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We consider the feasibility of observing a trap-induced resonance �Stock et al., Phys. Rev. Lett. 91, 183201
�2003�� for the case of two 133Cs atoms, trapped in separated wells of a polarization-gradient optical lattice, and
interacting through a multichannel scattering process. Due to the anomalously large scattering length of cesium
dimers, a strong coupling can occur between vibrational states of the trap and a weakly bound molecular state
that is made resonant by the ac Stark shift of the lattice. We calculate the energy spectrum of the two-atom
system as a function of the distance between two potential wells by connecting the solutions of the Schrödinger
equation for the short-range molecular potential to that of the long-range trap in a self-consistent manner. The
short-range potential is treated through a multichannel pseudopotential, parametrized by the K matrix, calcu-
lated numerically for atoms in free space in a close-coupling approximation. This captures both the bound
molecular spectrum as well as the energy-dependent scattering for all partial waves. We establish realistic
operating conditions under which the trap-induced resonance could be observed and show that this strong and
coherent interaction could be used as a basis for high-fidelity two-qubit quantum logic operations.
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I. INTRODUCTION

Ultracold atoms in tightly confining traps are of interest in
a variety of physics disciplines, with important applications
to the study of quantum degenerate gases and the implemen-
tation of quantum information processors �1�. At the heart of
these systems are two-body atomic interactions whose pre-
cise controllability via magnetic Feshbach resonances �2� has
opened the door to the exploration of phenomena such as the
dynamic collapse of a Bose-Einstein condensate �BEC� �3�,
the production of ultracold molecules �4,5�, and the observa-
tion of the BEC-BCS crossover �6–8�. Strong confinement
and reduced dimensionality can have a large effect on the
tunability of the atomic coupling constant �9–12�. For ex-
ample, quasi one-dimensional �1D� Bose systems, where the
atomic gas is strongly confined in two directions, lead to
formation of the Tonks-Girardeu gas whose elementary exci-
tations obey Fermi-Dirac statistics �9�. In this system, as ob-
served in an optical lattice system of tightly confined 1D
tubes �13�, a resonance in the effective 1D coupling strength
occurs, leading to strong repulsive interactions so that ex-
change of atoms is suppressed �9�. Recently, the origin of
this resonance has been attributed to a Feshbach-like,
confinement-induced resonance that is associated with a
bound state of a closed scattering channel in the transverse
mode �14�. This resonance is of particular importance since it
allows for the control of the effective 1D interaction strength
and the exploration of different regimes of the BEC vs the
Tonks gas by simply varying the confinement of atoms in the
transverse direction.

Concurrently with the exploration of these confinement-
induced resonances, we have predicted a “trap-induced reso-
nance” �15� �TIR� for two atoms in separated, tightly confin-

ing potential wells, such as the sites of a polarization
gradient lin-�-lin optical lattice �16�. This phenomenon
arises when a weakly bound molecular state of the dimer is
shifted by the potential energy �ac Stark shift� of the sepa-
rated wells into resonance with a vibrational eigenstate of the
trap. In contrast, optical Feshbach resonances �17�, also in-
duced by off-resonant laser couplings, arise due to strong
mixing of excited-state bound molecules with the ground
unbound states and are generally accompanied by inelastic
processes. Here, the strong gradients in the ac Stark effect
produced by confining optical potentials is sufficient to make
ground-state molecules resonant with atomic trap eigen-
states, but with tunability different from the magnetic Fesh-
bach resonances arising from the Zeeman shift. The TIR thus
provides an alternative handle for coherently controlling
two-atom ground-state interactions.

In this paper, we evaluate the feasibility of observing
these resonances in a particularly promising species, 133Cs,
trapped in optical lattices. The enormous scattering length of
133Cs, arising from a very weakly bound molecular state near
dissociation, leads to the possibility of creating trap-induced
resonances under realistic experimental circumstances. For a
complete description of the atomic interactions, we develop a
multichannel scattering model based on the generalized
pseudopotential presented in �18�. Using this model, we cal-
culate the two-atom energy spectrum under reasonable oper-
ating conditions. The remainder of this paper is organized as
follows. In Sec. II we review the basic physics of the TIR
and its generalization to a multichannel scattering interac-
tion. We apply this formalism to the specific case of 133Cs in
Secs. III and IV, and conclude in Sec. V.

II. BACKGROUND

A. Trap-induced resonances

We review here the salient features of the TIR �15�. Con-
sider two interacting atoms in spatially separated harmonic*Electronic address: restock@qrs.ucalgary.ca
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traps, described by the center of mass and relative coordinate
Hamiltonians,

ĤCM =
P̂R

2

2M
+

1

2
M�2R2,

Ĥrel =
p̂rel

2

2�
+

1

2
��2�r − �z�2 + V̂int�r� , �1�

where M =2m and �=m /2 are total and reduced masses,
respectively. Though the two atoms may be identical, we
assume they are effectively distinguished by their internal
states. The traps for the two atoms are separated in the z
direction by �z. Since the characteristic length scale of the
van der Waals interaction, �6, is typically much smaller than
the size of the trap ground state �11,19�, the interatomic in-

teraction V̂int�r� can be replaced by a contact “pseudopoten-
tial” for s-wave scattering,

V̂eff�r,EK� =
2�	2

�
aeff�EK�
�r�

�

�r
r . �2�

Note, that we parametrize the pseudopotential with an
energy-dependent scattering length aeff�EK� �15,19�. This is
particularly important for strong interactions outside the
Wigner threshold regime. In addition, such a pseudopotential
not only describes the complete energy-dependent scattering
behavior but also the bound state spectrum if the scattering
length is analytically continued to negative energies and the
Hamiltonian’s eigenvalues are found self-consistently.

The energy spectrum associated with Eq. �1� is easily un-
derstood in two limits. When �z→�, interactions are negli-
gible and the spectrum is a harmonic ladder in three dimen-
sions. When �z→0, we map to the problem of two atoms in
a harmonic trap, interacting via a 
-function potential in
three dimensions, parametrized by the scattering length a.
The spectrum of this problem was solved by Busch et al.
�20� and generalized to higher partial wave interactions in
�18,21,22�, revealing positive �negative� energy shifts of the
harmonic ladder for a� ��0 that saturate at 	� for �a �
→�. In addition, for a�0, the spectrum includes a per-
turbed bound-state of the 
-function potential. This state rep-
resents the near-dissociation molecular bound state associ-
ated with the positive scattering length of an attractive
potential.

For intermediate separations �z, we treat the term
���2�z�r cos � as a perturbation to the Busch solution and
rediagonalize the Hamiltonian. This is done for a range of
scattering lengths to determine E�a�. We then solve indepen-
dently the problem of the scattering length as a function of
kinetic energy, a�EK� for a given realistic interaction poten-
tial between the particles in free space. We numerically
search for the self-consistent solution, setting EK=E�a�
−V�z, where V�z=��2�z2 /2 is the potential energy the two
particles must overcome to collide at zero range. This proce-
dure allows us to separate the long-range behavior of the
wave function from its short-range behavior and then match
them in one self-consistent solution. This is particularly im-
portant for solving realistic atom interaction, where molecu-

lar potentials have the range of angstroms, whereas the trap
scale is on the order of many nanometers.

To verify the use of the energy-dependent pseudopotential
approximation, we have employed a spherically symmetric
step potential as a toy model of the molecular binding �15�.
For this problem, we can find an analytic solution for the
scattering phase-shift from which we deduce the energy-
dependent scattering length. The self-consistent solution is
compared with the full numerical solution to the toy problem
for a potential with large positive scattering lengths at zero
energy. For atoms in very tight traps, as the separation is
increased, the trapping potential can be strong enough to
raise a bound state of the molecular interaction to positive
energies �see Figs. 1�a� and 1�b��. Avoided crossings occur in
the eigenspectrum for certain separations, where the energy
of this molecular bound state becomes resonant with the
eigenstates of the trap potential �see Fig. 1�c��. This effect
generally occurs if the interaction potential for the free atoms
possesses a molecular bound state very close to dissociation,
i.e., the scattering length in free space is positive and on the
order of or larger than the size of the trap ground state. Here,
the self-consistent solution, which employs an energy-
dependent scattering length, is crucial; a constant scattering
length approximation does not capture the location of the
bound state and the resulting energy gap accurately. Also
note that in this case, analytic continuation of the scattering
length to negative energies is essential. The TIR occurs

FIG. 1. �Color online� Schematic of trap-induced resonance and
eigenspectrum as a function of separation. �a� Sum of the harmonic
trapping potential and chemical binding potential �gray line� in the
relative coordinate z for zero trap separation. �b�. The molecular
bound state at Eb and trap eigenstate at Etrap can become resonant at
a critical separation �zres. �c�. Eigenspectrum for two interacting
atoms in separated traps for a constant scattering length of a=r0

�r0=�	 /���. Avoided crossings occur in the eigenspectrum as a
function of separation �z for all vibrational state with zero trans-
verse excitation.
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through a tunneling barrier as the trap distorts the atomic
potential at distances large compared to the range of the mo-
lecular binding. As such we probe the “negative energy”
spectrum of the interaction �with respect to collisions of free
particles� and the scattering length used for the self-
consistent solution is taken at the, usually negative, kinetic
energy in the system.

B. The multichannel pseudopotential approximation

The model presented thus far involves only single channel
elastic scattering. A complete analysis of the TIR for a given
atomic species requires a generalization of the pseudopoten-
tial to multiple scattering channels, including the full spin-
dependent nature of the cold-collision process via the hyper-
fine and exchange interactions, and higher-order partial-wave
scattering. We thus require a multichannel matrix generaliza-
tion of the scattering length that parametrizes the pseudopo-
tential operator, thus allowing the inclusion of both elastic
and inelastic processes. We accomplish this by solving the
Schrödinger equation for two interacting particles in free
space in a standard close-coupling expansion of the total
wave function with good quantum numbers �J ,M ,��, the
total angular momentum, its projection on the internuclear
axis, and parity, respectively �23�,

���J,M,�,E� = �
�

����J,M,�;rel, r̂�
F��,��r�

r
. �3�

Here, the indices � and �� refer to the different “in” and
“out” channels of stationary scattering theory �24�. We
choose the channel-state basis to the product basis of atomic
hyperfine sublevels for the internal degree of freedom,
�f1 ,mf1��f2 ,mf2�, plus the partial wave quantum numbers for
the relative motion, �l ,m�. The functions, F��,��r�, are re-
duced radial wave functions that satisfy the close-coupled
equations,

	 d2

dr2 −
l��l� + 1�

r2 + k��
2 
F��,��r�

= �
��

2�

	2 „V̂��,���r� − E��
� 
��,��…F��,��r� , �4�

with wave number k�
2 =2��E−E�

�� /	2 for the asymptotic
channel state energy E�

�. In the asymptotic limit where

V̂��,�→0, the equations decouple and the solutions are linear
combinations of the �reduced� spherical Bessel functions de-
fined as J��r���k�rjl�k�r� and Neumann functions N��r�
��k�rnl�k�r�,

F��,�
� �r� → J���r�
��,� + N���r�K��,�, �5�

expressed in terms of the K matrix �24�. Typically, the scat-
tering length is defined by the scattering phase-shift via the S
matrix. As we will see, however, in the pseudopotential ap-
proximation described below, it is advantageous and more
appropriate to define a scattering length matrix through the K
matrix. As derived in detail below, basing the definition of
the pseudopotential on the K matrix allows us to correctly

match the scattering boundary conditions for the asymptotic
wave functions in Eq. �5�. In addition, note that our defini-
tion of the reduced Bessel functions differs in phase conven-
tion from �23�; for closed channels these functions are purely
imaginary.

The objective of the pseudopotential formalism is to re-
place the exact atomic interaction potential at all energies,
for all partial waves, and for all channels by a zero-range
pseudopotential. In �18�, we showed how such a pseudopo-
tential could be constructed for an arbitrary partial wave us-
ing the limit of a 
 shell of radius s, in the limit s→0. We
generalize here to a multichannel version of this pseudopo-
tential, including anisotropic couplings. We define an energy-

dependent, l-wave scattering length matrix a�,��
l+l�+1�k� ,k��� in

terms of the multichannel K matrix,

k�
l+1/2k��

l�+1/2a��,�
l+l�+1�k�,k��� = K��,�. �6�

A pseudopotential with an energy-dependent scattering
length matrix has the same properties as the single-channel
pseudopotential, capturing the complete scattering and
bound-state properties of the participating channels �15,18�.
It will further allow us to continue the scattering-length ma-
trix element for the channel of interest to negative energies,
which are crucial for the case of atoms in separated traps �see
Sec. III�.

Using the definition in Eq. �6�, we take as our ansatz for
the multichannel pseudopotential

V̂�r� = �
�,��

�l,m�V̂�,���r��l�,m�� �7�

with

V̂�,���r� = cl,l�a��,�
l+l�+1
�r − s�

rl+l�+2
P̂l�, �8�

where the constants cl,l� are to be determined. The regular-
ization operator,

P̂l =
rl+1

�2l + 1�!
�2l+1

�r2l+1rl, �9�

acts near the origin as the identity on regular radial wave
functions J��r� and the null operator on the irregular function
N��r�. Please note that in contrast to �18�, we define here the
pseudopotential to act on the reduced radial wave functions.
The solution to the radial equation for the pseudopotential
has the form

F��,�
� = J���r�
��,� + N���r�K��,�, r � s .

F��,�
 = J���r�A��,�, r  s . �10�

The matrix A��,� follows from continuity of the wave func-
tion across the shell:
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A��,� = 
��,� −
�2l� − 1� ! ! �2l� + 1� ! !

�k��s�2l�+1
K��,�. �11�

Inserting these solutions and the ansatz in Eq. �7� into the
close-coupled Eq. �4� and leaving the limit s→0 for later, we
need to evaluate the action of the pseudopotential on the
wave function

V̂��,���r�F��,�
� �r� = cl�,l�a��,��

l�+l�+1
�r − s�

rl�+l�+2 �P̂l�F��,�
� �r�

= cl�,l�a��,��
l�+l�+1
�r − s�

rl�+l�+2 �
� k��

l�+1/2rl�+1

�2l� + 1� ! !

��,�� , �12�

having applied the regularization operator near the origin.
The remaining boundary condition is found by integrating
the close-coupled equations around the shell,

lim
�→0

	dF��,�
� �r�

dr
�

r=s+�

− dF��,�
 �r�

dr
�

r=s−�



= lim

�→0
�

s−�

s+�

�
��

V̂��,���r�F��,�
� �r� . �13�

Using Eqs. �10�–�12�, we find

K��,�
�2l� + 1� ! !

k��
l�+1/2sl�+1

= �
��

cl�,l�

a��,��
l�+l�+1

sl�+l�+2

k��
l�+1/2sl�+1

�2l� + 1� ! !

��,�� .

�14�

Since the K matrix is symmetric K��,�=K�,�� �23�, the close-
coupled equation set is fulfilled and using Eq. �6� we find the
strength of the pseudopotential is cl�,l�= �2l�+1� ! ! �2l�
+1� ! !. In summary, the pseudopotential �defined as acting on
the reduced wave functions� is

V̂�,���r� =
�2l + 1� ! ! �2l� + 1� ! !

�2l� + 1�!
a��,�

l+l�+1
�r − s�
sl+1

�2l�+1

�r2l�+1
rl�.

�15�

We apply this solution to the case 133Cs in the next section.

III. CALCULATION OF THE SCATTERING LENGTH
MATRIX OF CESIUM FOR POSITIVE AND NEGATIVE

ENERGIES

The cold collision properties of 133Cs are anomalous due
to the existence of a bound state of the 3�+

u molecular poten-
tial very close to dissociation �25� and the large second-order
spin-orbit coupling �26�. Whereas the former property leads
to extremely large triplet scattering lengths and possible trap-
induced resonances, the latter implies possible strong inelas-
tic collision channels. As such, a realistic modeling of the
scattering is necessary to study the feasibility of observing
the TIR. We will accomplish this using the numerical solu-

tion to the close-coupling Eqs. �4� developed at National
Institute for Standards and Technology �NIST� �27� based on
the best known cesium dimer interaction potentials, recently
refined through spectroscopic measurements of Feshbach
resonances �26�. The multichannel scattering solutions will
allow us to determine the energy-dependent scattering-length
matrix as input to the pseudopotential in Eq. �8�.

Figure 2 shows the atomic hyperfine states and magnetic
sublevels in the 133Cs atomic ground state labeled with the
letters from a to p. The scattering channel of interest is the
two-atom combination in the stretched states, �ap�, with a
total angular momentum projection quantum number of
mtotal=mf1+mf2=7. This channel is of particular interest
since, in the absence of any spin-motion coupling, conserva-
tion of angular momentum implies conservation of these
quantum numbers. For this reason, the equivalent of states a
and p for 87Rb were the ones originally considered for en-
tangling atoms via ultracold ground-state collisions �28�. For
133Cs atoms, this desirable property is not automatically sat-
isfied due to the higher-order spin-orbit interaction �25,26�,
which couples a multitude of open and closed scattering
channels. In our calculation, 49 channels were included in
the close-coupling set �see Table I�.

The set of close-coupled equations for the reduced radial
wave functions of the participating channels is integrated
from an initial radius ri to a final radius rf using a standard
renormalized Numerov method �29,30� for both open and
closed channels. There, the logarithmic derivative matrix
m��,��rf� is calculated for the reduced wave functions
F��,��r� according to

m��,��rf� =

�
�rF��,��r��r=rf

F��,��rf�
. �16�

Matching the logarithmic derivative to the asymptotic wave
function, we can determine the K-scattering matrix from
m��,��rf� according to

K��,� = �N���rf�m��,��rf� − N��
� �rf��−1�J���rf�m��,��rf�

− J��
� �rf�� . �17�

Here, J��
� �rf� and N��

� �rf� are the derivatives of the reduced
spherical Bessel functions at r=rf. The K matrix then defines
the scattering length matrix that is appropriate for use in the
generalized multichannel pseudopotential as discussed in the

FIG. 2. �Color online� Hyperfine levels of the 6S1/2 ground state
of 133Cs. The magnetic sublevels are labeled with letters from a to
p.
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TABLE I. Participating channel information. The channel of interest is �ap� �channel 9�, which defines the zero of energy �in atomic units
a.u.�. The first 30 channels are open, of which the first eight channels are the ones with both atoms in the lower hyperfine manifold. Channels
31 to 49 are closed channels with both atoms in the f =4 manifold. The channel states are labeled following the conventions of Fig. 2
�columns 3 and 5�. The table includes the magnetic quantum numbers mf for each atom �columns 4 and 6�, the total magnetic quantum
number mtotal �column 7� and the partial wave quantum number l �last column�.

Channel Energy 10−6 �a.u.� atom 1 m f1 atom 2 m f2 m f1+m f2 l

1 −1.397 a 3 a 3 6 2

2 −1.397 a 3 b 2 5 2

3 −1.397 a 3 a 3 6 4

4 −1.397 b 2 b 2 4 4

5 −1.397 a 3 b 2 5 4

6 −1.397 a 3 c 1 4 4

7 −1.397 a 3 d 0 3 4

8 −1.397 b 2 c 1 3 4

9 0.000 p 4 a 3 7 0

10 0.000 p 4 a 3 7 2

11 0.000 p 4 b 2 6 2

12 0.000 p 4 c 1 5 2

13 0.000 o 3 a 3 6 2

14 0.000 o 3 b 2 5 2

15 0.000 n 2 a 3 5 2

16 0.000 p 4 a 3 7 4

17 0.000 p 4 b 2 6 4

18 0.000 p 4 c 1 5 4

19 0.000 p 4 d 0 4 4

20 0.000 p 4 e −1 3 4

21 0.000 o 3 a 3 6 4

22 0.000 o 3 b 2 5 4

23 0.000 o 3 c 1 4 4

24 0.000 o 3 d 0 3 4

25 0.000 n 2 a 3 5 4

26 0.000 n 2 b 2 4 4

27 0.000 n 2 c 1 3 4

28 0.000 m 1 a 3 4 4

29 0.000 m 1 b 2 3 4

30 0.000 l 0 a 3 3 4

31 1.397 p 4 o 3 7 0

32 1.397 p 4 p 4 8 2

33 1.397 o 3 o 3 6 2

34 1.397 p 4 o 3 7 2

35 1.397 p 4 n 2 6 2

36 1.397 p 4 m 1 5 2

37 1.397 o 3 n 2 5 2

38 1.397 p 4 p 4 8 4

39 1.397 o 3 o 3 6 4

40 1.397 n 2 n 2 4 4

41 1.397 p 4 o 3 7 4

42 1.397 p 4 n 2 6 4

43 1.397 p 4 m 1 5 4

44 1.397 p 4 l 0 4 4

45 1.397 p 4 k −1 3 4
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previous section. Note that in order to get a convergent value
of the K matrix, the final integration radius, rf, can be larger
than the typical size of the ground state in an optical lattice
site. This might raise doubts about the validity of the pseudo-
potential approximation in an optical lattice system, since the
effective scale of the interaction seems to be much larger
than the trap size. However, as shown in Refs. �11,19�, it is
the characteristic �6 length scale that affects the validity of
the pseudopotential approximation. As long as the trapping
potential does not distort the chemical binding potential, it is
valid to calculate the energy-dependent scattering length in
free space and use this as the input to the self-consistent
solution in the trap. Since �6=100a0 in 133Cs, and therefore

much smaller than typical trap sizes in tight optical lattices,
we can safely approximate the interaction by a pseudopoten-
tial.

As discussed in Sec. II A, negative energy scattering be-
comes important for two atoms in nonoverlapping traps due
to the tunneling barrier created by the trapping potential. In
this case, the scattering channels of interest are closed and
we must extend the K matrix to include these channels. This
can be achieved by simply continuing the reduced spherical
Bessel functions J��rf� and N��rf� to negative energies by
using a purely imaginary wave vector, k= i�, and allowing a
complex argument of the Bessel functions �note, in our con-
vention for the reduced Bessel function, these functions are

FIG. 3. �Color online� Calcula-
tions of the diagonal scattering-
length matrix element for the �ap�
channel as a function of the stop-
ping point rf for different negative
energies.

TABLE I. �Continued.�

Channel Energy 10−6 �a.u.� atom 1 m f1 atom 2 m f2 m f1+m f2 l

46 1.397 o 3 n 2 5 4

47 1.397 o 3 m 1 4 4

48 1.397 o 3 l 0 3 4

49 1.397 n 2 m 1 3 4
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then pure imaginary�. The complete K matrix, which is Her-
mitian for open channels and anti-Hermitian for closed chan-
nels, is calculated using Eq. �17�. Figures 3�a�–3�f� show the
diagonal scattering length matrix element for the �ap� chan-
nel as a function of the stopping point rf for various negative
energies. At negative energies, we expect the codes to con-
verge in the calculation of a�ap� only for a small range of rf.
The close-coupled equations need to be integrated far
enough into the asymptotic regime, where the interaction po-
tential vanishes. However, for very large r, we expect the
wave function to diverge exponentially and the numerical
Numerov codes to become unstable. We expect the region of
convergence to decrease for larger negative energies, since
the wave function diverges as exp�+�r� �see Fig. 3�. As seen
in Fig. 3, we can reliably calculate the �ap� scattering-length
matrix element for negative energies as low as −10 �K. The
calculation errors in the scattering length of Fig. 4 can be
estimated from Fig. 3 to be around 5% at −10 �K whereas
for smaller negative energies of around −1 �K the error can
be estimated to be smaller than 0.5%.

A plot of the diagonal scattering length element as a func-
tion of energy for the �ap� channel is shown in Fig. 4. The
curve continues smoothly across zero energy and also takes a
finite value at the bound-state energy as expected. At a posi-
tive energy, E�4 �K, there is a resonance in the scattering
length that is associated with inelastic processes. Examining
the scattering-matrix off-diagonal elements, the �ap��l=0�
channel primarily couples to higher partial wave channels in

the same hyperfine manifold, channels 10–30 in Table I, and
in particular to the �ap��l=2� and �ao��l=2� channels. Exo-
thermic couplings that result in both atoms in the lower hy-
perfine manifold, e.g., couplings to the �aa��l=2� channel,
are one to two orders of magnitude smaller. To better char-
acterize the off-diagonal couplings to all channels, we will
adopt a complex scattering length approach in the following.
While the K matrix describes the asymptotic boundary con-
ditions and is therefore essential in the pseudopotential de-
scription, the scattering S matrix is a measure of the coupling
between different channels. These inelastic processes and the
resulting loss from the channel of interest are therefore more
appropriately described by a complex scattering length de-
fined through the S matrix, which is related to the K matrix
by

S � �1 + iK��1 − iK�−1. �18�

By unitarity the diagonal S matrix elements are

S�,� = 1 − �
��

S��,� = exp�2i�� + i��� = �S�,��e2i�, �19�

where we have defined a complex phase shift 
=�+ i�. This
can be used to define a complex energy-dependent scattering
length �31�,

ã� = a� − i�� � −
tan�� + i��

k�
2l+1 . �20�

The imaginary part of the scattering length is a measure of
the “loss” from the scattering channel � to all other open
channels. Note that the imaginary part of the scattering
length not only measures the inelastic collisions but also in-
cludes the coherent couplings to channels in the same hyper-
fine manifold. Figure 5 shows the real and imaginary part of
the complex scattering length for positive energies. For scat-
tering energies below 4 �K, the imaginary part is several
orders smaller than the real part of the scattering length. In
this regime, couplings to other channels that are due to spin-
spin or spin-orbit coupling can be neglected and the total
magnetic quantum number mtotal is approximately conserved.
This implies that, in this energy regime, interactions of atoms
in �ap� can be treated to good approximation as single chan-
nel scattering.

We have also examined the magnetic field dependence of
the scattering length in the linear Zeeman regime. The back-
ground scattering length remains large and constant over a

FIG. 4. �Color online� Calculations of the diagonal scattering
length matrix element, derived from the K matrix, for the �ap� chan-
nel as a function of energy.

FIG. 5. �Color online�
S-matrix-based calculations of the
real �a� and imaginary part �b� of
the scattering length for the �ap�
channel as a function of energy.
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wide range of magnetic fields and shows three narrow reso-
nances over the calculated range at 11.6, 25, and 28 G in Fig.
6. An identification of the different resonances, i.e., the la-
beling of the resonances by the corresponding bound-states,
is left for future investigation. The resonances are very nar-
row �less than 1 G� and should not lead to any strong mag-
netic field sensitivity in the atomic interactions.

IV. TRAP-INDUCED SHAPE RESONANCES OF CESIUM
IN OPTICAL LATTICES

We consider a three-dimensional �3D� optical lattice, cre-
ated by three pairs of linearly polarized counterpropagating
laser beams. Along one direction we allow for polarization
gradients in a lin-angle-lin configuration �16� which shifts
�+ and �− standing waves and carries atoms in appropriate
sublevels together from neighboring sites and probes the
TIR. We approximate the optical lattice wells by harmonic
oscillator potentials with frequency � with

	� = 2�VppER. �21�

Vpp is the peak-to-peak depth of the optical lattice potential
and ER is the recoil energy of a 133Cs atom. The Lamb-Dicke
parameter, which measures the localization of atoms in the
lattices, �=�ER / 	�=klr̄0, where r̄0=�	 /2m� is the full

width at half maximum �FWHM� of the harmonic-oscillator
ground state of a single atom �mass m�. As we deal with the
relative motion of two atoms, we choose to scale in terms of
characteristic harmonic oscillator units r0=�	 /��=r0=2r̄0.

For the observation of a TIR for the �ap� channel, we
require r0 to be on the order of, or much smaller than, the
scattering length which takes the value a�ap��2500a0
�132 nm in the negative energy regime of interest. In addi-
tion, in order to induce a TIR, the trap potential at the origin,
V�z= 1 � 2�z2, must be strong enough to raise the molecular
boundstate at Eb to positive energies so that Eb+V�z
� 3 � 2 	�. In an optical lattice V�z is limited by Vpp, result-
ing in the constraint 3 � 2 	�V�zVpp. An optical lattice
with a Lamb-Dicke parameter of �=0.25, Vpp=64ER, 	�
=16ER, and r̄0�34 nm fulfills all these requirements and
still allows a reliable harmonic approximation to the optical
lattice potential. Also, for 133Cs the �6 parameter is on the
order of 100a0 or 5.3 nm, i.e., much smaller than r̄0, there-
fore allowing a reliable approximation of the interaction via
a 
-shell pseudopotential.

A complete description of interacting atoms in separated
traps should include a calculation of the energy spectra as a
function of trap separation for the scattering channel of in-
terest, as well as for all channels with off-diagonal couplings
to this channel. It furthermore should include the state-
dependent nature of the optical lattice potentials. While this
is of great importance for most scattering channels, for the
�ap� scattering channel, as shown in the previous section, the
off-diagonal couplings can be safely neglected below 4 �K.
The calculation of the energy spectrum for the �ap� channel
using only a single channel in Eq. �15� with l , l�=0 is suffi-
cient as long as the appropriate scattering length matrix ele-
ment calculated from the K matrix is used to characterize the
interaction.

Figure 7�a� shows the calculated energy spectrum for
133Cs atoms in separated harmonic isotropic traps as a func-
tion of trap separation �z, assuming an optical lattice with a
Lamb-Dicke parameter of �=0.25. The energy eigenvalues
are calculated self-consistently at each separation as de-
scribed in Sec. II A using the energy-dependent scattering
length for 133Cs, which is shown in Fig. 7�b� in harmonic
oscillator units. This plot of the scattering length nicely illus-
trates the necessity of the application of an energy-dependent
pseudopotential because of the strong energy dependence of
the scattering length in the energy range of interest. A con-
stant scattering-length approximation would misestimate the

FIG. 6. �Color online� Calculations of the diagonal scattering-
length matrix element for the �ap� channel as a function of the
magnetic field. Three narrow scattering resonances can be observed
for applied magnetic fields in the range from 0 to 50 G.

FIG. 7. �Color online� �a� Self-
consistent energy eigenvalues as a
function of trap separation �z cal-
culated using the K matrix based
scattering length for the
�ap�-channel in 133Cs, which is
shown in �b� in harmonic oscilla-
tor units.
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location of the boundstate and therefore the size of the
avoided crossing in the energy spectrum. Figure 7�a� shows
the main signature of the trap-induced resonance in the form
of the avoided crossing, which in the case of 133Cs results in
an almost maximal �compare to Fig. 3 �inset� in Ref. �15��
energy gap of about 	� /2.

Controlled ultracold collisions, using two-atom Ramsey
interferometry in polarization gradient optical lattices, have
been demonstrated by Mandel et al. �32�. Such experiments
can be used to probe the TIR as shown in Fig. 8. In a linearly
polarized lattice, atoms in their vibrational ground state are
placed in an equal superposition of states �a� and �p�. These
two states are transported in opposite directions as the polar-
izations are rotated by an angle � into a lin-angle-lin configu-
ration. As � approaches 180° �lin-�-lin configuration�, neigh-
boring atoms in the �ap� channel collide. The collisional
interaction results in a relative energy shift for the two atom
state �ap�= �01� which acquires a phase � relative to �00�,
�10�, and�11�. The interaction entangles these atoms, maxi-
mally so when �=�. In the experiment of Mandel et al., a
filled lattice was prepared in a Mott insulator with one atom
per site, loaded from from a Bose-Einstein condensate �33�.
Controlled collisions lead to an “entangled chain” of atoms
�the 1D cluster state �34� in a perfectly filled lattice and for �
phase shift�. The periodic disappearance and reappearance of
single atom Ramsey fringes due to this entanglement is a
measurement of the scattering phase shift. For the case at
hand, assuming adiabatic transport, this is the phase shift
accumulated along the lower energy curve in Fig. 7�a�. At a
critical separation between the atoms, a large �negative�
phase shift will be accumulated, providing a signature of the
TIR. By controlling the final separation and hold time of the
atoms, one can in principle, map the full adiabatic energy
curve.

V. SUMMARY

In this paper we have considered a trap-induced resonance
between a molecular bound state and a trap vibrational state

for two 133Cs atoms in overlapping but separated traps. To
study the interaction between realistic alkali atoms with a
hyperfine structure, we generalized the 
-shell pseudopoten-
tial, introduced in �18�, to the case of multichannel scattering
parametrized by the K matrix. Using a numerical solution to
the close-coupling equations and a self-consistent solution to
the Schrödinger equation, we calculated the energy spectrum
for 133Cs atoms interacting on the stretched-state channel,
�f =3,mf =3��f =4,mf =4�, as a function of trap separation.
The large energy gap in the spectrum provides a signature by
which the trap-induced resonance could be experimentally
observed for a lattice with a Lamb-Dicke parameter �
=0.25 using a Ramsey interferometry to probe the collisional
phase shift.

The TIR provides a method for tuning interactions be-
tween ultracold atoms, with applications to quantum degen-
erate gases, molecular control, and quantum logic. For ex-
ample, by adiabatically tuning through the TIR to zero
separation between neighboring traps, atoms in the first vi-
brational state are mapped onto the highest molecular bound
state. In principle, one can induce coherent superpositions of
atomic and molecular states to control new states of matter.
The existence of trap-molecule couplings opens avenues for
new protocols in quantum control.

An important practical consideration, not treated here, is
the effect of finite temperature. As the TIR is explicitly tied
to the vibrational state in the trap, the scattering phase shift
can be sensitive to motional heating. As seen in Fig. 1�c�,
avoided crossings with the molecular bound state occur for
all vibrational trap states associated with zero transverse ex-
citation. For large scattering lengths, considered here, the
size of the coupling is not very sensitive to the localization of
atoms in the trap and thus a common phase shift should be
seen for atoms with either zero or one quantum of longitu-
dinal vibration. This should make the TIR fairly robust as
long as the transverse excitation is suppressed. An additional
consideration is the effect of spin-dependent trapping. In our
multichannel scattering calculation, we ignored the spin-
dependent light shift forces that occur in polarization gradi-
ent optical lattices. Such forces can close certain channels
and provide new mechanisms for robust encodings of quan-
tum logic, immune to spin-flips that would otherwise occur
in free space. These considerations will be studied in future
research.
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FIG. 8. �Color online� Encoding in the 133Cs hyperfine structure
and schematic of controlled collisions via trap-induced resonances.
�a� Hyperfine levels of the 6S1/2 ground state of 133Cs. The logical
basis states �0� and �1� are encoded in the stretched states in order to
avoid inelastic collisions. �b� Following the proposal by Jaksch et
al. �28� atoms travel on different lattice potentials. Unlike in the
original proposal, here, the phase shift is acquired for separated
atoms using the trap-induced resonance.
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