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Superradiance from hydrodynamic vortices: A numerical study
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The scattering of sound-wave perturbations from vortex excitations in hydrodynamic systems with typical
Bose-Einstein-condensate (BEC) parameters is investigated by numerical integration of the associated Klein-
Gordon equation. The simulations indicate that at sufficiently high angular speeds, in the perturbative limit
where back-reaction effects can be neglected, sound wave packets can extract a sizable fraction of the vortex
energy through a mechanism of superradiant scattering. It is conjectured that this superradiant regime may be

detectable in BEC experiments.
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Recent years have witnessed a growing interest in pursu-
ing analog models of gravitational physics in condensed mat-
ter systems. The rationale for such models traces back to a
seminal observation by Unruh [1], who noted a close anal-
ogy between sound-wave propagation in an inhomogeneous
background flow and field propagation in curved space-time.
The analogy goes on by observing that, much as superfluid
hydrodynamics is a large-scale effective theory of micro-
scopic superfluids, field theory on a curved space-time might
also be regarded as a large-scale limit of a possible micro-
scopic formulation of quantum gravity. The crucial point is
that, whereas microscopic theories of quantum gravity are
still largely a matter of speculation, the microscopic theory
of superfluids is well developed. It can thus be hoped that the
wide body of knowledge available for the latter can be
brought to the benefit of the former [2]. For instance, assess-
ing the mechanisms of sound radiation from “terrestrial
black holes” beyond the hydrodynamic picture may in prin-
ciple offer new insights into the microscopic origin of cos-
mic black hole radiance, the Hawking effect, and other cos-
mological phenomena.

A key step along this long-term program is the study of
scattering and radiance phenomena from black holes whose
background space-time can be associated with fluid excita-
tions such as vortices. A model of fluid flow which seems
particularly well suited to pursue the “analog gravity” pro-
gram is the so-called draining-bathtub geometry [3], namely,
a three-dimensional flow with a sink (vortex) at the origin.
The flow field induced by the vortex is associated with an
acoustic metric with two crucial ingredients of rotating black
hole physics: an event horizon and an ergosphere. The
former is a spatial surface which allows only one-way propa-
gation of physical signals (from the outside into the vortex).
A rotating black hole is characterized by an additional sur-
face outside the event horizon which can be intuitively
thought of as the sphere where the rotational velocity of the
surrounding space is dragged along with the velocity of light.
Within this sphere the dragging is greater than the speed of
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light; thus no observer or particle can maintain itself in a
nonrotating orbit, but is forced to become corotated. The
region outside the event horizon but inside the sphere where
the rotational velocity is the speed of light is called the er-
gosphere. Particles falling within the ergosphere are forced
to rotate faster and thereby gain energy. Because they are still
outside the event horizon, they may escape the black hole.
The net process is that the rotating black hole emits energetic
particles at the cost of its own total energy. The possibility of
extracting spin energy from a rotating black hole was first
proposed by Penrose and is thus called the Penrose process
[8]. Therefore, in the presence of an ergosphere, part of the
the vortex energy can be extracted via the mechanism of
superradiance.

Such a phenomenon was first studied by Zel’dovich [4]
with regard to the generation of waves by a rotating body
and was then analyzed as stimulated emission in black hole
radiance [5-7]. Superresonance is an acoustic-wave version
of the Penrose process, whereby a plane-wave solution of a
scalar massless field in the black hole background is scat-
tered from the ergosphere with an amplification at the ex-
penses of the rotational energy of the black hole. Such a
process has been shown to occur in a certain class of analog
(2+1)-dimensional rotating black holes [1]. Later studies
[9,10] have discussed the frequency dependence of the am-
plification factor in superresonant scattering of acoustic per-
turbations from a rotating acoustic black hole by deriving the
reflection coefficient as a function of the frequency oy, of the
incoming monochromatic wave. It is found that in the range
0<oy<m{) the reflection coefficient is greater than unity,
with m being the azimuthal wave number and () the angular
frequency of the acoustic horizon (see also [11] for the deri-
vation of the same frequency range derived from thermody-
namic considerations).

The main purpose of this paper is to present a quantitative
investigation of superradiant scattering from sonic black
holes associated with vortex configurations characterized by
parameters typical of Bose-Einstein condensates (BECs). Al-
though superradiant scattering from hydrodynamic vortices
has been discussed in the recent literature [12,13], we believe
that this is the first quantitative assessment of such a phe-
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nomenon using specific BEC-like parameters.

In the limit of zero temperature, gaseous Bose-Einstein
condensates are well described by the Gross-Pitaevskii equa-
tion (GPE)
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where ®(7,¢) is the wave function of the condensate normal-
ized to the total number of bosons N, a, being the s-wave
scattering length and M the mass of the atoms. If we now use
the Madelung representation ®(7,7)=\/p(7,1)e™ %"/ [14] in
Eq. (1), where p(7,1)=|®(7,7)|* is the condensate density, in
the Thomas-Fermi approximation, which holds for large N,
we neglect the quantum pressure term in the kinetic energy
of the condensate and the GPE takes a hydrodynamic form:
the imaginary part is a continuity equation for an irrotational
fluid flow of velocity v(7,f)=V &(r,t) and density p(r,), and
the real part is a Hamilton-Jacobi equation whose gradient
leads to the Euler equation. As is well known, the GPE is
equivalent to irrotational inviscid hydrodynamics [15].

Low-frequency perturbations around the stationary state
are essentially sound waves (zero sound) and obey the Bo-
goliubov set of differential equations for the density pertur-
bation p!") and the phase perturbation #V in terms of the
local speed of sound c(r)=+/4mh%a,p(r)/M>. These equa-
tions, within the limit of validity of the hydrodynamic ap-
proximation can be reduced to a single second-order equa-
tion for the phase perturbation [2]. This differential equation
for ¢V =" has the form of a relativistic Klein-Gordon equa-
tion &M(\e"—gg“”&,,‘lf)=0, with g=det g,, in a curved space-
time whose metric g, is determined by the local speed of
sound ¢ and the background stationary velocity v.

It should be noted that the linearization suppresses the
quantum nature of the GPE so that, within the linear pertur-
bation theory, the circulation of vortices is not quantized as
in BEC systems. The calculations reported below are aimed
at examining what fraction of the energy can be extracted
through superradiant scattering of a sound wave from a vor-
tex described by BEC-like parameters. As discussed further
below, the full nonlinear GPE will have to be used for a
quantitative assessment of the extraction of energy quanta
from BEC vortices.

For a single vortex with a drain at r=0 and angular ve-
locity ) in the draining-bathtub model, the velocity field of
the flow is

0 =Vo(r,¢) = (- cai + Qa2 P)/r, 2)

where 7 and ¢ denote unit vectors in polar coordinates, a is
the radius of the event horizon, and the background density
po of the fluid and the speed of sound c are taken as constant
throughout the flow. Although such a configuration is not
easily achieved experimentally, as it requires an output cou-
pling mechanism through which matter is continuously
coupled out from the origin of the vortex line, such mecha-
nisms have been devised (see for example [16,17]). The
acoustic metric associated with this configuration is
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ds* = —{c® - [(a*c® + a*Q)IP*1Yde? + (2calr)dt dr
—-20d’dt dp+ dr* + r’d ¢ + dz*. (3)

It is readily checked that this metric has an ergosphere whose
radius is re=a V1+Q2%a?/c?. The growth of the ergosphere
with increasing () allows an increasing extraction of energy
from the vortex in superradiance conditions.

Linear perturbations of the velocity potential W satisfy the
massless Klein-Gordon scalar wave equation on this back-
ground, i.e.,
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Equation (4) is solved by means of numerical methods de-
veloped in [18] for the integration of massless scalar-field
perturbations on a rotating Kerr black hole background. For
this purpose, Eq. (4) is conveniently recast into a system of
first-order (strongly) hyperbolic equations through the defi-
nition of two conjugate fields =,=d¥/dx’ and I=—(1/a)
X (W /dt-B'E,), where B'=(acr™',-a*Qr2,0) and a=c are
the space and time shifts of the acoustic metric. By setting
= lﬂl(i’, t)eim¢eikz, = 7T1(r, t)eim¢eikz, El — fl(r,t)eim¢eikz,
2,=imV¥, and Z,=ik¥, where (k,m) are the axial and azi-
muthal wave numbers, the hyperbolic system reads as fol-
lows:

dyry + co,(& — am /) = (ac — ima®* Q) /r?

+ (k> + m* )y — c&r,
d,hy — cda/r) = (ac — ima> Q) /1* — cry,

3.&, + co (1 — a&,Ir) = 2ima® QI — ima® Q&% (5)

The set of Egs. (5) is augmented with the constraint |C|
=|d,4, - &|=0, which is used to monitor the quality of the
numerical results. One-way inward propagation from the ho-
rizon is accounted for by an ingoing-radiation boundary con-
dition, imposed through an excision technique. Details of the
numerical procedure will be given in a forthcoming publica-
tion [19].

Following the standard prescription for scattering pro-
cesses in Kerr black holes [20], the initial condition is chosen
as a Gaussian pulse centered at r=r;, and modulated by a
monochromatic wave,

i, (r,0) =A exp [— (r—ro+c)b* —io(r—ry+ ct)/c]|,=0.
(6)

The corresponding power spectrum is a Gaussian distribu-
tion P(w)=P,,, exp[—(w—0)?h*/4c?], centered at frequency
o with spectral width 1/b. The superradiant regime is
0<a/Q<m form=1.

As already remarked, the main purpose of our calcula-
tions is to assess the amount of energy that can be extracted
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FIG. 1. (Color online) A density map of the real part of ¢, in the
r-t plane (for the sake of clarity, the case of a quasilocalized wave
packet at m=0 is being shown). Due to the curved background, the
wave-packet trajectory bends toward the sonic horizon at r=a. The
light cone becomes parallel to the r=a axis, since no signal can
escape from the horizon.

from a sonic hole as a function of its angular velocity (). We
use as reference a set of parameters relevant to a BEC of
87Rb atoms [21], with vortex core radius a,=0.2 um and
angular speed (), = 18 kHz. It is interesting to note that the
inverse transversal time of the BEC vortex, c/a,~ 15 kHz, is
very close to the corresponding value for a cosmic black hole
of radius @~ 10 km. Such a quantitative match stems from
the very low speed of sound in BEC’s, of the order of a few
mm/s.

In the following we take c=%/ (\EM &) and a=¢, where
&=(87mpa,)~"? is the healing length. The integration of Eqs.
(5) is performed in the space-time domain r [0, 150] and
t€[0,150], in units of a=1 and a/c=1 in space and time.
The angular frequency 1is analyzed in the range
0.14<Qa/c<14, corresponding to a frequency range
1.8<Q<18kHz and a density range 5X10"°<p,<5
X 10" ¢cm™. The initial Gaussian pulse is centered at
ro=50a and 0=0.5(), with amplitude A=0.3¢ and variance
b=10a. We perform our study for m=1 and k=0.02/a, cor-
responding to a condensate axial extent H=0.9 mm. Viola-
tions of the constraint C(#)=0 are monitored over the entire
space domain and are found to be consistently below 1076 for
all sets of parameters under investigation.
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Figure 1 shows a density map of the real part of ¢, in the
range r/a €[1,20] and rc/a €[0,10]. The initial Gaussian
pulse moves toward the vortex horizon placed at r=a and its
trajectory is bent by the potential outside the horizon. The
bending of the trajectory, with light cones heading toward the
horizon, is consistent with similar findings in numerical rela-
tivity [7,22] as shown in the diagram in Fig. 1.

In Fig. 2 we show a typical time evolution of the energy
of wave packet Ep(t)z(pOM/2)fé”d¢fgdzf;43“v%rdr with
v,=V &Y (top curves), normalized to its initial value E0),
as well as the (independently calculated) rate F(r) of change
of the energy (bottom curves), normalized to its initial value
F(0), for 0=0.7c/a and Q) =1.4c/a, within the superradiant
regime (m=1, solid lines) and outside it (m=0, dashed lines).
F(z) includes the net flux across the surfaces at r=a and 143a
as well as a term due to the bulk compressibility,

dE (t . dv
F([):_&:jvl_ﬂdv
dt dt

1 R SN
=—E<fv%v-ﬁd5—fva-vldV>. (7)

In the nonsuperradiant case, the energy of the scattered wave
packet goes asymptotically to zero, indicating that all the
energy of the impinging wave packet is lost to the vortex
sink. In the superradiant case instead, the energy of the back-
scattered wave packet exceeds its initial value, indicating
extraction of energy from the ergosphere at the expense of
the rotational energy of the vortex. Consistently with this
picture, the energy flux for the superradiant (nonsuperradi-
ant) case lies above (below) its background value during the
scattering event, approximately in the range 35 <tc/a <55.
The energy gained via superradiance is by no means small,
as it is seen to exceed in this case 20% of the initial value
E,0).

It is now of great interest to examine the dependence of
the superradiant energy gain on the angular speed of the
vortex, so as to possibly identify an optimal value at which
such energy gain can be maximized. In Fig. 3 we show the
time evolution of the energy gain E,(1)/E,(0) for a series of
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wave packet for 0=0.7c¢/a and Q=1.4c/a. The
solid lines correspond to the superradiant case
(m=1) and the dashed lines to the nonsuperradi-
ant one (m=0).
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values of () in the superradiant range Qa/c €[0.6,14], as
can be experimentally achieved by varying the density of the
condensate. A sharp increase of the energy gain is observed
in the region () >c/a. This is plausible, since {} > ¢/a marks
a transition from the regime where the radius of the ergo-
sphere remains within a factor of 2 of the sonic horizon, to
the regime where it grows linearly with (), thereby creating a
sizable ergospheric shell that energy can be extracted from.

Since vortices are quantized metastable structures, one is
naturally led to ask whether part (excited states) or all
(ground state) of their energy can be extracted by the sonic
wave packet. The latter instance corresponds to the break-
even condition, that is, E,()-E,(0)=E, where E;, denotes
the energy of the background vortex. In Fig. 4 we show the
background energy E,, (dashed line) and the total energy gain
AE,=[E,()-E,(0)] for three values of o/} in the superra-
diant range (solid lines), as functions of ). In the perturba-
tive regime (for () <3c/a, say) the efficiency of energy ex-
traction from the vortex grows much faster with () than the
quadratic increase of the background energy. This is espe-

cially true at large values of the ratio a/€). Although sub-
stantial values of AE,/E; are—by definition—beyond the
scope of the perturbative Klein-Gordon description used
throughout this work, it appears that nonlinear effects may
primarily determine the way in which the energy extraction
behaves as it becomes comparable to the background energy.
The possibility that substantial superradiance efficiencies, as
they emerge from the Klein-Gordon analysis, may persist
even in the nonperturbative quantum regime described
by the GPE cannot be ruled out. Even though the condition
AE,=Ey, may remain out of reach for a single wave packet,
one may still conjecture that a train of wave packets could
reach the goal. It would be interesting to test this conjecture
by numerical and experimental means.

As a further development of the present model, it will also
be interesting to consider a vortex with no drain [12,23] and
to apply our analysis to superradiant scattering from a giant
vortex [24-27]. Such vortices have been found to have up to
60 quanta of circulation and can therefore be well approxi-
mated within the classical limit.

In summary, numerical simulations of the Klein-Gordon
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FIG. 4. AE, is plotted in units of
poMc*a*H/2 on a logarithmic scale as a function
of Qa/c for three values of o/() (solid lines) and
compared with the background vortex energy Ej
on the same scale and in the same units (dashed
line). It may be noticed that the scaling unit of the
energy used here corresponds to the kinetic en-
ergy of a background vortex in the limit when
Qalc goes to zero.
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equation for sonic perturbations impinging on a hydrody-
namic vortex with parameter typical of BECs suggest the
possibility that, under typical conditions of BEC experi-
ments, a significant fraction of the vortex energy may be
extracted via the mechanism of superradiance. Since the
present Klein-Gordon analysis is necessarily restricted to a
perturbative regime in which back-reaction effects are ne-
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glected, it would be interesting to test the realizability of this
scenario both via the numerical solution of the Gross-
Pitaevski equation and by actual experiments on rotating
Bose-Einstein [28] condensates.
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search Initiative of SNS.
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