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We analyze the dynamics of atom-laser interactions for atoms having multiple, closely spaced, excited-state
hyperfine manifolds. The system is treated fully quantum mechanically, including the atom’s center-of-mass
degree of freedom, and motion is described in a polarization gradient field created by a three-dimensional laser
configuration. We develop the master equation describing this system, and then specialize it to the low-
intensity limit by adiabatically eliminating the excited states. We show how this master equation can be
simulated using the Monte Carlo wave function technique, and we provide details on the implementation of
this procedure. Monte Carlo calculations of steady state atomic momentum distributions for two fermionic
alkaline earth isotopes, 25Mg and 87Sr, interacting with a three-dimensional lin-�-lin laser configuration are
presented, providing estimates of experimentally achievable laser-cooling temperatures.
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I. INTRODUCTION

The complex behavior that occurs when a multilevel atom
interacts with polarization-gradient fields has been of interest
for some time now. Sub-Doppler cooling �1� occurs because
of elaborate optical-pumping processes produced by laser
light in atoms with a sublevel structure, as seen, for example,
in the lin-�-lin and the �+−�− laser configurations. The
semiclassical understanding of these interactions �2–7� in
one or more dimensions has led to a reasonably good quali-
tative understanding of the underlying mechanisms. Semi-
classical analysis has even in some cases provided quantita-
tive predictions of sub-Doppler laser cooling temperatures
measured in experiments �7�.

However, the most direct route to a quantitative under-
standing of atom-laser interactions is via a fully quantized
master equation for the atom, in which the center-of-mass
�CM� motion of the atom is taken into account quantum
mechanically. This allows behavior at low laser intensities
and low atomic velocities, the regime laser cooling strives to
reach, to be described correctly. The drawback of solving
such a master equation, however, is the large number of basis
states required for the calculation, due to the additional mo-
mentum states. This problem becomes especially pronounced
when attempting to model three-dimensional �3D� systems,
where the state space grows as the cube of the number of
one-dimensional momentum states needed.

The Monte Carlo wave-function �MCWF� technique, in-
troduced in the early 1990s, has allowed significant progress
to be made on the subject of atom-photon interactions in 3D
as well as lower-dimensional calculations. The MCWF tech-
nique is a simulation procedure for the master equation that
involves the propagation of single stochastic wave functions,
rather than density operators, with random processes occur-
ring at random intervals due to interactions with the photon
field that cause spontaneous emission. It has been shown that
this method is equivalent to the master equation in the limit
of a large number of independent stochastic wave functions

�8�. The MCWF technique has been successfully utilized to
calculate 3D sub-Doppler laser cooling temperatures for at-
oms with Zeeman degeneracy in the ground and excited
states �9�.

The majority of the research done on laser cooling has
involved essentially two-level systems, consisting of a
ground state and an excited state, which may or may not
contain degenerate sublevels. However, some investigations
have explored atomic systems in which multiple distinct ex-
cited states come into play. In particular, the use of bichro-
matic laser fields �10,11� to cool three-level � systems have
been extensively studied �see Refs. �12–14�, for example�.

In this paper we focus primarily on monochromatic laser
cooling for atoms with multiple closely spaced hyperfine
excited-state manifolds. Figure 1 provides a graphical illus-
tration of this type of atomic configuration. This situation is
of importance, for example, in alkaline-earth atoms with a
nonzero nuclear magnetic moment. If the excited state mani-
folds are spaced in energy on the order or smaller than the
excited state linewidth �, coherences between these mani-

FIG. 1. Energy level diagram of an atom with multiple hyperfine
manifolds. If the energy spacing of the excited-state manifolds are
of the order or smaller than the natural linewidth of the transition,
the usual sub-Doppler cooling transition �Fg↔Fe=Fg+1� is not
isolated and the other manifolds must be taken into account.
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folds become non-negligible, and can have a significant ef-
fect on the optical pumping processes required for sub-
Doppler cooling and on the dynamics of the atom-photon
interaction. Sub-Doppler laser cooling was experimentally
identified in fermionic 87Sr �15�, despite significant spectral
overlap in the excited state. At the time, it was hypothesized
that the large ground-state degeneracy in 87Sr �due to the
large nuclear spin I=9/2� was somehow able to overcome
the decrease in cooling due to the spectral overlap. Other
systems with spectral overlap in the excited state are 39K
�16�, 7Li �17�, and the fermionic isotopes of Yb �18�. In
87Rb, the effects of excited-state spectral overlap on the ef-
fectiveness of velocity-selective coherent population trap-
ping have been explored, both experimentally and theoreti-
cally �19�. Our goal in the paper is to provide a detailed
discussion of the theoretical techniques required to model
such systems realistically. In a future publication, we plan to
present comprehensive laser-cooling predictions for a variety
of atoms.

The structure of this paper is as follows. In Sec. II, we
develop the master equation for a laser-driven atom with
multiple excited-state manifolds, and then specialize this
equation to the low-intensity limit. In Sec. III, we introduce
the MCWF technique and apply it to this low-intensity mas-
ter equation. In Sec. V, we perform full Monte Carlo master-
equation simulations for 25Mg and 87Sr atoms in a 3D lin-�-
lin laser configuration as an example of using this technique
determine expected temperatures for these atoms in a laser
cooling experiment. In Sec. VI, we conclude.

II. MASTER EQUATION IN THE LOW-INTENSITY LIMIT

In this section we develop the master equation describing
a multilevel atom interacting with a coherent laser field and
coupled to a vacuum photon field. It is this equation, with
quantized atomic CM, that will provide an accurate descrip-
tion of atom-photon dynamics, and this master equation will
provide the basis for the Monte Carlo simulations that will
be discussed later.

The full Hamiltonian for the atom-laser system plus the
radiation field is

H = HA + HR + VA-L + VA-R, �1�

where HA=�i��iPi+ P2 /2m is the bare atomic Hamiltonian,
HR is the vacuum radiation field Hamiltonian, and VA-L and
VA-R are the atom-laser and atom-radiation field coupling
terms, respectively. In the atomic Hamiltonian, Pi is a pro-
jection operator onto the ith internal excited-state manifold,
��i is the energy of the ith excited-state manifold relative to
the ground-state manifold, P is the atomic CM momentum
operator, m is the atomic mass, and the sum runs over all
excited-state manifolds. We have assumed in Eq. �1� that the
effects of atom-laser and atom-radiation-field coupling are
independent �20�.

We can view Eq. �1� in terms of system-reservoir interac-
tions. The system consists of the atom, the laser, and their
interaction. The system Hamiltonian is

HS = HA + VA-L. �2�

The reservoir is the vacuum radiation field, having many
more modes than the system. With the Markov approxima-
tion, along with a few other approximations, the master
equation is then given by

�̇ =
i

�
��,HS� + Lsp��� . �3�

The operator � is the system reduced density operator ele-
ment, i.e., the reservoir degrees of freedom have been traced
over, �=TrR �. The remaining term, Lsp���, encompasses the
interaction between the atom and the vacuum photon field,
and provides for the phenomenon of spontaneous emission.

The relaxation operator due to spontaneous emission,
which we derive in detail in the Appendix, is given by

Lsp��� =
3�

8�
� d2� �

��k
�
i,j

e−ik·R��* · A�i����� · A�j�†
�eik·R

−
3�

16�
� d2��

	�k
�
i,j

��� · A�i�†
�eik·Re−ik·R


��* · A�j��� + ��� · A�i�†
�eik·Re−ik·R��* · A�j��� ,

�4�

where A�i�†
and A�i� are vector raising and lowering opera-

tors, respectively, between the ground state and the ith ex-
cited state, R is the atomic CM position, k is the direction of
the photon emitted in the relaxation process, and � is the
decay rate of the exited states. The integral is performed over
a solid angle in the vector k and the sum over 	�k refers to
the two polarization directions perpendicular to k. Note that
here and throughout this paper, we assume that each of the
excited-state hyperfine manifolds has the same lifetime �
=�−1. Expanding these vector operators in a basis of spheri-
cal unit vectors, 	̂±1= � �x̂± iŷ� /�2 and 	̂0= ẑ, we have

A�i� = �
q=0,±1

�− 1�q	̂−qAq
�i�. �5�

The spherical components of the vector operators are

Aq
�i� = �

Mg,Mei

Fg,Fei
,Mg,Mei

,Jg,Je,I�JgIFgMg	
JeIFei
Mei

� �6�

Aq
�i�†

= �
Mg,Mei

Fg,Fei
,Mg,Mei

,Jg,Je,I�JeIFei
Mei

	
JgIFgMg� , �7�

where

Fg,Fei
,Mg,Mei

,Jg,Je,I

= �− 1�Fg+Fei
+Mg+Je+I��2Fg + 1��2Fei

+ 1��2Je + 1�


� Fg 1 Fei

− Mg Mg − Mei
Mei

� Jg Fg I

Fei
Je 1� . �8�

Equation �4� is written in a way that makes it explicit that
it is in the Lindblad form �21–23�. As we will see later, it is
important for the relaxation operator to be of this form in
order to make use of the MCWF technique. Because the
complex exponentials in the second line cancel each other,
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the remaining integral over a solid angle can be evaluated,
whereby Eq. �4� can be equivalently written as �8�

Lsp��� =
3�

8�
� d2� �

��k
�
i,j

e−ik·R��* · A�i����� · A�j�†
�eik·R

−
�

2 �
i

�Pei
� + �Pei

� . �9�

We will now examine that the atom-laser interaction term,
which is given in the electric-dipole approximation by

VA-L�R,t� = − D · EL�R,t� , �10�

where EL�R , t� is the electric field of the laser and D is the
electric dipole operator. As usual, we treat the laser as a
classical field, since it is a densely populated mode of the
electric field. We can write the laser electric field in terms of
its positive and negative frequency components, EL�R , t�
=EL

�+��R�e−i�t+c.c., and then expand into spherical compo-
nents,

EL
�+��R� =

E0

2 �
q=0,±1

�− 1�qaq�R�	̂−q, �11�

where E0 is the electric-field amplitude and aq�R� are the
expansion coefficients. Making the rotating-wave approxi-
mation, so that

VA-L�R,t� = − D�+� · EL
�+��R�e−i�t − D�−� · EL

�−��R�ei�t,

�12�

where D�+�=�iPei
DPg and D�−�=�iPgDPei

, we find

VA-L = −
�

2 �
i

Di�R�e−i�t + H.c. �13�

In the previous equation we have defined the atom-laser rais-
ing operator,

Di
†�R� = �

q=0,±1
aq�R�Aq

�i�†
, �14�

and lowering operator,

Di�R� = �
q=0,±1

aq
*�R�Aq

�i�, �15�

and introduced the “invariant” Rabi frequency,

� =
E0
Je��D��Jg	

�2Je + 1
, �16�

where 
Je�D�Jg	 is the reduced dipole matrix element be-
tween the ground and excited states. This form of a Rabi
frequency, defined in terms of the reduced matrix element
between the J=Jg ground state and the J=Je excited state is
convenient because, in general, Rabi frequencies for transi-
tions to different excited-state manifolds will not be the
same.

Next, we observe that the second term in Eq. �9� is com-
prised of excited-state projection operators both pre- and
post-multiplying the system density operator. Thus, it is clear

that this term can be absorbed into the free-evolution com-
mutator term in Eq. �3�, allowing the master equation to be
equivalently described by Hamiltonian evolution determined
by an effective Hamiltonian Heff, plus a term that is com-
monly called a jump term, and that cannot be written in the
form of a commutator with the system density operator. We
thus have

�̇ = −
i

�
�Heff� − �Heff

† �

+
3�

8�
� d2� �

��k
�
i,j

e−ik·R��* · A�i����� · A�j�†
�eik·R,

�17�

where the effective Hamiltonian Heff is given by

Heff =
P2

2m
− �

i

���i + i
�

2
�Pei

+ VA-L, �18�

where VA-L is as given in Eq. �13�. In obtaining Eqs. �17� and
�18�, we have made the usual rotating-frame transformation,
which removes the free-evolution atomic Bohr frequencies
from the problem. The more relevant frequencies are instead
the laser detunings �i=�−�i from the ith excited-state hy-
perfine manifold. The master equation given in Eq. �17� is
fully general, but has been written in a form that will facili-
tate setting up a stochastic wave function simulation using
the MCWF technique described later.

We would like to now specialize the master equation just
discussed to the limit of low laser intensity. Specifically, this
limit is valid when the saturation parameter for the atom in
the ith excited-state hyperfine manifold,

si =
�2/2

�i
2 + ��/2�2 , �19�

is small, which occurs when the laser intensity is small or the
laser detuning from the atomic transition is large. In this
limit, the excited states are said to adiabatically follow the
ground states. The excited states can then be eliminated from
the equations of motion, resulting in a master equation in
terms of only the ground-state sub-density-matrix,

�gg = Pg�Pg. �20�

In this limit, the master equation becomes �see Sec. 8.3.3 of
Ref. �24��

�̇gg = −
i

�
�heff�gg − �ggheff

† � +� d2� �
��k

�
i,j

��* · B�i�


�R,k���gg�� · B�i�†
�R,k�� . �21�

The new effective Hamiltonian is given by

heff =
P2

2m
+ �

i

si

2
���i − i

�

2
�D�i��R�D�i�†

�R� . �22�

The new decay raising and lowering operators are given by
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Bq
�i�†

�R,k� =�3si�

8�
Aq

�i�†
eik·RD�i��R� , �23�

and

Bq
�i��R,k� =�3si�

8�
Aq

�i�e−ik·RD�i�†
�R� . �24�

Note that this new lowering �raising� operator contains two
components: a raising �lowering� operator D�i�†

�R� �D�i�


�R�� between the ground state and the ith excited-state
manifold due to the atom-laser interaction, and a lowering

�raising� operator Aq
�i�†

eik·R �Aq
�i�e−ik·R� of type q correspond-

ing to coupling with the reservoir photon field via a photon
with polarization q. Thus, the jump operator in the low-
intensity equations describes a transition cycle of the atom
involving coupling to both the laser and the reservoir photon
field. Note also that this new operator and the effective-
Hamiltonian term in the equation of motion are both propor-
tional to the saturation parameter si, the perturbation param-
eter.

III. THE MONTE CARLO WAVE-FUNCTION TECHNIQUE

The MCWF �8,9,25–29� technique is a means of interpret-
ing a system-reservoir master equation—which describes the
evolution of a density operator for a system interacting with
a large external reservoir—as the evolution of an ensemble
of individual wave functions, each undergoing random quan-
tum jumps. The free evolution of the stochastic wave func-
tions is determined by the effective Hamiltonian that we
found in the previous section. The nature of the quantum
jumps is determined by the leftover term in the master equa-
tion, which cannot be absorbed into the free-evolution com-
mutator. The components of this leftover term are often
called quantum-jump operators.

In the following, we will deal primarily with the master
equation in the low-intensity limit, as developed in the pre-
vious section, although the methods could just as easily be
applied to the arbitrary-intensity master equation. The low-
intensity limit, however, provides a reduction in the number
of internal atomic states required in the calculation, and this
will be beneficial for performing calculations later. Further-
more, since the lowest temperatures are achieved for low
laser intensities, such a specialization does not hinder our
ability to calculate lower bounds of temperature.

Having already expressed the master equation in a form
involving an effective Hamiltonian and a jump term in the
previous section, the application of the MCWF technique is
rather straightforward along the lines developed in the litera-
ture �see, in particular, Ref. �8��. For a single stochastic wave
function, the procedure is as follows. First, set the wave
function to an initial value. Then, numerically propagate the
wave function for a time step �t according to the effective
Hamiltonian Heff only, from an initial value ���t�	 to a final
value ���1��t+�t�	,

���1��t + �t�	 = �1 −
iHeff�t

�
����t�	 . �25�

Restrictions on the size of �t are given such that the first-
order truncation of the time-evolution operator in Eq. �25� is
approximately valid. We note that Heff is non-Hermitian by
construction, as a result of the absorbing parts of the relax-
ation operator into the original �Hermitian� bare system
Hamiltonian. Because of this, propagation with Heff will not
conserve the norm of the wave function when propagated to
���1��t+�t�	. The time step �t of the propagation must be
chosen so that �p�1 in the inner product,


��1��t + �t����1��t + �t�	 = 1 − �p . �26�

The quantity �p is the loss of norm resulting from propagat-
ing with Heff for a time step �t, and is found to be

�p = �t
��t���
i

B�i�†
�R,k� · B�i��R,k����t�	

= �t
��t���
i

�
q=0,±1

Bq
�i�†

�R,k�Bq
�i��R,k����t�	

= �
i

�
q=0,±1

�pi,q. �27�

The total loss of norm has been decomposed into individual
elements each corresponding to a particular type of interac-
tion with the reservoir �i.e., the q value of the interaction, or
the excited state i involved�. These individual contributions
are given by

�pi,q = �t
��t��Bq
�i�†

�R,k�Bq
�i��R,k����t�	 . �28�

We see that the loss of norm due to a given type of interac-
tion with the reservoir is determined by the quantum-
mechanical expectation value of the product of jump opera-
tors of this type of interaction. The loss of norm �p can also
be interpreted as the probability for a quantum jump to occur.

After the wave function has been propagated as described
above, and the values of �pi,q calculated, it must then be
determined whether or not a quantum jump occurred. This is
achieved by generating a pseudorandom number on a com-
puter and comparing it to the value of the total jump prob-
ability �p. If the random number is less than �p, a quantum
jump occurred, and if it is greater, no quantum jump oc-
curred. If a quantum jump does occur, the type of quantum
jump must also be calculated by comparing the random num-
ber with the individual subprobabilities �pi,q in the same
manner.

If a quantum jump of type q, i occurs, we must apply the
quantum jump lowering operator Bq

�i��R ,k� to the wave func-
tion from the beginning of the time step,

���t + �t�	 =� �t

�pi,q
Bq

�i��R,k����t�	 . �29�

The square-root factor in front of the lowering operator is
necessary for renormalization. If no quantum jump occurs,
then we simply renormalize the wave function.
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The resulting wave function is then used as the starting
point for propagation over the next time step, and the proce-
dure is repeated.

A good approximation of the true system density matrix is
achieved by combining the trajectories of a number of inde-
pendently propagated stochastic wave functions, each trajec-
tory having a unique sequence of pseudorandom numbers.
�A thorough discussion of the statistical issues involved with
the MCWF technique can be found in Ref. �8�.� Once a suit-
able ensemble of stochastic wave function trajectories has
been obtained, an estimate of the true expectation value of an
operator is found by taking the ensemble average of the ex-
pectation value of that operator with respect to the stochastic
wave functions. For example, an estimate of the average ki-
netic energy at a time t for a system for which N independent
stochastic wave functions have been calculated is given by


E	�t� =
1

N
�
i=1

N ��i�t�� P2

2m
��i�t�� , �30�

where �i�t� is the ith stochastic wave function, given at
time t.

Figure 2 demonstrates a simple example of the application

of the MCWF technique, wherein the average kinetic energy
is calculated for a two-level atom interacting with a
one-dimensional standing-wave field. For this calculation,
we have used a Rabi frequency of �=� /2 and a detuning
of �=−� /2, where � is the decay rate of the upper to
the lower atomic state, and we have set �=400Er, where
Er=�2k2 /2m is the recoil energy. The atomic kinetic energy,
averaged over 500 stochastic wave functions, each initialized
to zero momentum, is plotted as a function of time, with
error bars indicating the error in the ensemble average for a
given time. The separation of the transient relaxation period
from the steady state is clear, the steady state regime being
characterized by fluctuations in the average energy about a
mean. This noise is due to the finite number of stochastic
wave functions being used, and if a greater number of wave
functions were used, the amplitude of the fluctuations would
be decreased. In the limit of an infinite number of wave
functions, the true density-matrix solution of the master
equation would be obtained. An estimate of the steady-state
kinetic energy is found by time averaging the calculated data
over the entire steady-state regime. Since this is a larger
ensemble than the set of wave functions for a single time, the
error of such an average will be smaller than the error bars
shown in the figure.

IV. CALCULATIONS FOR 25Mg AND 87Sr

Our purpose in this section is to illustrate the application
of the theory developed up to this point to a complicated
system. We wish to quantitatively study the dynamics
of particular atoms interacting with 3D polarization-gradient
laser fields. The balance of the frictional cooling forces
along with the diffusion experienced by the atom due
to spontaneous emission and its interaction with the laser
leads to a steady-state momentum distribution that
determines the temperature of a gas of such atoms. In
particular, we will study here the cooling of the fermionic
isotopes of two alkaline-earth atoms, 25Mg �nuclear spin
I=5/2, 1S0− 1P1 width � /2�=81 MHz ��13/2�=46 MHz
and ��23/2�=27 MHz, where we have assumed a
hyperfine quadrupole parameter B=16 MHz �30�� and
87Sr �I=9/2, 1S0− 1P1 width � /2�=32 MHz, hyperfine split-
tings ��13/2�=43 MHz and ��23/2�=−17 MHz�. These
atoms, having a nonzero nuclear magnetic moment, have
degenerate �assuming zero magnetic field� Zeeman sublev-
els. These sublevels allow for the mechanism of sub-Doppler
cooling in an appropriate laser configuration. Both 25Mg
and 87Sr exhibit significant excited-state spectral overlap,
with ��13/�=0.57, ��23/�=0.33, and ��13/�=1.3,
��23/�=−0.53, respectively. We consider the 3D lin-�-lin
laser configuration, consisting of a pair of opposing beams
along each Cartesian axis, in which each beam is linearly
polarized orthogonal to its opposing beam. Furthermore, for
this calculation, we set to zero the relative phases of the three
sets of laser pairs.

Having a nuclear spin of I=5/2, the 1S0 state of 25Mg
results in a hyperfine ground state with six sublevels. Use of
the low-intensity master equation given in Eq. �17� allows us
to consider only these six internal states of the atom, since

FIG. 2. �Color online� An example of a characteristic MCWF
stochastic trajectory. Shown is the average of the atomic CM energy
over 500 independent stochastic wave functions, as a function of
time, for a two-level atom in a 1D standing-wave laser field. The
energy is given in units of the recoil energy Er=�2k2 /2m, and time
is given in units of the inverse recoil frequency �r

−1=� /Er. All
wave functions are initialized in the ground state of the atom and
localized in momentum space with zero momentum. The steady
state, wherein the system fluctuates around an average value, is seen
to be achieved after a transient relaxation period. Error bars indicate
the variance in the data at each given time for the ensemble of 500
stochastic wave functions. An estimate of the steady-state atomic
CM energy is obtained by performing a time average over all wave
functions for all times after the relaxation regime. The error bar of
such an average will be smaller than the error bars in the figure,
which apply only to the data for a given time.
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the excited states have been adiabatically eliminated in this
regime. However, as noted in Ref. �9�, a momentum grid
extending to 20�k in each direction with a spacing of �k
would yield a density matrix with �6
413�2�2
1011 ele-
ments. A direct solution of this master equation is not nu-
merically feasible, even without considering the further in-
creases in matrix size necessary to describe the master
equation relaxation operator in Liouville space �31�. On the
other hand, the MCWF method only requires numerical
propagation of individual wave functions, which would be
represented by vectors with 6
413�4
105 elements. If the
number of independent stochastic wave functions required us
to achieve satisfactory convergence for the calculation of a
particular property of the system is not unreasonably large,
the MCWF method provides a distinct advantage over a di-
rect master-equation solution.

We follow the procedure outlined in Sec. III, working in
the low-intensity limit in order to reduce the number of in-
ternal atomic states in the calculation, which increases the
efficiency of calculation. Since laser cooling is most effec-
tive at low laser intensities, this turns out to be a useful
regime in which to work, with the additional benefit that
lower temperatures require a smaller number of atomic CM
momentum states in the calculation. We must determine the
effective Hamiltonian as given in Eq. �22� and the jump op-
erators as given in Eqs. �23� and �24� for each atom, and for
the particular laser field being considered.

We consider here the lin-�-lin laser configuration in three
dimensions, with the relative phases of the beams set to zero.
The positive-frequency component of the electric field is

EL�R,t� =
E0

2
�ŷeikX + ẑe−ikX + ẑeikY + x̂e−ikY + x̂eikZ + ŷe−ikZ�

=
E0

2 �
q=0,±1

�− 1�qaq�R�	̂−q, �31�

with spherical coefficients

a+1�R� = −
1
�2

�e−ikY + eikZ + ieikX + ie−ikZ� , �32�

a−1�R� = +
1
�2

�e−ikY + eikZ − ieikX − ie−ikZ� , �33�

a0�R� = e−ikX + eikY . �34�

With these coefficients, along with parameters appropriate to
the particular atom under consideration, the atom-laser rais-
ing and lowering operators given in Eqs. �14� and �15� can
be constructed. With knowledge of the effective Hamiltonian
and the raising and lowering operators, we can then proceed
with the MCWF procedure, as outlined.

Our example entails propagating 20 stochastic wave func-
tions each for three different values of the light-shift
parameter, ���3�s3 / �2Erec�=10, 20, and 30, for both 25Mg
�I=5/2� and 87Sr �I=9/2�. We consider only �3=−5�. As in
Fig. 2, we calculate the stochastic trajectories of the en-
semble average �i.e., averaged over the 20 wave functions�
kinetic energy for each atom as a function of time. We con-

tinue this propagation until the transient regime has been
passed for some time, and use the time average over the
steady-state ensemble-average kinetic energy to provide an
estimate of the total average kinetic energy and the final
error. The results are shown in Fig. 3, along with the energies
for atoms with an isolated cooling transition for comparison,
Je=Jg+1 with Jg=1, 2, 3, and 4, with detuning �=−5�, as
first calculated by Castin and Mølmer in Ref. �9�. From this
cursory analysis, we can see that 25Mg should exhibit a sharp
rise in temperature with increasing laser intensity, while 87Sr
will cool to sub-Doppler temperatures, even for higher inten-
sities, as has been noted experimentally �15�.

Detailed calculations of this sort, for realistic atoms, are
quite computationally expensive. For example, a single data
point for the Mg and Sr calculations presented here required
on the order of 200 h wall time for a 20 processor parallel
code, running on a cluster of 2.4 GHz Intel Zeon processors.
There remains work to be done, improving the numerical
efficiency of our initial codes. Our goal in this paper has
been to present our method and some illustrative results; in a
future publication we plan to expand upon these initial re-
sults using improved, faster codes and present comprehen-
sive predictions of laser cooling temperatures for a variety of
atoms.

V. CONCLUSIONS

In conclusion, we have provided a detailed description of
the fully quantum-mechanical master equation that describes
an atom with multiple internal internal structure interacting
with a 3D polarization-gradient laser field. We have shown
how the spontaneous-emission relaxation operator is gener-
alized for atoms of this type. The MCWF technique has been

FIG. 3. �Color online� Results for calculated ensemble-average
energies �rms momentum squared� for 25Mg and 87Sr, as a function
of the light-shift parameter ���3�s3 / �2Erec�. For comparison, also
shown are the calculated energies for atoms with isolated transi-
tions, Je=Jg+1, with Jg=1, 2, 3, and 4, with detuning �=−5�. See
the text for a discussion.
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applied to these equations of motion, providing a more effi-
cient means of performing calculations for these systems
compared to a full solution of the master equation. A few
example calculations have been presented to illustrate the
application of this theory to atomic systems interacting with
laser configurations commonly used in experiments. After
making improvements in the efficiency of our codes, we in-
tend to expand upon this work in a future publication and
provide a comprehensive survey of laser cooling calculations
for atoms with a multilevel internal structure.

ACKNOWLEDGMENTS

We thank R. Santra and J. Ye for helpful discussions. We
acknowledge support from the NSF, and use of computing
resources from the Keck Foundation.

APPENDIX: RELAXATION OPERATOR FOR AN ATOM
WITH MULTIPLE EXCITED-STATE HYPERFINE

MANIFOLDS

In this appendix, we outline the major steps in deriving
the spontaneous-emission relaxation operator for an atom
with multiple hyperfine excited-state manifolds. Detailed
derivations of this sort, but including only a single excited
state manifold, exist elsewhere in the literature �see, for ex-
ample, Ref. �32��. Our intent here is to highlight the steps
important in generalizing the previous work to include co-
herences between other exited states. We will work within
the framework of the theory of system-reservoir interactions
and follow the notation of Ref. �32�.

The total Hamiltonian for an atom coupled to a vacuum
radiation field is then given by H=HA+HR+VA-R, where HA
and HR are the atom and reservoir bare Hamiltonian, respec-
tively, and VA-R is the atom-reservoir coupling and is given in
the the electric-dipole approximation as

VA-R = − D · E�R� = − �
q=0,±1

�− 1�qDqE−q�R� . �A1�

Here, D is the electric dipole operator for the atom and E is
the electric-field operator for the photon field, and we have
expanded the interaction into its spherical components. To
simplify the formalism, we will begin by ignoring the atomic
CM and setting the position coordinate to be the origin,
R=0. At the end we will then generalize the equations to
include the CM degree of freedom.

In general, the total density operator � evolves according
to the Liouville equation, �̇�t�= �i /�����t� ,H�. Making the
usual assumptions involved in deriving the master equation
�20,21,32�, we arrive at an equation of motion for the re-
duced density operator of the system �=TrR �,

�̇�t� =
i

�
���t�,HA� −

1

�2�
0

�

d��
q

�− 1�q


�gq����Dqe−iHA�/�D−qeiHA�/���t�

− e−iHA�/�DqeiHA�/���t�D−q� + H.c.� . �A2�

In the previous equation, gq��� is the two-time

correlation function of the reservoir and is defined as

gq���=TrR��RẼq���Ẽq�0��, where the variables with
overtildes are operators in the interaction representation,

Ẽq�t�=eiHRt/�Eqe−iHRt/�. We assume that the reservoir is ini-
tially a vacuum, so that �R= �0	
0�. From this we can see that
gq���=���
��Eq�0	�2e−i��t, where the kets and bras refer to
reservoir states. Note that g���*=g�−��. The correlation time
of the reservoir �C is defined such that g���→0 for ���C.

In addition to the above approximations, we will also
make the secular approximation, which requires that the
equation of motion for each density-matrix element �̇ij have
only terms involving density-matrix elements �kl on the
right-hand side, such that ��ij −�kl���, where �ij ��i−� j
and where � is the order of magnitude of the system-
reservoir coupling. In the following, we will consider a sys-
tem with a ground state coupled to multiple excited states
that are separated in energy of the order of or smaller than �.
Thus, the ground-excited energy splitting ��ge��� will be a
nonsecular frequency, while �eiej

�� will be a secular fre-
quency.

The particular atomic system that we are considering
consists of a ground state with electronic angular momentum
J=Jg=0 and an excited state with J=Je=1. The electronic
angular momentum is coupled to the nuclear spin
quantum number I, resulting in a ground state with total
angular momentum Fg= I, and three excited states with
�Fei

�= �I−1, I , I+1�. These assumptions are made for con-
creteness, but we note that this derivation can be easily ex-
tended to arbitrary angular momentum schemes. It is useful
to decompose the system density operator, as illustrated in
Fig. 4,

�̇�t� = �̇gg�t� + �
i,j

�̇eiej
�t� + �

i

��̇eig
�t� + �̇gei

�t�� , �A3�

where �ij�t�= Pi��t�Pj; Pi is a projection operator onto the
ith hyperfine manifold, Pi=�Mi

�JIFMi	
JIFMi�; and Mi is
the substate label for the ith manifold. Two relations that will
be useful in the following are

�
Mg,Mei


Mg�Dq�Mei
	�Mg	
Mei

� = Aq
�i� 
Jg��D��Je	

�2Je + 1
, �A4�

FIG. 4. The partitioning of the density operator for an atom with
multiple coupled excited-state manifolds, each potentially having
multiple substates.
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�
Mg,Mei

�− 1�q
Mei
�D−q�Mg	�Mei

	
Mg� = Aq
�i�† 
Jg��D��Je	†

�2Je + 1
,

�A5�

where Aq
�i�†

and Aq
�i� are the atomic raising and lowering op-

erators defined in Eq. �6�, and where we have made use of
symmetry properties of the three-J and six-J symbols �33�.

We focus on the equation for the ground-state sub-
density-operator �gg�t� in Eq. �A3�. Beginning by taking ma-
trix elements of Eq. �A2� between ground-state sublevel kets,
we proceed as usual by eliminating terms that violate energy
conservation �e.g., photon emission coupled to atomic exci-
tation�, and absorbing interaction-induced energy shifts into
the energies of the internal atomic levels. The resulting equa-
tion of motion is

�̇gg�t� =
�0

3

3	0�2��3c3�

�
Jg��D��Je	�2

2Je + 1 �
q

�
i,j

Aq
�i���t�Aq

�j�†

� ��
q

�
i,j

Aq
�i���t�Aq

�j�†
. �A6�

We have assumed that the energy splittings between the
ground state and the various excited states are all approxi-
mately equal, and accordingly have defined �0=�ei

−�g for
i=1,2 ,3. Equivalently, we have assumed that the decay rate
for all of the excited-state manifolds is approximately equal,
and defined as �=�Jei

→Jg
for i= ,1 ,2 ,3. Note that the double

sum over excited-state manifolds in Eq. �A6� will clearly
result in intermanifold coherence effects in the equations of
motion.

Regarding the energy shifts of the internal atomic states
that arise due to the interaction with the reservoir states, it is
important to mention a subtle feature not found in the sim-
pler case of degenerate isolated excited states. Such energy
shifts occur in the form of divergent principal-part integrals
of virtual transition amplitudes �20,32�. For degenerate iso-
lated manifolds, these diverging terms can be shown to can-
cel each other in the equations of motion. However, for the
case of multiple, nondegenerate manifolds, these terms no
longer cancel exactly, and pathological divergences related to
reservoir-dressed internal atomic energy splittings remain. A
thorough exploration of these terms is outside the scope of
this paper, and for the present purposes, we ignore such di-

verging terms and absorb interaction-induced energy split-
tings into the defined energy levels of the atoms.

Working in the same manner as for the ground-ground
sub-density-operator, we can find the equations of motion for
the excited-state sub-density-operators,

�̇eiej
�t� = − i�eiej

Pei
��t�Pej

−
�

2 �
q

�
k,l

Pei
�Aq

�k�†
Aq

�l���t�

+ ��t�Aq
�k�†

Aq
�l��Pej

, �A7�

where we have added a trivial summation index that will be
useful later when combining the various sub-density-matrix
decay terms. Similarly, the equations of motion for the
optical-coherence subdensity operators are

�̇eig
�t� = − i�eig

Pei
��t�Pg −

�

2 �
q

�
k,l

Pei
Aq

�k�†
Aq

�l���t�Pg,

�A8�

and �̇gei
�t�= �̇eig

† �t�.
Using Eq. �A3�, we can construct the equation of motion

due to spontaneous emission for the full density operator,

�̇�t� =
i

�
���t�,HA� + ��

q
�
i,j

Aq
�i���t�Aq

�j�†

−
�

2 �
q

�
i,j

�Aq
�i�†

Aq
�j���t��t�Aq

�i�†
Aq

�j�� . �A9�

Defining the spontaneous emission relaxation operator,

Lsp��� = ��
q

�
i,j

Aq
�i���t�Aq

�j�†
−

�

2 �
q

�
i,j

�Aq
�i�†

Aq
�j���t�

+ ��t�Aq
�i�†

Aq
�j�� , �A10�

we can write the equation of motion as

�̇�t� =
i

�
���t�,HA� + Lsp��� . �A11�

Including the atomic CM dependence that we have been ig-
noring since the beginning amounts to adding an integral
over momentum states in three dimensions that should have
been included when we inserted atomic projection operators.
With this addition, the full relaxation operator takes the form
shown in Eq. �4�.
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