at the origin,

lim
z̄rel→0+

��rel
�n��z̄rel�
�z̄rel

− lim
z̄rel→0−

��rel
�n��z̄rel�
�z̄rel

= ��rel
�n��z̄rel = 0� .

�A3�

Equation �A2� is then recognized to be the differential equa-
tion that defines the parabolic cylinder functions �28�. The
even solutions with the proper asymptotic behavior are
�27,28�

�rel
�n��z̄rel� = D�̄n−1/2��z̄rel�� , �A4�

Da�x� being a Whittaker function. Using the following prop-
erties of the Whittaker function �28�:

�rel
�n��z̄rel = 0� =

��

2−�̄n/2+1/4��3/4 − �̄n/2�
�A5�

and

lim
z̄rel→0+

��rel
�n��z̄rel�
�z̄rel

= −
��

2−�̄n/2−1/4��1/4 − �̄n/2�
�A6�

together with

lim
z̄rel→0−

��rel
�n��z̄rel�
�z̄rel

= − lim
z̄rel→0+

��rel
�n��z̄rel�
�z̄rel

, �A7�

it is easy to show that Eq. �A3� becomes the trascendental
equation

��3/4 − �̄n/2�
��1/4 − �̄n/2�

= −
�

2�2
. �A8�

Here ��x� is the Euler Gamma function. This equation im-
plicitly defines the function �̄n���. The l.h.s. of Eq. �A8� is

shown in Fig. 10 as a function of −�̄n. The ground-state
energy per atom is given by EGS/ �Nf����=1/4+ �̄0��� /2 and
is shown in Fig. 9 as a solid line.

Some limiting behaviors of the function �̄0��� can be es-
tablished analytically from the properties of the Gamma
function. We find

�̄0�� → 0� =
1

2
+

�

�2�
−

�2

2�
ln 2 + ¯ �A9�

in the weak coupling limit,

�̄0�� → + �� =
3

2
− 2� 2

�

1

�
−

8

�
�ln 2 − 1�

1

�2 + ¯

�A10�

in the strong repulsion limit, and

�̄0�� → − �� = −
�2

4
−

1

2�2 +
9

2�6 + ¯ �A11�

in the strong attraction limit.
The ground-state density profile can be found from

nGS�z� = 

−�

+�

dz���GS�z,z���2. �A12�

The normalization constant N is chosen according to
�−�

+�dznGS�z�=2, i.e.,

N2 =
23/2/���a��



−�

+�

dzrel��rel
�0��zrel��2

, �A13�

FIG. 10. A plot of the function h�x�=��3/4+x /2� /��1/4
+x /2�. h�x� has zeros at x=−2n−1/2 and poles at x=−2n−3/2,
with n=0,1 ,2 , . . .. In order to find the ground-state energy of the
2-atoms system one has to find the intersections of horizontal lines
with the branch of h�x� in the range −3/2�x	 +�. The upper
�lower� half-plane is relevant for attractive �repulsive� interactions.
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where �29�



−�

+�

dzrel��rel
�n��zrel��2 =��

2
a�

��3/4 − �̄n/2� − ��1/4 − �̄n/2�
��1/2 − �̄n�

,

�A14�

with ��x�=d ln ��x� /dx. The relation �A14� holds unless �̄n

=n+1/2 with n=0,1 ,2 , . . ., when one has to use the result
�29�



0

+�

dz̄rel�Dn�z̄rel��2 =��

2
n!. �A15�

For instance, in the case �= +� we find �̄0=3/2, �rel
�0��z̄rel�

= �z̄rel�exp�−z̄rel
2 /4�, N2=2/ ��a�

2� and

�nGS�z���=+� = �1 + 2�z/a��2�
1

��a�

exp�− z2/a�
2� .

�A16�

This result has the form given in Eq. �14�.
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