
Homonuclear ionizing collisions of laser-cooled metastable helium atoms

R. J. W. Stas, J. M. McNamara, W. Hogervorst, and W. Vassen
Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

�Received 5 September 2005; published 14 March 2006�

We present a theoretical and experimental investigation of homonuclear ionizing collisions of laser-cooled
metastable �2 3S1� helium atoms, considering both the fermionic 3He and bosonic 4He isotopes. The theoretical
description combines quantum threshold behavior, Wigner’s spin-conservation rule, and quantum-statistical
symmetry requirements in a single-channel model, complementing a more complete close-coupling theory that
has been reported for collisions of metastable 4He atoms. The model is supported with measurements �in the
absence of light fields� of ionization rates in magneto-optically trapped samples that contain about 3�108

atoms of a single isotope. The ionization rates are determined from measurements of trap loss due to light-
assisted collisions combined with comparative measurements of the ion production rate in the absence and
presence of trapping light. Theory and experiment show good agreement.
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I. INTRODUCTION

Soon after the first demonstration of laser cooling of neu-
tral atoms, it was recognized that collisions between atoms
have a profound effect on the physics of laser-cooled atomic
gases �1�. Light-assisted collisions and other inelastic colli-
sion processes constitute loss channels that limit the attain-
able atomic densities in laser-cooled samples. The magneto-
optical trap �MOT� was found to be a versatile tool for
accurate investigation of these inelastic collisions �2�, which
occur at collision energies of 10−7 eV in samples with tem-
peratures around 1 mK. Measuring loss rates from the trap,
the cross section for inelastic collisions can be determined
with great precision �3�. Experiments as well as theoretical
work, almost exclusively carried out in alkali-metal systems,
have provided a wealth of information on cold collisions �3�,
which play a critical role in many research areas that have
emerged since the advent of laser cooling �4�.

Laser-cooled helium atoms in the metastable 2 3S1 state,
denoted He*, provide unique opportunities to study cold ion-
izing collisions,

He* + He* → He + He+ + e− �PI� , �1�

He* + He* → He2
+ + e− �AI� , �2�

where PI stands for Penning ionization and AI for associative
ionization. The simple structure of the helium atom allows
for theoretical exercises that are relatively uncomplicated,
while experiments profit by the possibility of direct detection
of ions with charged-particle detectors. Furthermore, large
numbers of atoms ��3�108�, either 3He* or 4He*, can be
confined in a MOT �5�, so that differences between collisions
of fermionic �3He*� and bosonic atoms �4He*� can be inves-
tigated.

In this paper, a theoretical and experimental investigation
of homonuclear ionizing collisions of 3He* and 4He* atoms is
presented, with particular regard to isotopic differences in
ionizing collisions. The theoretical model is a single-channel
calculation of the ionization cross section and rate coefficient
for ionizing collisions, which can be applied to both isotopes.

In the experiments, magneto-optically trapped samples of
3He* or 4He* atoms are investigated and ionization rates are
measured with a microchannel plate �MCP� detector. The
measurements are performed in the absence of trapping light,
as optical excitation by near-resonant light alters the dynam-
ics of cold collisions �3,6�, thereby strongly enhancing the
ionization rate �7–14�.

Combining theory and experiment, the present work ex-
tends previous studies and may be used to unravel inconsis-
tencies in reported experimental results �15�. The transparent
theoretical model complements close-coupling calculations
that have been performed for collisions of 4He* atoms
�15–17�. Other studies of 4He* collisions provide little detail
�8,18� or focus exclusively on collisions of spin-polarized
atoms �to investigate the feasibility of Bose-Einstein conden-
sation� �19,20�, while another theoretical study, which ap-
plies to both 3He* and 4He* collisions �11�, is based on ques-
tionable assumptions. The extensive description of the
experimental procedure and exhaustive explanation of the
data analysis procedure provides clear insight into the origin
of experimental ionization rate coefficients and can be used
to evaluate other experimental studies of ionizing collisions
of He* atoms �8,10,11,21�.

The paper is organized as follows. Section II presents the
theoretical model for homonuclear ionizing collisions of
laser-cooled helium isotopes. First a simplified expression
for the ionization cross section is derived �Sec. II A�. Using
an effective molecular potential �Sec. II B�, partial-wave ion-
ization cross sections are derived from numerical solutions
of the one-dimensional Schrödinger equation �Sec. II C� and
the corresponding partial-wave ionization rate coefficients
are calculated �Sec. II D�. Quantum-statistical symmetry re-
quirements are taken into account �Sec. II E� to derive the
rate coefficient for samples of either 3He* or 4He* atoms with
a given population of magnetic sublevels. Finally, the results
are compared with other theoretical results �Sec. II F�. Sec-
tion III describes the measurement of the ionization rate co-
efficients in laser-cooled samples of 3He* or 4He* atoms.
Subdividing loss mechanisms into ionizing and nonionizing
contributions, and distinguishing between linear and qua-
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dratic trap loss, an overview of trap loss mechanisms occur-
ring in our He* samples is presented and estimates of ioniza-
tion and trap loss rates are derived �Sec. III A�. It is shown
that ionization rates can be deduced from trap loss measure-
ments if the contribution of ionizing mechanisms to trap loss
is determined. Measurements of trap loss due to light-
assisted collisions are presented �Sec. III B�. Comparative
ion production rate measurements in the absence and pres-
ence of trapping light are used to determine the ionization
rate coefficients in the absence of light fields �Sec. III C�.
Finally, the results are compared with our theoretical predic-
tions �Sec. III D�. Section IV presents a discussion of the
theoretical and experimental results, as well as conclusions
and prospects.

II. THEORETICAL MODEL

The ionizing collisions of Eqs. �1� and �2� are highly exo-
thermic, as the internal energy of two He* atoms exceeds the
24.6 eV ionization energy of the He atom by more than
15 eV. As differences between PI and AI are unimportant for
the work presented here �the reaction mechanisms have been
discussed in detail in Ref. �22��, we will not distinguish be-
tween them and use the term PI to denote both processes.

The interaction that drives the autoionizing transitions of
Eqs. �1� and �2� is of an electrostatic nature �22�, so that it
only induces transitions between molecular states of equal
total electronic spin. Therefore, ionization rates associated
with the reactions of Eqs. �1� and �2� depend on the total spin
states on the reactant and product sides of the reaction for-
mulas. For both reactions, the reactants carry an electronic
spin of s=1 and can form total spin states with S=0,1 or 2,
while the products, carrying s= 1

2 �except for ground-state
helium, which carries no electronic spin�, can only form
states with S=0 or 1. Clearly, total electronic spin can only
be conserved if S=0 or 1, and a PI reaction with S=2 would
involve a violation of spin conservation. It has been shown
�19,20� that a very weak spin-dipole magnetic interaction can
induce spin flips and mediate PI in collisions of He* atoms
with S=2. The corresponding ionization rate is four orders of
magnitude smaller than those of collisions with S=0 and 1,
for which total electronic spin is conserved �23�. The strong
suppression of PI by spin conservation is known as Wigner’s
spin-conservation rule �24� and has been observed for He*

collisions in a gas discharge �25�, a laser-cooled sample �21�,
and a Bose-Einstein condensate �26–28�. In heavier meta-
stable rare-gas systems, Wigner’s spin-conservation rule
does not apply �29�, and polarized samples can be used for
the investigation of quantum-statistical effects in ionizing
collisions �30,31�.

At the millikelvin temperatures of a laser-cooled sample
of He* atoms, collisions occur at relative kinetic energies E
=�vr

2 /2�10−7 eV, where �=m /2 is the reduced mass of the
colliding atoms �with m the mass of the He atom� and vr is
the relative velocity between the atoms. As the de Broglie
wavelength of atomic motion �=h /�vr�250a0 �with h
Planck’s constant� is much larger than the typical scale of the
interatomic potential, collisions are dominated by quantum
threshold behavior �18,32–35�. In this case, the collision pro-

cess can be described conveniently using the partial-wave
method �36�: the ionization cross section, written as a sum of
partial-wave contributions,

��ion� = �
�

��
�ion�, �3�

is dominated by only a few partial waves �. For inelastic
exothermic collisions, such as Penning ionizing collisions,
the quantum threshold behavior of the �th partial cross sec-
tion is given by �3,18,34�

��
�ion� � k2�−1 if k → 0. �4�

Here, k= �2�E /�2�1/2 is the wave vector of the asymptotic
relative motion of the colliding atoms, with �=h /2�. In a
sufficiently cold sample of He* atoms, the cross section for
Penning ionizing collisions is dominated by the s-wave con-
tribution �0

�ion�, which diverges as 1/k if k→0 �32�. Elastic
collisions have very different threshold properties: the cross
section �0

�elas� approaches a nonvanishing constant, �1
�elas�

�k4 and ��	1
�elas��k6, if k→0 �3,37�.

For collisions of He* atoms, the partial-wave cross section
��

�ion� can be derived from the solution of an effective one-
dimensional potential scattering problem �Secs. II A–II D�.
Restrictions imposed by the symmetry postulate on the par-
tial waves that contribute to the cross section of Eq. �3� can
be taken into account thereafter �Sec. II E�.

A. Ionization cross section

From a semiclassical point of view, two events can be
distinguished in the process of a cold ionizing collision of
two He* atoms: �1� elastic scattering of the atoms by the
interaction potential V�R�, with R the internuclear distance,
and �2� Penning ionization that occurs when the two electron
clouds start to overlap �22�. As collision energies are small,
the elastic scattering occurs at a relatively large internuclear
distance R
100a0. For partial waves �	0, the radial wave
function uk��R� �cf. Eq. �6�� is scattered by the centrifugal
barriers, while scattering for �=0 takes place at the internu-
clear distance where the local de Broglie wavelength ��R�
=h / �2��E−V�R��	1/2 becomes comparable to the size of the
potential, i.e., d��R� /dR�1 �18,34�. As the electron clouds
of both atoms start to overlap at small internuclear distance
R�5a0 �38�, the elastic scattering process can be considered
to precede the inelastic process of ionization.

In the spirit of Ref. �31�, we assume that the two subse-
quent processes can be treated separately. As PI is a strong
inelastic exothermic process, we can write the ionization
cross section for collisions with total electronic spin S as �31�

�2S+1���ion� =
�

k2�
�

�2l + 1��2S+1�P�
�tun��2S+1�P�ion�, �5�

where �2S+1�P�
�tun� is the probability for the atoms to reach a

small internuclear distance, and �2S+1�P�ion� is the probability
for ionization to occur at that place. As total spin S is
strongly conserved during ionization, �2S+1�P�ion� is very
small ��1� for collisions that violate Wigner’s spin-
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conservation rule. Here, we neglect ionizing collisions with
S=2 and assume that 5P�ion�=0. As ionization occurs with
essentially unit probability for the other spin states �Müller et
al. �38� report an ionization probability of 0.975�, we set
1P�ion�= 3P�ion�=1.

The calculation of cross sections �2S+1���ion� is reduced to
the determination of partial-wave tunneling probabilities
�2S+1�P�

�tun�. The energy dependence of the probabilities
�2S+1�P�

�tun� gives rise to an energy-dependent �2S+1���ion�,
which displays the quantum threshold behavior of the inelas-
tic collisions of Eq. �4�. To calculate �2S+1�P�

�tun�, we need to
consider the interaction potential of the colliding atoms.

B. Effective potential

As the helium atom, with only two electrons and a
nucleus, has a relatively simple structure, interatomic poten-
tials can be calculated with high accuracy. Figure 1 shows
the short-range part �3.5a0�R�14.0a0� of the potential
curves for two metastable 2 3S1 helium atoms obtained from
Müller et al. �38�. The curves are the result of ab initio
calculations in the Born-Oppenheimer approximation, where
total electronic spin S is a good quantum number. The pos-
sible values S=0, 1, and 2 correspond to a singlet, triplet, and
quintet potential �1V�R�, 3V�R�, and 5V�R��, respectively. In
Fig. 1, the curves are labeled in Hund’s case �a� notation
2S+1�g/u1

± , where �= 
ML
 with ML the quantum number of
the projection of the total electronic orbital angular momen-
tum onto the internuclear axis of the molecule, g /u stands for
gerade or ungerade, i.e., positive or negative symmetry under
inversion of all electronic coordinates of the molecule, and ±
indicates positive or negative symmetry under reflection
through a plane including the internuclear axis �39�. As both
electrons of the He* atom are in s states, colliding atom pairs
can only have zero total orbital angular momentum, indi-
cated by �=.

The potentials can be extended to large internuclear dis-
tance using a calculation of the dispersion interaction of two
He* atoms; for a multipole expansion −C6 /R6−C8 /R8

−C10/R10, dispersion coefficients C6=3276.680 a .u., C8
=210 566.55 a .u., and C10=21 786 760 a .u. have been re-
ported �40,41�. Here, we construct potentials valid for R
	3.5a0 by fitting the short-range potential curves of Fig. 1

smoothly onto the long-range dispersion interaction around
20a0 by interpolation using a cubic spline fitted to R6

� �2S+1�V�R�.
The elastic scattering for collisions with S=0 and 1 is

governed by potentials 1V�R� and 3V�R�, respectively. Within
the framework of the partial-wave method, potential scatter-
ing by �2S+1�V�R� is described by the radial wave equation
�42�

−
�2

2�

d2

dR2uk��R� + ��2 � �� + 1�
2�R2 + �2S+1�V�R� − E�uk��R� = 0,

�6�

where � is the quantum number of the relative angular mo-
mentum and uk��r� is the radial wave function. Equation �6�
can be interpreted as a one-dimensional Schrödinger equa-
tion �R�3.5a0�, describing the potential scattering of a par-
ticle of mass � by the effective potential

�2S+1�V��R� = �2S+1�V�R� +
�2 � �� + 1�

2�R2 , �7�

where the second term is the well-known centrifugal poten-
tial.

To calculate the probability �2S+1�P�
�tun� of atom pairs to

reach the distance where ionization occurs, we modify the
effective potential curves to simulate the ionization process.
We set the curves to a constant value for small internuclear
distances, and extend the range of R to negative values
�20,31�,

�2S+1�Ṽ��R� = �2S+1�V��R0� , R � R0,
�2S+1�V��R� , R 	 R0,

�8�

where R0=6.1a0 is chosen to be the location of the potential
curve minimum. In this way, we avoid reflections of the ra-
dial wave function from artificial features of the potential
energy curve at R0. Modeling the interatomic interaction by

Ṽ��R�, potential scattering is described by the one-
dimensional Schrödinger equation �−� �R� � �

−
�2

2�

d2

dR2uk��R� + ��2S+1�Ṽ��R� − E�uk��R� = 0, �9�

and ionizing collisions correspond to the transmission of the
relative particle to R�0: for atoms that reach the region of
small R, where ionization takes place, the corresponding
relative particle will propagate freely to R=−� and never
reflect back to R	R0. The disappearance of the particle to
R�0 results in a loss of probability flux.

Figure 2 shows plots of Ṽ0�R�, Ṽ1�R�, and Ṽ2�R� for
homonuclear collisions of both 3He* and 4He* atoms, where
we have used the atomic mass m=3.016 03 u for 3He* and
m=4.0026 u for 4He*, with 1 u=1822.89 a .u. For an atomic
sample with a thermal velocity distribution with temperature
T, the mean collision energy is given by �E�= 3

2kBT; this
relation is used to express the potentials in units of tempera-
ture.

The barriers formed by centrifugal potentials with �=1
and 2 are five orders of magnitude smaller than the potential

FIG. 1. Ab initio potential energy curves in atomic units, calcu-
lated for 4He* by Müller et al. �38�.
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energy associated with the short-range attraction of the col-
liding atoms. However, even the lowest barrier, with �=1, is
large compared to the temperature of 1 mK that is typical of
samples of laser-cooled He* atoms, and the barrier heights
increase with increasing �. Therefore, the probability
�2S+1�P�

�tun� is small for �=1 and decreases rapidly for larger
values of �.

C. Effective potential scattering problem

The probability of transmission through a barrier in a po-
tential can be calculated from the stationary states associated
with the potential �36�. To calculate the probability for trans-

mission to R�0 in potential �2S+1�Ṽ��R�, we consider station-
ary states that correspond to the sum of an incident and a
reflected wave for R�1, and a single transmitted wave for
R�R0. The transmission probability �2S+1�P�

�tun� can be writ-
ten as �36�

�2S+1�P�
�tun� =

Jtr

Jin
, �10�

where Jin and Jtr are the probability fluxes associated with
incident and transmitted plane waves, respectively. Numeri-
cal methods are used to calculate �2S+1�P�

�tun�, for �=0,1 ,2
and a range of collision energies E.

For a typical collision energy E=9.5�10−9 a .u. �E / 3
2kB

=2.0 mK�, the transmission probabilities are 1P0
�tun�=0.66,

1P1
�tun�=0.086, and 1P2

�tun�=5.8�10−4. Clearly, reflection is
almost complete in the case of d-wave scattering �as E is
much smaller than the barrier height�, while transmission is
significant for p-wave scattering. In the case of s-wave scat-
tering, there is considerable reflection, although a centrifugal
barrier is absent. Here, quantum reflection occurs due to the
mismatch between the long asymptotic de Broglie wave and
the rapidly oscillating wave in the region of small internu-
clear separation. We checked that the resulting partial-wave
cross sections satisfy the quantum threshold behavior of Eq.
�4�.

To determine the dependence of the cross sections on the
adapted short-range part of the potential, we have calculated
the variation in the cross sections as a function of R0 for
various collision energies. If R0 is close to the location of the
potential curve minimum at 6.1a0, the variations are smallest
�less than 0.2%�. Furthermore, the difference between prob-
abilities 1P�

�tun� and 3P�
�tun� at a given collision energy E is

only a few percent, as potentials 1Ṽ�R� and 3Ṽ�R� differ very
little in the region where elastic scattering takes place:


3Ṽ�R�− 
1Ṽ�R� 
 / 

1Ṽ�R� 
 �10−4 for R	20a0.
It has been shown in calculations that the ionization cross

sections for 4He* are enhanced if the s-wave scattering
length 5a associated with the quintet potential is near a sin-
gularity �15�. The s-wave scattering length describes elastic
collisions in the low-temperature limit �37� and shows a sin-
gularity �goes through ±�� whenever a bound state is re-
moved from the potential �15�. From experiments, it has
been determined that 5a=7.6 nm with an error of 0.6 nm
�43�. The scattering length is sufficiently far from the singu-
larity to neglect enhancement of the ionization cross sec-
tions. For 3He* atoms, the s-wave scattering length for S=2
is predicted to be 5.0� 5a�6.0 nm �44�. This is also suffi-
ciently small to neglect effects on the ionization cross sec-
tions.

D. Ionization rate coefficient

The ion production rate dNion /dt in a magneto-optically
trapped atomic sample of 3He* or 4He* atoms can be ex-
pressed in terms of an ionization rate coefficient K
�particle−1 cm3/s�,

dNion�t�
dt

= K� � � n2�r,t�d3r . �11�

The rate coefficient depends on the temperature T of the
sample and can be written as �18�

K�T� = �
0

�

��ion��vr�PT
�MB��vr�vrdvr , �12�

with

PT
�MB��vr� =� 2

�

vr
2

�kBT/��3/2 exp�−
vr

2

2kBT/�
� , �13�

the Maxwell-Boltzmann distribution for the relative velocity
in the atomic sample under study, with �vr

2�1/2= �kBT /��1/2

= �2kBT /m�1/2.

FIG. 2. Potentials �2S+1�Ṽ��R� with centrifugal barriers. The cen-
trifugal interaction is smaller than the short-range attraction by five
orders of magnitude.
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Correspondingly, we can define partial-wave ionization
rate coefficients,

�2S+1�K��T� = �
0

�
�2S+1���

�ion��vr�PT
�MB��vr�vrdvr , �14�

and the ionization rate coefficient associated with potential
�2S+1�V�R�,

�2S+1�K�T� = �
�

�2S+1�K��T� . �15�

Figure 3 shows plots of the rate coefficients �calculated with
numerical integration� for a temperature range from 10 �K
to 100 mK, for collisions of 3He* or 4He* atoms. The energy
of the centrifugal barriers for �=1 and 2 is indicated by
dashed vertical lines. For temperatures T�5 mK, the contri-
bution of the d wave becomes very small and can be ignored
if an accuracy of 5% is sufficient.

The quantum threshold behavior of the rate coefficients is
given by

�2S+1�K� � k2� if k → 0. �16�

In particular, we find �2S+1�K0→const if k→0, as the diver-
gence of �0 is canceled by v= �k /�. The differences be-
tween the two isotopes are less than 50%.

We have neglected the atomic hyperfine structure of the
interatomic potentials for 3He*. As it is four orders of mag-

nitude smaller than the attractive interaction at short range,
its effect on �2S+1���

�ion� and �2S+1�K� is negligible.

E. Symmetrization of scattering states

Although the interatomic interaction is almost identical in
the case of 3He* and 4He*, giving rise to partial-wave con-
tributions �2S+1���

�ion� and �2S+1�K� that are similar, the com-
position of the total ionization cross section or rate coeffi-
cient from these contributions is very different for the
bosonic �4He*� and fermionic isotope �3He*�. The symmetri-
zation postulate requires that a scattering state describing a
colliding pair of identical bosons has even symmetry under
exchange of the atoms, while a state describing identical fer-
mions has odd symmetry �45,46�. As a result, partial waves
with improper symmetry do not contribute to the total cross
section or rate coefficient, and are excluded from the sum-
mations in Eqs. �3� and �15�.

1. Bosonic: 4He* Symmetric states

The total electronic spin S and relative angular momen-
tum � of two colliding 4He* atoms are, to good approxima-
tion, conserved separately �19,20�, and S and � can be con-
sidered good quantum numbers. Ignoring the radial part of
the quantum states, a basis for atom pairs is given by

�
�s1�A�s2�B,SMS, � m��	 . �17�

For the moment, the atoms are assumed to be distinguishable
and are labeled with A and B. The atoms carry spins s1=1
and s2=1, respectively, and the total electronic spin S is the
result of the addition of s1 and s2. Quantum numbers MS and
m� are associated with the projection onto the internuclear
axis of the total electronic spin and the relative angular mo-
mentum �, respectively.

For a system of identical bosons, such as a pair of 4He*

atoms, physical states are symmetric under exchange of the
two atoms. Such states are obtained by applying the symme-
trizer S= �1+ P12� /�2 to the basis vectors �36,47�,


s1s2,SMS, � m�� =
1
�2

�1 + �− 1�S+��
�s1�A�s2�B,SMS, � m�� ,

�18�

and normalizing the result if necessary. As the states differ
from zero only if S+� is even, we can conclude that it is not
possible to construct states with the proper symmetry if S
=0 or 2 and � is odd, or if S=1 and � is even. Consequently,
the corresponding partial-wave ionization rate coefficients
are excluded from the summation of Eq. �15� and we can
write

1K = �
� even

1K�, �19�

3K = �
� odd

3K�. �20�

As total electronic spin is conserved, each long-range scat-
tering state converts to a single short-range molecular state

FIG. 3. Partial-wave ionization rate coefficients 1K� and unpo-
larized rate coefficient K�unpol� for 3He* and 4He* �3K� coefficients
are, within a percent, equal to corresponding 1K� coefficients�.
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associated with a potential of Fig. 1. Consequently, the
strong suppression of ionization in the quintet potential re-
sults in a rate coefficient 5K�0.

2. Fermionic: 3He* Antisymmetric states with hyperfine
structure

In a collision of two 3He* atoms, the total atomic angular
momentum F= f1+ f2 and the relative angular momentum of
the two atoms � are, to good approximation, conserved sepa-
rately. Here, f j =s j + i j �j=1,2�; the total angular momentum
f j of an atom is the sum of its electronic spin s j and nuclear
spin i j.

Ignoring the radial part of the quantum states and assum-
ing for the moment that the colliding atoms are distinguish-
able, a basis for atom pairs is given by

�
�s1i1f1�A�s2i2f2�B,FMF, � m��	 , �21�

where atoms A and B have identical electronic spins s1=s2

=1 and nuclear spins i1= i2= 1
2 , which add up to f1 for atom A

and f2 for atom B. The latter two add up to the total atomic
angular momentum F with projection onto the internuclear
axis MF. In magneto-optically trapped 3He* samples, all at-
oms occupy the lower f = 3

2 hyperfine level, so that f1= f2

= 3
2 and F can take values 0 ,1 ,2, and 3. The quantum num-

bers � and m� are the angular momenta associated with the
relative motion of the two atoms and its projection onto the
internuclear axis, respectively.

As the 3He atom is a fermion, the physical states describ-
ing atom pairs are antisymmetric under exchange of the at-
oms. Applying the antisymmetrizer A= �1−P12� /�2 to the
basis states �36,47�, we obtain


s1i1f1,s2i2f2,FMF, � m��

=
1
�2

�1 + �− 1��−F�
�s1i1f1�A�s2i2f2�B,FMF, � m�� .

�22�

These states, which must be normalized if necessary, differ
from zero only if F−� is even. Consequently, only even
�odd� partial waves contribute to collisions with even �odd�
F, and the total ionization rate coefficient can be written

K�F� = � �
� even

K��F� if F = 0,2,

�
� odd

K��F� if F = 1,3.
�23�

To express the partial-wave rate coefficient K��F� in terms of
the rate coefficients �2S+1�K� that are associated with singlet
and triplet potentials, we consider the interaction between
two colliding 3He* atoms.

The collision process of two laser-cooled 3He* atoms is
controlled by the atomic hyperfine interaction �48� and the
various interatomic interactions �38,40,41� that result in po-
tentials �2S+1�V�R�. As a result of the hyperfine interaction, S
is not a good quantum number for large internuclear dis-
tances, where atom pairs are characterized by F. However, S
is a good quantum number for R�30a0, where the molecular

interaction dominates and Wigner’s spin-conservation rule
applies. The evolution of the quantum-mechanical state from
long to short internuclear distance is well approximated by a
diabatic transition, as the absolute change in the coupling
between quasimolecular states, during one period of oscilla-
tion in the quasimolecular system, is much larger than the
absolute energy difference between the scattering states
�49,50�. Around R=35a0, the molecular interaction, increas-
ing exponentially with decreasing R �15�, becomes larger
than the atomic hyperfine interaction, while the relative ve-
locity has increased to 4�10−5 a .u. due to the attractive Van
der Waals potential. Consequently, the asymptotic scattering
state of a colliding atom pair remains unchanged when the
atoms reach small internuclear distance and the relation be-
tween rate coefficient K��F� and coefficients �2S+1�K� can be
determined by expanding the corresponding scattering state
onto the molecular states.

The expansion coefficients only depend on the angular
part of the quantum states involved. For the molecular states,
the angular part can be derived by applying the antisymme-
trizer to the basis

�
�s1i1�A�s2i2�B,SI,FMF, � m��	 �24�

�and normalizing if necessary�, where the atoms A and B are
assumed distinguishable, I is the quantum number associated
with the sum of the nuclear spins, I= i1+ i2, and S is the
quantum number associated with the sum of the electronic
spins, S=s1+s2; the bases of Eqs. �21� and �24� are related
through 9-j symbols �51�. The resulting physical states


s1i1,s2i2,SI,FMF, � m�� =
1
�2

�1 + �− 1��−S−I�

� 
�s1i1�A�s2i2�B,SI,FMF, � m��
�25�

are different from zero only if �−S− I is even. The expansion
of a scattering state onto the molecular states can be confined
within the subspace defined by F and �, as F and � can be
considered good quantum numbers,


s1i1f1,s2i2f2,FMF, � m�� = �
S,I

aSI�F�

�
s1i1,s2i2,SI,FMF, � m�� . �26�

Table I presents the expansion coefficients aSI�F� for scatter-
ing states with f1= f2= 3

2 .
The partial wave rate coefficient K��F� associated with

scattering state 
s1i1f1 ,s1i1f2 ,FMF , �m�� can be written as a
weighted sum of coefficients �2S+1�K� associated with mo-
lecular states 
s1i1 ,s1i1 ,SI ,FMF , �m�� with weights 
aSI�F�
2,

K��F� = �
S,I


aSI�F�
2 � �2S+1�K�. �27�

It can be seen in Table I that, in the case of F=0, only singlet
and triplet states are involved, so that
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K��0� = 2
3 �1K�� + 1

3 �3K�� . �28�

For the F=1 and 2 states, the diabatic transition transforms
the scattering states into a superposition of ionizing and non-
ionizing molecular states. The contribution to the ionization
rate coefficient from quintet states can be neglected, so that

K��1� = 10
27�1K�� + 5

9 �3K�� , �29�

K��2� = 2
3 �1K�� . �30�

Finally, in the case of F=3, the partial rate coefficient K��3�
is negligible, as only quintet states are involved.

F. Ionization rate coefficient for trapped samples

In a laser-cooled sample of He* atoms, collisions occur
for all values of the total atomic angular momentum F
=0,1 ,2 ,3 in the case of 3He*, and S=0,1 ,2 in the case of
4He*. The contribution of each collision channel depends on
the distribution Pm of magnetic substates in the sample,
where m is the azimuthal quantum number of the atom,
which can take on values mf =− 3

2 ,− 1
2 , 1

2 , 3
2 in the case of 3He*

and ms=−1,0 ,1 in the case of 4He*. Using the density op-
erator �36�

��r� = �
m

�
n�m

Pm�r�Pn�r�
m,n��m,n
 �31�

to describe a statistical mixture of �properly symmetrized�
magnetic substate pairs 
m ,n�, with m and n azimuthal quan-
tum numbers, the ionization rate coefficient for the mixture
�cf. Eq. �11�� can be written as

K =
1

N
� � � � �

� even
�1beven

1K� + 3beven
3K��

+ �
� odd

�1bodd
1K� + 3bodd

3K���n�r�d3r , �32�

where N is the number of trapped atoms, n�r� is the density
distribution in the sample, and �2S+1�beven/odd is the sum of the
expectation values of the density operator for all ionizing
molecular states with total spin S and even �odd� parity. Ex-
plicit expressions for the coefficients are given in Table II. As
the coefficients can be interpreted as projections of the sta-
tistical mixture onto subspaces of ionizing states, Eq. �32�
implies the assumption that scattering states transform dia-
batically to a superposition of molecular states, when atoms
move from large to small internuclear distance.

The unpolarized ionization rate coefficients K�unpol�, i.e.,
the rate coefficient for a laser-cooled sample of He* atoms
where the magnetic substates of the atoms are uniformly
populated, is obtained by setting P−1= P0= P1= 1

3 for 4He* or
P−3/2= P−1/2= P1/2= P3/2= 1

4 for 3He*. For samples with a tem-
perature around 1 mK, only s and p waves have to be taken
into account. For unpolarized 4He* samples, we obtain

K4He
�unpol� � 1

9 ��1K0� + 3�3K1�� , �33�

where 1K0 and 3K1 are the partial-wave ionization rate coef-
ficients for 4He*, calculated in Sec. II C. In the case of an
unpolarized sample of 3He* atoms in the lower f = 3

2 hyper-
fine level, the rate coefficient is given by

TABLE I. Expansion coefficients aSI�F�= �s1i1 ,s2i2 ,SI ,FMF , �m� 
s1i1f1 ,s2i2f2 ,FMF , �m��. Scattering
state 
s1i1f1 ,s2i2f2 ,FMF , �m�� is indicated by its values of F, while molecular state 
s1i1 ,s2i2 ,SI ,FMF , �m��
is denoted in the Hund’s case �a� notation 2S+1g/u

+ �I�.

F 1g
+ �I=0� 1g

+ �I=1� 3u
+ �I=0� 3u

+ �I=1� 5g
+ �I=0� 5g

+ �I=1�

0 �2/3 −�1/3

1 �10/27 �5/9 −�2/27

2 �2/3 �1/3

3 1

TABLE II. Coefficients �2S+1�beven/odd from Eq. �32�. The coefficients are the sums of the expectation
values of the density operator for all ionizing molecular states of given S and given parity.

3He* 4He*

1beven �1/3��P−3/2P3/2+ P−1/2P1/2� �1/3��2P−1P1+ P0
2�

3beven �2/3��P−3/2P−1/2+ P−3/2P1/2+ P−1/2P3/2+ P1/2P3/2�
+ �1/2��P−3/2P3/2+ P−1/2P1/2�

0

1bodd �2/9��P−3/2P1/2+ P−1/2P3/2�+ �4/27��P−1/2P−1/2

+ P1/2P1/2�+ �1/3�P−3/2P3/2+ �1/27�P−1/2P1/2

0

3bodd �1/3��P−3/2P1/2+ P−1/2P3/2�+ �2/9��P−1/2P−1/2

+ P1/2P1/2�+ �1/2�P−3/2P3/2+ �1/18�P−1/2P1/2

P−1P0+ P−1P1+ P0P1
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K3He
�unpol� � 1

16� 11
3 �1K0� + 2

3 �3K0� + 10
9 �1K1� + 5

3 �3K1�� ,

�34�

where 1K0, 3K0, 1K1, and 3K1 are the partial-wave ionization
rate coefficients for 3He*. For both isotopes, the coefficients
are shown in Fig. 3 for temperatures between 10 �K and
100 mK. It can be seen in Fig. 4, where the ratio of the
unpolarized rate coefficients for the two isotopes is dis-
played, that unpolarized 3He* atoms have a larger rate coef-
ficient than unpolarized 4He* atoms for temperatures be-
tween 10 �K and 100 mK.

In Table III, we compare the results of the theoretical
model presented here to results of other theoretical work
�8,11,15�. We see that our results agree well with the results
of the detailed close-coupling theory of �15� and the simpler
calculation of �8�, but that there is a large discrepancy with
the results of Kumakura and Morita �11�. This is not surpris-
ing, since their model does not account for quantum reflec-
tion for s-wave scattering. As we have shown in Sec. II C,
quantum reflection is significant and we estimate that the
omission of this effect leads to rate coefficients that are too
large by factor of about 2. Moreover, Kumakura and Morita
assume that the evolution of the scattering states during the
collision of two 3He* atoms can be approximated by an adia-
batic transition and accordingly apply the noncrossing rule
�52� to derive the number of ionization channels for each

partial-wave ionization rate coefficient. As shown in Sec.
II E, the system is well approximated by a diabatic transition
and we estimate that the assumption of an adiabatic transi-
tion leads to an unpolarized rate coefficient that is 50% too
large. This explains the difference between our results and
those of Ref. �11�. As a final remark we note that the ob-
served differences between our work and those of Refs.
�8,15� may be due to theoretical uncertainties in the molecu-
lar potentials and in the form of the ionization widths used in
the calculations. This leads to theoretical uncertainties of
�40%, as discussed in Ref. �15�.

III. MEASUREMENT OF IONIZING COLLISIONS
IN A MAGNETO-OPTICAL TRAP

The experimental investigation of ionizing collisions is
performed in a setup that can be used to confine large num-
bers �
108� of atoms in a MOT. As the setup has been de-
scribed previously �5�, only a brief outline is presented here.
The MOT is loaded from a collimated and Zeeman-slowed
atomic beam, produced by a liquid-nitrogen-cooled dc-
discharge source. The beam source can be operated with pure
3He* or pure 4He* gas. In the case of 3He*, the gas is re-
cycled and purified using liquid-nitrogen-cooled molecular
sieves.

The laser light that is used for collimation, Zeeman slow-
ing, and magneto-optical trapping has a wavelength of
1083 nm and is near resonant with the 2 3S1

�f = 3
2

�
→2 3P2

�f = 5
2

� optical transition in the case of 3He*, and the
2 3S1→2 3P2 transition in the case of 4He*. For both transi-
tions, the natural linewidth � /2�=1.62 MHz and the satura-
tion intensity Isat=0.167 mW/cm2 �cycling transition�. The
light is generated by an ytterbium-doped fiber laser, which is
frequency stabilized to the laser-cooling transition using
saturated absorption spectroscopy in an rf-discharge cell.
Acousto-optic modulators �AOMs� are used to generate the
slowing and trapping frequencies, which are detuned by
−500 and −40 MHz, respectively. The slowing beam is fo-
cused onto the atomic beam source, while the trapping light
is split up into six independent Gaussian beams with rms
diameter of 27 mm and a total peak intensity Ipeak
=59 mW/cm2 �Ipeak/ Isat�353�. The magnetic quadrupole
field of the MOT is generated by two anti-Helmholtz coils
and has an axial field gradient �B /�z=0.28 T/m.

For the investigation of ionizing collisions, the trapped
He* samples are studied with an absorption imaging system
and two microchannel plate detectors �50�. The absorption
imaging system consists of a charge-coupled device �CCD�
camera, a narrowband commercial diode laser at 1083 nm
�TOPTICA, model DL100�, and an AOM. The laser and
AOM are used to generate low-intensity �I�0.05Isat� probe
light pulses with a duration of 100 �s, while the CCD cam-
era �mounted behind a magnifier lens� records absorption
images of the sample with a magnification of 0.17. The im-
ages are used to determine the �Gaussian� density distribu-
tion of the atoms in the trap �50�,

n�x,y,z,t� = n0�t� exp�−
x2

2��
2 −

y2

2��
2 −

z2

2�z
2� , �35�

with n0�t� the �time-dependent� density in the center �x=y
=z=0� of the sample, and �� and �z the rms radii of the

FIG. 4. Ratio of unpolarized ionization rate coefficients

K3He

�unpol�
/K4He

�unpol�
, including partial-wave contributions up to �=2.

TABLE III. Calculated values of K�unpol� and comparison be-
tween various theoretical results. Theoretical results from Ref. �15�
are extracted from Fig. 8 of that paper.

Ref. T �mK� K�unpol� �cm3/s� This work

4He* �15� 0.001 9.9�10−11 7.7�10−11

�11� 0.5 2.2�10−10 7.5�10−11

�15� 0.5 8.6�10−11 7.5�10−11

�8� 1 7.3�10−11 8.3�10−11

�15� 1 8.9�10−11 8.3�10−11

2 9.9�10−11

3He* �11� 0.5 1.0�10−9 2.0�10−10

2 1.8�10−10
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distribution; the number of trapped atoms N=���n�r�d3r
= �2��3/2��

2�zn0.
The MCP detectors allow for the independent monitoring

of ions and He* atoms that escape the trap. With an exposed
negative high voltage on its front plate, one MCP detector
attracts all ions produced in the trapped sample. The other
MCP is mounted behind a grounded grid and detects only the
He* atoms that exit the trap in its direction. This shielded
MCP detector is used to determine the temperature T of the
trapped samples through time-of-flight measurements. The
unshielded MCP detector measures the instantaneous ioniza-
tion rate in the trapped sample and is used to determine trap
loss and ionization rates in the sample.

A. Trap loss and ionization in magneto-optical trap

For magneto-optically trapped He* samples, the time evo-
lution of the number of trapped atoms N can be described by
the phenomenological equation �7,13�

dN�t�
dt

= L − �N�t� − �� � � n2�r,t�d3r . �36�

Writing down this differential equation, we assume that N�t�
is controlled by three simultaneously occurring processes,
corresponding to the three terms on the right-hand side of the
equation. The first term is a constant loading rate L, repre-
senting the capture of atoms from the decelerated atomic
beam into the MOT. The second and third terms are the
linear and quadratic trap loss rates, respectively. The loss
processes are defined in terms of the local atomic density of
the sample n�r , t� �with L=0� by

dn�r,t�
dt

= − �n�r,t� − �n2�r,t� . �37�

The nomenclature of the loss rate terms refers to their pro-
portionality to density n�r , t� and density squared n2�r , t�.
Analogously, the proportionality constants � and � are re-
ferred to as the linear and quadratic loss rate coefficients,
respectively.

For He* samples in a 1083 nm MOT, only collisional loss
mechanisms give rise to significant trap loss. Quadratic trap
loss is determined by collisions between trapped He* atoms,
while linear trap loss results from collisions with particles
traversing the trapping volume, such as background gas par-
ticles and helium atoms from the atomic beam. Loss rates in
4He* samples can be estimated using cross section data re-
ported in the literature �22,53�. Table IV presents an over-
view of trap loss mechanisms in 4He* samples; cross-section
data are combined with the atomic density in the sample, the
background gas density, or the atomic beam flux to deter-
mine the estimates.

The trap loss mechanisms can be subdivided into ionizing
mechanisms and mechanisms where atoms are lost without
the formation of ions. Linear trap loss is dominated by a
nonionizing loss mechanism. As the beam of metastable at-
oms is not separated from the beam of ground-state atoms
�contrary to other work �10,13,14,21��, collisions of ground-
state 4He atoms from the atomic beam with trapped atoms

�collision energy Er�4.9 meV� give rise to a trap loss rate of
about 2 s−1. Ionizing mechanisms hardly contribute: colli-
sions with slowed �Er�0.0064 meV� and nonslowed 4He*

atoms �Er�6.5 meV� from the atomic beam, and collisions
with background molecules �presumably H2O, H2, N2, and
O2� result in a loss rate of about 1�10−2 s−1.

Quadratic trap loss is dominated by ionization mecha-
nisms. In the presence of trapping light, light-assisted ioniz-
ing collisions between trapped 4He* atoms give rise to an
ionization rate of 4 s−1. In the absence of trapping light, ion-
izing collisions yield a rate of 0.1 s−1. As two atoms are lost
for every ion that is formed, the corresponding trap loss rates
are 8 and 0.2 s−1, respectively. The escape of fast 4He* atoms
from the trap, through fine-structure-changing collisions or
radiative escape, constitutes a nonionizing quadratic loss
mechanism in the presence of trapping light, which can be
neglected �54,55�.

The ionization rate associated with the linear and qua-
dratic ionization mechanisms can be written as

dNion�t�
dt

= �a�N�t� +
�b�

2
� � � n2�r,t�d3r , �38�

where �a and �b are the weights of ionization mechanisms in
linear and quadratic trap loss, respectively. The quadratic
ionization rate is half of the ionizing quadratic trap loss rate,
as a single ion is formed for every pair of colliding He*

atoms that is lost from the trap. As the linear ionization rate
is small compared to the quadratic ionization rate, in both the
presence and absence of trapping light, and quadratic trap
loss is almost completely determined by ionization mecha-
nisms, we can set, to good approximation, �a=0 and �b=1,
so that

dNion�t�
dt

�
�

2
� � � n2�r,t�d3r . �39�

For samples of 3He* atoms, trap loss and ionization are
determined by the same loss mechanisms. As collision stud-
ies are rare for 3He* atoms �22,53�, we cannot derive accu-
rate estimates of trap loss and ionization rates in this case.
However, cross sections are not expected to show a large
isotopic dependence �less than a factor of 2�, so we conclude
that Eq. �39� also applies to 3He* samples. It should be noted
in this respect that hyperfine-changing collisions are forbid-
den by energy conservation. Trapped 3He* atoms are in the
lower f = 3

2 hyperfine level, so that hyperfine-changing colli-
sions require an energy larger than the hyperfine splitting
Ehf=28 �eV, which corresponds to a temperature Ehf /

3
2kB

=0.2 K.

B. Ionization rates for light-assisted collisions

To determine the ionization rate coefficient for light-
assisted collisions, �b� /2�� /2, we have performed a trap
loss experiment, where the loading of atoms to the MOT is
abruptly stopped and the decaying ionization rate in the
sample is monitored with the unshielded MCP detector. For
Gaussian samples, described by Eq. �35�, the ionization rate
can be written as
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dNion�t�
dt

= V
�

4�2
n0

2�t� , �40�

where the effective volume V= �2��3/2��
2�z, such that central

density n0�t�=N�t� /V. The current signal from the MCP de-
tector is proportional to the ionization rate and is converted
to a voltage signal that is given by

��t� = eReff
�

4�2
n0

2�t� , �41�

where e is the electron charge and Reff is an effective resis-
tance.

Substitution of Eq. �35� into Eq. �36� shows that the cen-
tral density satisfies the differential equation

dn0�t�
dt

=
L

V
− �n0�t� −

�

2�2
n0

2�t� . �42�

If the loading of atoms to the MOT is abruptly stopped, the
density decays as �2�

n0�t� =
n0�0�

�1 +
�n0�0�
2�2�

� exp��t� −
�n0�0�
2�2�

. �43�

Substitution of Eq. �43� into Eq. �41� gives an expression for
the decaying ionization signal. The loss rates � and �n0�0�
determine the exact shape of the decay and are derived from
the measured traces by means of curve fitting.

We have performed trap loss measurements on 3He* and
4He* samples. The loading of atoms into the MOT is stopped

TABLE IV. Trap loss rate dN /dt and ionization rate dNion/dt associated with collisional loss mechanisms in magneto-optically trapped
samples of 4He* atoms. Rates are calculated for collisions of trapped 4He* atoms with ground-state �1 1S� 4He atoms and metastable �2 3S�
4He* atoms from the atomic beam, for collisions with ground-state 4He atoms and several molecules from the thermal background gas, and
for collisions between trapped 4He* atoms from the sample, in both the presence and absence of trapping light �with a wavelength of
1083 nm�. For each collisional mechanism, the collision energy Er is given, as well as total cross section ��tot� or ionization cross section
��ion�. Furthermore, beam flux F, background gas density ñ, or central density n0 of the sample are given. For collisions with 4He* atoms
from the beam, we distinguish between slowed �Er=0.0064 meV� and nonslowed �Er=6.5 meV� atoms �50�. The cross sections are taken
from various references; in references where an ionization rate coefficient K is given the corresponding cross section is calculated as
��ion�=K / v̄r, where v̄r= �8kBT /���1/2 is the mean relative velocity for collisions of particles with mass m1 and m2 in a gas with temperature
T, with reduced mass �=m1m2 / �m1+m2�.

Collision
partner

Originating
from

Er

�meV�
��tot�

�10−16 cm2�
��ion�

�10−16 cm2�
F

�cm−2 s−1�
ñ

�cm−3�
n0

�cm−3�
dNion/dt

�s−1�
dN /dt
�s−1�

4He beam 4.9 200a �1014 0 �2b

4He* beam 6.5 181c 4�1011 7�10−3b 1�10−2d

4He* beam 0.0064 1160e 8�109 9�10−4b 2�10−3d

4He background 16.5 140f 1�107 0 0.02g

H2 background 22 0.1h �1.2�106 �2�10−4g �4�10−4d

H2O background 6.0 131i �1.2�106 �9�10−4g �2�10−3d

O2 background 4.7 8j �1.2�106 �4�10−5g �8�10−5d

N2 background 4.1 2k �1.2�106 �1�10−5g �2�10−5d

4He* sample 0.00001 4�103l 4�109 0.1m 0.2d

4He*+light sample 0.00001 16�104l 4�109 4m 8d

aVrinceanu et al. �56�.
bFor collisions with atoms from the beam, rates are �F.
cFor collision energies 0.1�Er�100 meV, ��ion� satisfies the �semiclassical� energy dependence ��ion�=�1�E1 /Er��, with E1=1 meV, �1

=318�10−16 cm2, and �=0.3 �38�.
dAs two atoms are lost from the trap for each ion that is formed, dN /dt=2�dNion/dt�.
eVenturi et al. �17�.
fMastwijk �57� and Rothe et al. �58�.
gFor collisions with background gas particles, rates are �v̄rñ,where v̄r= �2Er /��1/2 is the mean relative velocity for collisions of particles with
mass m1 and m2, with �=m1m2 / �m1+m2� their reduced mass.
hMartin et al. �59�.
iMastwijk �57�; the large cross section results from a large attractive force between 4He* and H2O, a consequence of the permanent dipole
moment of the H2O molecule.
jParr et al. �60�.
kYamazaki et al. �61�.
lTol et al. �10�; the cross section for light-assisted collisions is exceptionally large due to the optical excitation of the colliding atom pair to
long-range dipole-dipole potentials �3�.
mFor samples with a Gaussian density distribution, as given by Eq. �35�, quadratic ionization rate dNion/dt= ���ion�v̄r /N����n2�r�d3r
=��ion�v̄rn0 /2�2.
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by blocking the Zeeman-slowing light with the AOM used
for frequency detuning the slowing light from the atomic
transition. Decay traces are averaged four times using a digi-
tal oscilloscope. It has been verified that the variations in the
central density are small enough that an averaged decay
curve allows an accurate determination of loss rates � and
�n0�0�. An example of an averaged decay trace and the cor-
responding fit are displayed in Fig. 5. The central density in
the samples n0�0� is derived from absorption imaging. The
resulting rate coefficients � and � are presented in Table V.

The linear loss rate coefficients are close to 1 s−1 for both
isotopes. Assuming that the loss rate stems from collisions
with ground-state atoms from the atomic beam, we can de-
termine the intensity of the beam of ground-state atoms. Us-
ing the total cross section �=200�10−16 cm2 �56� for colli-
sions between trapped 4He* atoms and ground-state 4He
atoms from the atomic beam, the distance between source
and trapped sample of 370 cm, and loss rate coefficient �
=0.6 s−1, we derive an intensity of 4�1018 s−1 sr−1. As the
intensity of 4He* atoms is 4�1014 s−1 sr−1 �50�, the fraction
of 4He* atoms in the beam is 10−4.

The quadratic loss rate coefficient for 3He* is almost twice
as large as the loss rate coefficient for 4He*. It has been
pointed out that this isotopic difference stems from a differ-
ence in the relative number of ionization channels, opened
up by the lowering of centrifugal barriers by the long-range,

resonant dipole-dipole interaction �11�. Quantum-statistical
symmetry requirements play a role in these collisions, but
the effects are washed out as the number of participating
partial waves is much larger than 1. The loss rate coefficient
for 4He* is in good agreement with other work �10�.

C. Ionization in the absence of trapping light

Collisions where ionization is not preceded by absorption
of trapping light contribute little to the ionization rate in
magneto-optically trapped He* samples. However, the corre-
sponding ionization rate coefficients can be determined from
a comparative measurement of the ionization rate in the pres-
ence and absence of trapping light �7�. In this measurement,
the trapping and slowing light are blocked for a short time
interval of 100 �s with the AOMs used for the detuning of
the laser frequencies from the atomic transition. With the
trapping light present, the observed ionization signal

�on�t� = eReff
�

4�2
n0

2�0� + �bgr �44�

is dominated by light-assisted collisions and is relatively
large. If the trapping light is absent, collisions of 3He* or
4He* atoms occur without optical excitation; the correspond-
ing ionization rate is much smaller and can be written as

�off�t� = eReff
K

2�2
n0

2�0� + �bgr, �45�

with K the ionization rate coefficient in the absence of trap-
ping light. Combing Eqs. �44� and �45�, the rate coefficient
can be written as

K =
�

2

�off − �bgr

�on − �bgr
. �46�

Clearly, K can be derived from a measurement of the ioniza-
tion rate coefficient for light-assisted collisions, � /2, and
signals �on, �off, and �bgr.

In the experiment, the trapping and slowing light are
blocked every 200 ms, and the ionization signal is averaged
256 times with a digital oscilloscope. Examples of averaged
ionization signals are displayed in Fig. 6. The measurement
is repeated with the atomic beam blocked to obtain the back-
ground ionization signal �bgr, which includes an offset origi-
nating from the MCP signal amplifier. To obtain accurate
values of ��on−�bgr� and ��off−�bgr�, the average of the sig-
nals is determined over 40 �s time intervals, as indicated in
Fig. 6.

Although the atoms are not confined if the trapping light
is absent, the expansion of the trapped He* sample during
100 �s is insignificant and can be neglected. It is checked
that the trapped sample remains unaffected if the light is
blocked repeatedly, running the experiment with a duty cycle
of 200 ms. The resulting ionization rate coefficients are pre-
sented in Table V. The coefficients are close to but do not
agree within the error bars with other experimental results
�8,10,11,21�, which suffer from mutual inconsistency them-
selves, as has been pointed out �15�.

FIG. 5. Ionization signal for a trap loss measurement on a 3He*

sample. At t=0, the input of atoms to the MOT is stopped abruptly.
The rapid decay of the ionization signal �black dots� is nonexpo-
nential, as can be seen in the inset. Fitting the signal to our model
�gray line� yields trap loss rates �n0�0�=20 s−1 and �=0.7 s−1.

TABLE V. Characteristic parameters of the magneto-optically
trapped He* samples and extracted loss rate coefficients. Experi-
mental errors correspond to one standard deviation.

3He* 4He*

T �mK� 2.0�3� 1.9�1�
N 2.6�9��108 3.7�5��108

n0 �cm−3� 3.0�5��109 4.4�4��109

� �s−1� 0.8�2� 0.6�3�
� �cm3/s� 5.5�8��10−9 3.3�7��10−9

K �cm3/s� 1.8�3��10−10 8�2��10−11

K�unpol� �cm3/s� 1.9�3��10−10 10�2��10−11
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D. Comparison between experiment and theory

To confront the theoretical model of Sec. II with the mea-
surements of Secs. III B and III C, we compare the theoreti-
cal expression for K, Eq. �32�, with the T=2 mK experimen-
tal values of Table V. As optical pumping processes cause
the magnetic substate distribution to deviate from a uniform
distribution �with the stretched substates slightly overpopu-
lated�, we need to determine the magnetic substate distribu-
tion Pm�r� in the trapped samples to calculate a value for K
that can be compared to experiment.

The distribution Pm�r� is obtained as the steady-state so-
lution of a rate equation model, which describes the optical
pumping in the MOT �21�. Starting from the intensity and
detuning of the trapping light, and an expression for the
quadrupole magnetic field, rate equations are formulated and
subsequently solved to obtain the steady-state substate popu-
lation in the sample. In these calculations we take into ac-
count that the intensities of the trapping beams are not bal-
anced and that �consequently� the trapped sample is not
exactly centered on the zero point of the magnetic field.

At a temperature T=2 mK, the resulting theoretical ion-
ization rate coefficients

K3He = 1.7 � 10−10 cm3/s, �47�

K4He = 8.0 � 10−11 cm3/s, �48�

agree very well with the experimental values of Table V. At
this low temperature only s and p waves have to be taken
into account as higher-order waves contribute less than a few
percent. The samples are partially polarized, so that quadratic
ionization rates are smaller than they would be in unpolar-
ized samples. Because of the different substate structure �s
=1 compared to f =3/2� and different quantum-statistical
symmetry, the corrections for the two isotopes differ,
K4He/K4He

�unpol�
=0.81 and K3He/K3He

�unpol�
=0.93. For direct com-

parison with the theoretical results of Table III K�unpol� for
3He* and 4He* have been included in Table V as well.

IV. DISCUSSION AND CONCLUSIONS

The theoretical model presented in Sec. II shows good
agreement with other theoretical work and with the experi-
mental results reported in Sec. III. The agreement between
the various results has to be considered partly coincidental in
view of the theoretical uncertainties in the potentials, as al-
ready mentioned in Sec. II F. Anyway, this shows that cold
ionizing collisions of He* atoms can be understood as single-
channel processes that are determined by Wigner’s spin-
conservation rule, quantum threshold behavior, and the sym-
metrization postulate. Using the model, the difference
between the ionization rate coefficients for 3He* and 4He*

can be interpreted as an effect of the different quantum-
statistical symmetry of the two isotopes and the presence of
a nuclear spin in the case of 3He*; these differences do not
depend on uncertainties related to the potential as the same
potentials �with mass scaling� were used in the 4He* and
3He* cases. As the model is relatively simple, it is comple-
mentary to the more complete �and precise� close-coupling
theory that has been developed for 4He* collisions �15–17�.
Another single-channel model that was published recently
�11� was shown to be based on erroneous assumptions.

The experimental values of Sec. III do not agree with
other �mutually inconsistent� experimental results
�8,10,11,21�. The discrepancy between the experimental val-
ues is difficult to interpret, as the experimental determination
of the ionization rate coefficient is the result of an extensive
analysis, including the determination of the density distribu-
tion and temperature of the trapped samples, as well as the
distribution over the magnetic substates. The ionization rate
coefficient is particularly sensitive to the density in the
sample. It must be checked carefully if frequency drifts of
the probe laser light or stray magnetic fields are small
enough to avoid incomplete absorption, which would result
in underestimation of the density and overestimation of the
ionization rate coefficients. If the number of trapped atoms is
obtained from fluorescence imaging �11�, an accurate cali-
bration of the CCD chip is crucial. Furthermore, collisions of
trapped atoms with background atoms or atoms from the
atomic beam must be considered. If the trapped atom number
is small ��107�, quadratic ionization becomes small and
other �linear� ionization mechanisms possibly play a part,
hampering accurate measurements. Finally, it should be
noted that in most experiments �8,10,11� the magnetic sub-
state distribution has not been taken into account.

It would be interesting to extend the work presented here
to trapped samples containing both isotopes and study het-
eronuclear ionizing collisions. In the case of collisions be-
tween distinguishable particles, quantum-statistical symme-
try requirements should be absent, which could be confirmed
from an investigation of ionizing collisions. This work is in
progress in our laboratory. Another interesting extension of
the work presented here, is the study of the ionization rates
for samples with a prepared substate population. It might be
possible to study depolarization due to collisions �15�. Fi-
nally, ionizing collisions can also be investigated in the

FIG. 6. Ionization rates in the presence and absence of trapping
�and slowing� light. The signals are averaged over 40 �s time in-
tervals indicated by the shaded areas to obtain ��on−�bgr� and
��off−�bgr�.
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quantum degenerate regime �62�. Ionization rates could be
used to study quantum statistical properties of a quantum-
degenerate mixture with high spatial and temporal resolu-
tion. It is conceivable that phase separation in a quantum-
degenerate mixture will be observable through the ionization
rate in the sample.
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