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Using the example of electron-atom scattering in a strong laser field, it is shown that the oscillatory structure
of the scattered electron spectrum can be explained as a consequence of the interference of the real electron
trajectories in terms of Feynman’s path integral. While in previous work on quantum-orbit theory the complex
solutions of the saddle-point equations were considered, we show here that for the electron-atom scattering
with much simpler real solutions a satisfactory agreement with the strong-field-approximation results can be
achieved. Real solutions are applicable both for the direct �low-energy� and the rescattering �high-energy�
plateau in the scattered electron spectrum. In between the plateaus and beyond the rescattering cutoff good
results can be obtained using the complex �quantum� solutions and the uniform approximation. The interfer-
ence of real solutions is related to the recent attosecond double-slit experiment in time.
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I. INTRODUCTION

Atomic and molecular processes in a strong laser field
have received a lot of attention during the past few decades
�1–3�. In these processes electrons and photons of high en-
ergies are emitted. Since the laser field is strong there is a
phase of these processes during which the electrons can be
considered as moving in the laser field only. This leads to a
theoretical approach named the strong-field approximation
�SFA�. For example, in the case of ionization of atoms by a
strong laser field this approximation includes the neglect of
the interaction of the ionized electron with its parent ion.
This is the famous Keldysh approximation �4�. If the laser
field is strong enough, the ionized electron is able to return to
the parent ion and to scatter on it. Theories that include such
rescattering were developed and using them it was possible
to explain experimentally observed plateaus in the photon
and electron spectra �1,2,5�.

Particularly useful was the approach that uses Feynman’s
path integral formalism and the concept of quantum orbits
��1,6,7� and references therein�. In the quantum-orbit theory
the initial step of the process �for ionization this is the tun-
neling� has the quantum nature, and the initial time is com-
plex. Introducing such complex time into the classical equa-
tion of motion, one obtains that the electron is “born” at the
end of the tunnel �usually a few atomic units away from the
nucleus�, and then is leaded by the laser field. The total prob-
ability amplitude of the corresponding process is a coherent
sum of the contributions of all these paths with the complex
times. Therefore, the quantum nature of atomic processes in
a strong laser field is expressed by the complex time and by
the interference of quantum orbits. Mathematically, the com-
plex time emerges from the saddle-point solutions for which
the classical action is stationary. For example, for the above-
threshold ionization this condition is expressed as the
energy-conserving condition at the ionization time: the nega-
tive initial electron energy Ei=−Ip �Ip is the ionization poten-

tial� has to be equal to the positive electron kinetic energy in
the laser field Ek= �k+A�ti��2 /2, where k is the final ob-
served electron momentum and A�ti� is the vector potential
of the laser field at the ionization time ti �we use the atomic
system of units e=�=m=1�. The solutions of the equation
Ei=Ek exist only for the complex time ti.

Let us now consider a different atomic process: electron-
atom scattering in a laser field �see, for example �8�, and
references therein�. In this case, the initial electron kinetic
energy Eki

=ki
2 /2 is positive and real solutions of the saddle-

point equations exist. Therefore, the electron can follow the
real trajectory. The quantum nature of such processes in
strong fields comes through the interference �in the sense of
the Feynman’s path integral� of the amplitudes that corre-
spond to these real electron trajectories. An approach that
takes into account only the real trajectories is simpler than
the quantum-orbit formalism �1,6,7� and has already been
used to qualitatively analyze high-order above-threshold ion-
ization by few-cycle pulses �9,10�. It should be mentioned
that this approach was not based on the S-matrix formalism,
which we will use in the present paper. Instead, solving the
classical Newton equation of motion, the rescattering real
electron trajectories were obtained and used to qualitatively
explain the multiplateau structure and the cutoff in the elec-
tron energy spectrum. However, more recently, quantum-
orbit formalism with complex saddle-point solutions has
been developed for high-order above-threshold ionization by
few-cycle pulses �11�. It was shown that the real-trajectory
formalism fails to reproduce the SFA results and that even
the cutoff positions are significantly shifted from their clas-
sical values �12,13�.

Our aim in the present paper is to show that there are the
processes for which the theory with real times and real elec-
tron trajectories can give excellent agreement with the SFA
results. For this purpose we will use recently considered
laser-assisted electron-atom scattering �14�. Two plateaus,
within which the scattering cross section as a function of the
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scattered electron energy is of the same order of magnitude,
the direct and the rescattering plateau, were observed. We
will show that both these plateaus can be described very well
using the real-trajectory formalism. Both plateaus finish with
the corresponding cutoff, after which the scattering cross
section rapidly decreases with the increase of the final elec-
tron kinetic energy. We will show that in the region between
the plateaus, and beyond the second plateau the real-
trajectory method cannot be applied and that the quantum-
orbit theory is necessary. After a brief presentation of the
theory of laser-assisted potential scattering in Sec. II in Sec.
III we consider the direct scattering. In Sec. IV we analyze
the laser-induced rescattering, and, finally, in Sec. V the con-
clusions and comments are given.

II. THEORY

The S-matrix element for scattering of electrons on a
short-range potential V�r� in the presence of a laser field can
be written in the form �14�

Sfi = − 2�i �
n�−Eki

/�

�

��Ekf
− Eki

− n��Tfi�n� , �1�

where the delta function expresses the energy-conserving
condition: the final electron kinetic energy Ekf

=k f
2 /2 is equal

to the sum of the initial electron kinetic energy Eki
and n

times the photon energy � �the sum runs over all open chan-
nels with Ekf

�0�. The T-matrix element Tfi�n� describes the
free-free electron transitions with the exchange of n photons
with the laser field. This can be either absorption �for n�0�
or emission �for n�0�. The T-matrix element can be written
in the form of the Born expansion in the scattering potential
V�r�,

Tfi�n� = Tfi
1B�n� + Tfi

2B�n� + ¯ . �2�

In Ref. �14� it was shown that the first Born approximation
corresponds to the direct scattering, while the second Born
approximation describes the rescattering, i.e., the three-step
process in which the electron, after the first scattering, moves
in the laser field and returns to the atom �second step�, and,
in the third step, rescatters on it. In this sense, the laser-
assisted electron-atom scattering, within the first and the sec-
ond Born approximation, is analogous to the high-order
laser-induced atomic processes such as high-order above-
threshold ionization and high-order harmonic generation,
which can be treated using the strong-field approximation.
Therefore, our approach can be considered as the SFA ap-
plied to the free-free transitions �15�. In Ref. �14� the scat-
tering of electrons on inert gases was considered and the
scattering potential was modeled by the sum of the polariza-
tion potential and the double Yukawa potential, while the
interaction with the laser field was taken into account exactly
using the Gordon-Volkov solution of the Schrödinger equa-
tion for the electron in the laser field �8�. We have checked
that the above formulation, in the dipole approximation,
leads to the same results both in the length gauge and the
velocity gauge. This is important in the context of the recent

findings that the length gauge should be used in applications
of the SFA to the above-threshold ionization �16�.

The direct T-matrix element can be written in the form

Tfi
D�n� = Tfi

1B�n� = Vq�
0

T dt

T
exp�iSn

D�t�� , �3�

where the upper index D denotes the direct scattering,
T=2� /� is the period of the laser field, and
Vq= �2��−3�V�r�eiq·r d3r, q=ki−k f, is the Fourier transform
of the potential V�r�. The classical action for the direct scat-
tering with absorption of n photons from the laser field is

Sn
D�t� = n�t − ��t� · q = Skf

�t� − Ski
�t� , �4�

with ��t�=�tA�t��dt� and Sk�t�= 1
2�t dt��k+A�t���2. For a lin-

early polarized monochromatic laser field with the vector
potential A�t�= êA0 cos �t, using the integral representation
of the ordinary Bessel function of the integer order n, Jn�x�
�17�, for the direct T-matrix element we obtain

Tfi
D�n� = VqJn�x� , �5�

where x= �A0 /��ê ·q. This is the well-known Bunkin and Fe-
dorov result �18�.

The rescattering T-matrix element, i.e., the second Born
approximation, can be written in the form of a five-
dimensional integral �14�. The three-dimensional integral
over the intermediate electron momenta k can be solved ana-
lytically. In this case, the momentum k is replaced with the
stationary momentum

ks = − �
t

t+�

A�t��dt�/� = ���t� − ��t + ���/� ,

and only the two-dimensional integral over the first scatter-
ing time t and over the traveling time � between the first
scattering and the rescattering remains, so that

Tfi
R�n� = Tfi

2B�n� = �
0

T dt

T
�

0

�

d��2�

i�
	3/2

	 Vks−kf
Vki−ks

exp�iSn
R�t,��� . �6�

Here Sn
R�t ,�� is the rescattering classical action

Sn
R�t,�� = n�t − ��t� · q + �k f − ks�2�/2

= Skf
�t + �� − Sks

�t + �� + Sks
�t� − Ski

�t� . �7�

The differential cross section for scattering of an electron
with the initial momentum ki on a local potential V�r�, so
that the final electron momentum is k f and that n photons are
exchanged with the laser field, is defined by

d
 fi�n�
d�

= �2��4kf

ki

Tfi�n�
2. �8�

For a spherically symmetric problem the results are inde-
pendent on the polar angle � f of the final electron momen-
tum k f ��kf , f ,� f�. In the present paper we will consider
only the following scattering geometry: The incident electron
momentum ki is in the direction of the laser field polarization
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ê, i.e., k̂i · ê=1, while the angle between the scattered elec-
tron momentum k f and the direction of the laser field is
 f =0 �forward scattering�.

The differential cross section can be calculated numeri-
cally using the method described in Ref. �14�. In Fig. 1 we
present a characteristic example of the numerical results for
the potential scattering on He atoms in a linearly polarized
monochromatic laser field. The differential cross section as a
function of the number of photons exchanged with the laser
field exhibits two plateaus: the direct plateau, with the cor-
responding cutoff at nD=79, and the rescattering plateau,
which is six orders of magnitude lower and has the cutoff at
nR=214. We will use this example in order to illustrate the
method of real trajectories and its limitation.

III. DIRECT SCATTERING

Let us first analyze the direct T-matrix element. We have
already shown that it can be written in the simple form �5�.
For the scattering geometry used in our example, we have
x=A0ki�1−�1+n� /Eki

� /��0 for n�0. Furthermore, for
the example presented in Fig. 1 the number n can be large,
and we also have A0ki /�=53.6, so that 
x
 is large. Suppos-
ing that n= 
x
cos �, using the Debye asymptotic expansion
of the Bessel functions �17� we obtain

Jn�x� 
�− 1�n

�2�
x
sin �
�ei� + e−i�� , �9�

with �= 
x
sin �−n�−� /4. We see that, in this case, the di-
rect T matrix, Eqs. �5� and �9�, is expressed as a sum of the

two terms whose interference is responsible for the oscilla-
tions that appear in the direct plateau in Fig. 1. It is indica-
tive that the argument 
x
 becomes smaller than n for n=79,
which is exactly the cutoff position of the direct plateau pre-
sented in Fig. 1.

Let us now relate this result to the real electron trajecto-
ries. We will start from the more general case, Eqs. �3� and
�4�. The integral over the time t can be solved using the
saddle-point method. If the time t is considered as real, this
method reduces to the stationary phase method �19,20�. In
this case, from the condition that the first derivative over the
time t of the action Sn

D�t� is equal to zero, for the direct
scattering we obtain the equation

�ki + A�t��2 = �k f + A�t��2, �10�

which expresses the electron energy conserving condition at
the scattering time t. The real solutions t= ts of the above
equation are the stationary points. If we apply the stationary
phase method, we obtain

Tfi
D�n� 

Vq

T
�
ts

� 2�


Sn��ts�

	1/2

ei�Sn
D�ts�+��/4�, �11�

where the sum is over all stationary points ts, and

Sn��ts� = �2Sn
D�ts�/�t2, � = sgn�Sn��ts�� . �12�

For the parameters of Fig. 1, for each n, there are two
stationary points t1 and t2=T− t1 that are symmetric with
respect to t=T /2. The real solutions t1 and t2 exist only for
n�nD=79. Introducing these solutions into Eqs. �11� and
�8�, we have calculated the differential cross section. In
Fig. 2 this result is presented by a dotted line �denoted by
SPR—the stationary phase method with the real solutions�.
We see that this result agrees very well with the result
obtained by numerical integration �SFA—solid line� for
lower values of n. With the increase of n, the two solutions
t1 and t2 become closer to each other. When n approaches
nD=79 the SPR method fails �see the dotted line spike below

FIG. 1. �Color online� The differential cross section for potential
scattering of electrons having the initial kinetic energy Eki

=18 eV
on He atoms in the presence of a monochromatic linearly polarized
laser field, as a function of the number of photons n exchanged with
the laser field. The laser wavelength is 1060 nm and the intensity
2.6	1014 W/cm2. The incident electron momentum is in the direc-
tion of the laser field polarization, and the forward scattering is
considered. The direct �D� and the rescattering �R� plateaus with the
corresponding cutoffs at nD=79 and nR=214 are denoted in the
figure. The results obtained using the strong-field approximation
�SFA� are compared with the results obtained using the uniform
approximation �UA� with the real solutions of the stationary-point
equations for the direct and the rescattering plateau and with the
complex solutions in the transition region between the plateaus �C�.

FIG. 2. �Color online� A comparison of the numerical results for
the direct part of the differential cross section obtained using dif-
ferent methods. The laser, atomic, and the incident electron param-
eters are the same as in Fig. 1.
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n=79; this is a consequence of the inadequacy of the saddle-
point approximation for the case of two coalescing saddle
points, as we will explain later�.

For n=nD there is only one real stationary solution
t1= t2=T /2, while for n�nD there are no more real solutions.
However, the two complex solutions appear: t1=T /2+ ia,
t2=T /2− ia, a�0, and we should use the saddle-
point method instead of the stationary phase method.
Equations �11� and �12� remain valid for the saddle-point
method, except that the times ts are now complex and
�=sgn�Im Sn��ts��. The problem is that the contribution of
the solution t2=T /2− ia, which corresponds to �=−1,
is divergent: it increases with the increase of n and
should be neglected as unphysical. Keeping only the solution
t1=T /2+ ia, with Im t1�0 and �=1, and using Eqs. �8� and
�11�, we have calculated the differential cross section for
n�nD. The result is presented in Fig. 2 by a dashed line
�denoted by SPC: the saddle-point method with the complex
solutions�. Therefore, we were able to reproduce the SFA
result using the saddle-point approximation, which includes:
�i� for n�nD the interference of two contributions corre-
sponding to the solutions of the equation that expresses the
energy-conserving condition over the real scattering times t,
�ii� for n�nD �beyond the direct cutoff� only one, exponen-
tially decreasing, contribution that corresponds to the com-
plex time with Im t�0.

The interference of contributions having real times can
be illustrated by presenting the real electron trajectories that
are the solutions of the classical Newton equation of motion
for the electron in the laser field r̈�t�=−E�t�, with
E�t�=−�A�t� /�t the laser electric field vector. The initial
electron momentum is ki and the field is turned on at the
time t= ti when the electron position r�ti� is such that the
electron elastically scatters on the atom at the time ts. The
electron trajectory for ti� t� ts is

r�t� = �
ti

t

dt� A�t�� + �ki − A�ti���t − ti� + r�ti� . �13�

The electron velocity at the moment of scattering �t= ts� is
v�ts�=ki+A�ts�−A�ti�. The sign of this velocity is changed
after the scattering. Thus, for t� ts we have

r�t� = �
ts

t

dt� A�t�� + �A�ti� − 2A�ts� − ki��t − ts� + r�ts� ,

�14�

where r�ts�=0 �the scattering occurs at the origin�. The final
electron momentum outside the laser field is k f since the
time ts satisfies Eq. �10�.

An example of these trajectories is presented in Fig. 3.
For the direct scattering, two electron trajectories contribute
to the same electron energy Ekf

=Eki
+n� �n=60 in the pre-

sented case�, registered at the detector. The electron will
have this energy only if it scatters at time t1 or at time t2.
This is an analog of the double-slit experiment in time that
was recently demonstrated in the above-threshold ionization
experiment with a few-cycle laser field �21�. In this experi-
ment, by changing the carrier-envelope phase, it was possible

to open only one or two windows in time and to control the
process. Similarly, here we have two windows in time cen-
tered at t1 and t2 for which we will observe the scattered
electrons with the energy EkEkf

.

From Fig. 2 we see that the saddle-point method fails near
n=nD �see the spike formed by the SPR dotted curve and the
SPC dashed curve�. The reason is that the two stationary
points t1 and t2 of the integral over t in Eq. �3� approach the
common limit tc when the final electron energy Ekf

ap-
proaches the value Ec=Eki

+nD�, which causes the break-
down of the standard saddle-point approximation. One can
say that the asymptotic expansion formula �11�, obtained ac-
cording to the algorithm of the standard stationary phase
method, is nonuniform with respect to Ekf

. In the theory of
asymptotic expansions, there is a method that can cure the
problem: the uniform approximation for the case of two coa-
lescing saddle points �19,20�. The action �4� in Eq. �3� is
expanded in the neighborhood of these two saddle points,
higher order terms are taken into account, and the resulting
integrals are combined as the collective contribution of both
saddle points. The final expression can be cast in a simple
form, which uses the same information as the standard
saddle-point method, i.e., the solutions of Eq. �10�. For the
direct scattering, there is only one such pair of solutions, and
the T-matrix element Tfi

D�n� in the uniform approximation
can be written as

Tfi
D�n�  21/2��bn+ Ai��n� + ibn− Ai���n��eiS̄n, �15�

where Ai and Ai� are the Airy function and its first deriva-
tive, respectively, and

S̄n = �Sn
D�t1� + Sn

D�t2��/2,

�n = − �n�3�Sn
D�t1� − Sn

D�t2��/4�2/3, �16�

FIG. 3. �Color online� Trajectories of the electron in the laser
field for the parameters of Fig. 1. The direct-scattering trajectories
�solid and dashed line� for n=60 and the rescattering trajectories
�dotted and dot-dashed line� for n=200 are presented. The rescat-
tering trajectories correspond to the solutions having the highest
maximum in Fig. 4, denoted by p=1.
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bn± = �±1/4
Vki−kf

T
�
Sn��t1�
−1/2 ± 
Sn��t2�
−1/2� , �17�

where �n=1 for n�nD and �n=exp�−i2� /3� for n�nD,

while Sn
D and Sn� are given by Eqs. �4� and �12�, respec-

tively. The above result is valid both for n�nD �real solu-
tions t1 and t2=T-t1� and for n�nD �complex solutions
t1,2=T /2± ia; we do not neglect the solution t2, as we have
done for the saddle-point method�. From Fig. 2 we see that
the agreement with the SFA result is excellent, both for the
uniform approximation with the real solutions �UAR—
circles; n�nD� and for the uniform approximation with the
complex solutions �UAC—diamonds; n�nD�.

IV. RESCATTERING

The integrals that appear in the rescattering T-matrix ele-
ment �6� can also be solved using the asymptotic expansion
of integrals. The situation is more complicated since we have
a two-dimensional integral over the first scattering time t and
the traveling time �. The stationary points �ts ,�s� can be
found solving the system of equations �Sn

R�t ,�� /�t=0 and
�Sn

R�t ,�� /��=0, where the rescattering classical action
Sn

R�t ,�� is given by Eq. �7�. This system of equations has the
form of the energy conserving conditions at the first scatter-
ing time t and at the rescattering time t+�,

�ki + A�t��2 = �ks + A�t��2, �18�

�k f + A�t + ���2 = �ks + A�t + ���2. �19�

The stationary intermediate electron momentum ks is given
previously, Eq. �6�. Physically, ks is defined by the condition
that the electron, having the momentum ks, after the first
scattering at the time t, returns to the same position at the
time t+�, r�t+��=r�t�, following the trajectory that is the
solution of the Newton equation for the electron in the laser
field r̈�t�=−E�t�.

The stationary-point approximation for the two-
dimensional integral �6� can be written in the form

Tfi
R�n� 

4�

T
�i − 1� �

�ts,�s�

Vks−kf
Vki−ks


det�Cn�ts,�s��
1/2

	 ��/�s�3/2 exp�i�Sn
R�ts,�s� + ��/2�� , �20�

where the sum is over the stationary points �ts ,�s�,

Cn�ts,�s� = �Sn
tt�ts,�s� Sn

t��ts,�s�
Sn

�t�ts,�s� Sn
���ts,�s�

� , �21�

Sn

��ts ,�s�=�2Sn

R�ts ,�s� /�
��, and �=1, if both eigenvalues
of the matrix Cn�ts ,�s� are positive, �=0, if they have oppo-
site signs, and �=−1, if both are negative.

For a fixed value of n the solutions of the system of Eqs.
�18� and �19� come in pairs, which we will denote by �tj

p ,� j
p�,

j=1,2, p=1,2 ,3 , . . . . The index j denotes the members of
each pair, while the index p counts the different pairs. An
example of these solutions is presented in Fig. 4. The solu-

tions �tj
p ,� j

p� are classified according to the values of � so that

� j
1�� j

2�� j
3�¯ and �1

p��2
p. Besides the so classified solu-

tions there are more rescattering solutions for ��T /2 �de-
noted by R in the figure�. The maximum value of n for these
solutions is below the cutoff value of the direct scattering, so
that their contribution to the differential cross section can be
neglected �22�. From Fig. 4 we see that for each pair p there
is a cutoff value n=nR

p , after which there are no more real
solutions.

In Fig. 5 the results for the differential cross section as a
function of the number of photons exchanged with the laser
field obtained using the strong-field approximation �solid
line� are compared with the results obtained using the sta-
tionary phase approximation �dashed line�. For the approxi-
mate results only the real rescattering solutions with

FIG. 4. �Color online� The solutions of the stationary-point
equations �18� and �19� for the parameters of Fig. 1. The number of
photons n exchanged with the laser field is presented as a function
of the travel time �, expressed in optical periods T. The solutions
for the direct scattering �dashed line, denoted by D� are presented as
a function of the first scattering time t, 0� t /T�1. For the rescat-
tering there are more solutions that are classified by the numbers j
and p, as explained in the text.

FIG. 5. �Color online� The rescattering part of the differential
cross section as a function of the number of photons n exchanged
with the laser field for the same laser, atomic, and the incident
electron parameters as in Fig. 1. A comparison of the strong-field
approximation �SFA—solid line� and the stationary phase approxi-
mation �SPR—dashed line�.
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��T /2 are taken into account. The spikes on the dashed
SPR curve are the consequence of the fact that the stationary
phase method fails near the cutoff n=nR

p of the respective
pair of the stationary solution �see Fig. 4�. Beyond the maxi-
mal of these cutoffs n=nR=214 there are no more real solu-
tions.

For n close to nR
p the stationary phase method fails and the

uniform approximation for the rescattering T-matrix element
has to be used �20�. The result is

Tfi
R�n�  �

p

�cn+
p Ai��n

p� + icn−
p Ai���n

p��

	2�3/2 exp�iS̄n
p + i sgn�Sn

tt�ts
p,�s

p���/4� , �22�

where

S̄n
p = �Sn

R�t1
p,�1

p� + Sn
R�t2

p,�2
p��/2,

�n
p = − �3�Sn

R�t1
p,�1

p� − Sn
R�t2

p,�2
p��/4�2/3, �23�

cn±
p = �±1/4�fn�t1

p,�1
p� ± fn�t2

p,�2
p�� , �24�

fn�t,�� =
2

T
��

�
	3/2 �i − 1�Vks−kf

Vki−ks


det�Cn�t,���
1/2 . �25�

For n�nR
p there are no more real solutions of the saddle-

point equations. However, the complex solutions exist and
the n�nR

p case can be treated similarly, as we have done for
direct scattering. The complex rescattering saddle-point so-
lutions and the uniform approximation were analyzed in
Ref. �23� for high-order above-threshold ionization and in
�24� for high-order harmonic generation. Here we use only
the real rescattering solutions but, following the exponen-
tially decreasing tendency of each particular contribution, we
extrapolate each partial contribution beyond its cutoff at
n=nR

p and sum all them in Eq. �22�. The results obtained
using such modification of the uniform approximation with
real solutions are compared with the SFA results in Fig. 1.
The agreement is excellent.

The rescattering electron trajectory consists of three parts.
The first two parts are the same as for the single scattering:
for ti� t� ts the trajectory is given by Eq. �13�, while for
ts� t� tr, with tr= ts+�, it is given by Eq. �14�. The electron
velocity at the moment of rescattering �t= tr� is v�tr�=A�tr�
+A�ti�−2A�ts�−ki, so that the third part of the trajectory for
t� tr is given by

r�t� = �
tr

t

dt�A�t�� + �ki + 2A�ts� − A�ti�

− 2A�tr���t − tr� + r�tr� , �26�

where r�tr�=0, and we have changed the sign of the electron
velocity after the rescattering. In Fig. 3, besides the direct
trajectories, the rescattering trajectories for n=200 �dotted
and dot-dashed line� are shown. These trajectories corre-
spond to the rescattering solutions having the highest maxi-
mum on Fig. 4, denoted by p=1. Since n=200 photons are

absorbed from the laser field the final electron energy is
much higher than in the case of the direct scattering. Simi-
larly as for the direct scattering, the interferences appear
since there are the two rescattering times tr1 and tr2 that
contribute to the same final electron energy Ekf

.

V. CONCLUSIONS AND COMMENTS

The laser-atom physics in the high-intensity and low-
frequency regime combines quantum mechanics and classi-
cal physics in a unique fashion. This is the most visible in
terms of Feynman’s path integral: only few quantum orbits
are enough to describe such processes satisfactorily. Quan-
tum mechanics emerges through the tunneling and the inter-
ference of matter, while the classical mechanics is visible
through the particle propagation and their trajectories. In the
quantum-orbit formalism, both the time and the particle tra-
jectories are complex. This is usually related to the tunneling
nature of the ionization process in the strong field. Math-
ematically, this is expressed through the energy-conserving
condition: the negative binding electron energy can be equal
to the positive outgoing electron kinetic energy only if the
time is complex.

In the present paper, we have shown that it is not always
necessary to treat the times and orbits as complex. The
saddle-point equations are usually connected with the
energy-conserving conditions for each particular step of the
laser-field-induced multistep process. There are many cases
for which the real solutions of the saddle-point equations
exist. In these cases the phases of the transition matrix ele-
ments, which correspond to these solutions, are also real. The
coherent sum of all these matrix elements reproduces the
quantum result obtained using the S-matrix formalism and
the strong-field approximation. We have illustrated this using
the example of the laser-assisted electron-atom scattering
process. In this case, the initial electron energy is positive so
that the real solutions are possible. The interference of these
real solutions and the corresponding real electron trajectories
is an example of how the quantum interference effects
emerge from purely real trajectories that are the solutions of
the Newton’s equation of motion of the electron in the laser
field. It is also shown that the real solutions can be used for
the intermediate step of the process when one usually ex-
pects that only the complex solutions are applicable.

We consider the electrons having the same energy and the
direction after leaving the region of the interaction with the
laser field. There are two or more real electron trajectories
with different emission �rescattering� times that correspond
to these electrons. Their interference is visible in the electron
spectrum. This can be related with the recent attosecond
double-slit experiment in time �21�.
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