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The combination of density-functional theory with other approaches to the many-electron problem through
the separation of the electron-electron interaction into a short-range and a long-range contribution is a prom-
ising method, which is raising more and more interest in recent years. In this work some properties of the
corresponding correlation energy functionals are derived by studying the electron-electron coalescence condi-
tion for a modified �long-range-only� interaction. A general relation for the on-top �zero electron-electron
distance� pair density is derived, and its usefulness is discussed with some examples. For the special case of the
uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is
presented and supported by calculations within the “extended Overhauser model.” The results of this work can
be used to build self-interaction corrected short-range correlation energy functionals.
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I. INTRODUCTION

In recent years, there has been a growing interest in ap-
proaches that combine density functional theory �1–3� �DFT�
with other approximate methods to treat the many-electron
problem. In most cases, this combination is achieved by
splitting the Coulomb electron-electron interaction 1/r12 into
a short-range �SR� and a long-range �LR� part �see, e.g.,
Refs. �4–12��. The idea is to use different, appropriate ap-
proximations for the long-range and the short-range contri-
butions to the exchange and/or correlation energy density
functionals of the Kohn-Sham �KS� scheme, to treat, e.g.,
near-degeneracy effects or van der Waals forces. These ap-
proaches are often inspired by the observation that long-
range correlations are not well treated by local or semilocal
density functionals, but can be dealt with by other tech-
niques, like the standard wave-function methods of quantum
chemistry. Conversely, correlation effects due to the short-
range part of the electron-electron interaction can be well
described by local or semilocal functionals �appropriately
modified�.

The error function and its complement �see Fig. 1�,

1

r12
= vSR

� �r12� + vLR
� �r12� =

erfc��r12�
r12

+
erf��r12�

r12
, �1�

are often used �5,6,8,10,11� for the splitting of the Coulomb
interaction, since they yield analytic matrix elements for both
Gaussians and plane waves, i.e., the most common basis
functions in quantum chemistry and solid-state physics, re-
spectively. The parameter � controls the range of the decom-
position. Correspondingly, the universal Coulombic func-
tional of the electron density n�r�, F�n�, as defined in the
constrained search formalism �13�,

F�n� = min
�→n

���T + Vee��� , �2�

can be divided into a long-range part and a complementary

short-range part, F�n�=FLR
� �n�+ F̄SR

� �n�,

FLR
� �n� = min

��→n

����T + VLR
� ���� ,

F̄SR
� �n� = F�n� − FLR

� �n� , �3�

or, alternatively, into a short-range part and a complementary
long-range part,

FSR
� �n� = min

�̃�→n

��̃��T + VSR
� ��̃�� ,

F̄LR
� �n� = F�n� − FSR

� �n� . �4�

These two decompositions lead to different exchange-
correlation energy functionals that need to be approximated;
they are compared in Ref. �14�, where their advantages and
disadvantages are discussed.

In the present work we focus on the properties of the
long-range and short-range correlation functionals that come
from the modification of the electron-electron interaction at
short distances, i.e., those properties that are due to the
change in the electron-electron coalescence conditions. This
means that we are only concerned with the functionals of the
decomposition of Eq. �3�, which involve a many-body wave
function �� of a system with an electron-electron interaction
that is softer than 1/r12 for small r12 �see Fig. 1�. This de-
composition is the one used in the approaches of Refs.
�5,7–11�.

The paper is organized as follows. In Sec. II we define the
long-range and short-range correlation energy functionals
that are the object of the present study. In Sec. III we analyze
the short-range properties of the pair density of a general
many-electron system with interaction erf��r12� /r12 when �
gets larger and larger: we derive an expansion for �→� of
the on-top �zero electron-electron distance� pair density, and,
following �and partly correcting� the work of Ref. �10�, an
expansion for �→� of the correlation energy functionals.
Section IV is devoted to the special case of the uniform
electron gas: starting from the exact high-density limit, a
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simple parametrization of the on-top pair density as a func-
tion of � is proposed, and is favorably compared with the
results obtained from the “extended Overhauser model”
�15,16� for the same quantity. The last Sec. V explains, with
some examples, how the results of this work can be used to
build self-interaction corrected approximations for short-
range correlation functionals. Hartree atomic units are used
throughout this work.

II. DEFINITIONS AND BASIC EQUATIONS

When the universal functional F�n� is decomposed as in
Eq. �3�, we have a model system, whose wave function is
denoted ��, which has the same density n�r� of the physical
system and electron-electron interaction erf��r12� /r12. When
�→0 this model system becomes the Kohn-Sham system,
with no electron-electron interaction, while when �→� the
model system approaches the physical one, with interaction
1/r12. By definition, the density is the same for all values of
�. In the approach of Refs. �7–10� the model system at a
fixed � is treated with a multideterminantal wave function.
In general, if � is not too large, few determinants describe
�� quite accurately �because of the smaller interaction, and
also because of the absence of the electron-electron cusp�;
the larger is the chosen value of �, the larger is the needed
configuration space and thus the computational cost. The re-
maining part of the energy is provided by the complementary

functional F̄SR
� �n�=F�n�−FLR

� �n� of Eq. �3�, which can be
divided into Hartree, exchange, and correlation contributions
in the usual way �for an alternative separation of exchange
and correlation, see Ref. �17��,

ĒH,SR
� �n� =

1

2
� dr� dr�n�r�n�r��vSR

� ��r − r��� , �5�

Ēx,SR
� �n� = ���VSR

� ��� − ĒH,SR
� �n� , �6�

Ēc,SR
� �n� = F̄SR

� �n� − ĒH,SR
� �n� − Ēx,SR

� �n� , �7�

where � is the Kohn-Sham determinant. Notice that the Har-
tree and the exchange functional are linear in the interaction,

so that ĒH,SR
� �n�=EH,SR

� �n� and Ēx,SR
� �n�=Ex,SR

� �n�, where
EH,SR

� �n� and Ex,SR
� �n� are the short-range functionals of the

decomposition of Eq. �4�. The correlation energy, instead,
depends on the wave function �� and we thus have

Ēc,SR
� �n��Ec,SR

� �n�. The complementary correlation func-

tional Ēc,SR
� �n� is the difference between the usual Coulombic

correlation energy Ec�n�, and the long-range correlation en-
ergy functional Ec,LR

� �n�,

Ec,LR
� �n� = ����T + VLR

� ���� − ���T + VLR
� ��� , �8�

Ēc,SR
� �n� = Ec�n� − Ec,LR

� �n� . �9�

In what follows we study the short-range functional Ēc,SR
� �n�

or, equivalently the long-range functional Ec,LR
� �n�, in the

limit of large �, i.e., when the model system described by
�� is approaching the physical system.

Following Toulouse et al. �10�, we start from the
Helmann-Feynmann theorem which gives

�

��
Ēc,SR

� �n� = −
2

	�
�

0

�

4�r12
2 fc

��r12�e−�2r12
2

dr12, �10�

where the spherically and system-averaged pair density �or
intracule density� f��r12� is obtained by integrating ����2
over all variables but r12= �r2−r1�: we first define the spheri-
cal average of the pair density �with r=r1�,

P̃2
��r,r12� =

N�N − 1�
2 


�1¯�N

� ����r,r12,r3, . . . ,rN��2

�
d�r12

4�
dr3 . . . drN, �11�

and then integrate over all reference positions r,

f��r12� =� P̃2
��r,r12�dr . �12�

The correlated part of f��r12� appearing in Eq. �10� is fc
�

= f�− fKS, where fKS�r12� is obtained by replacing �� with
the Kohn-Sham determinant � in Eq. �11�.

The correlated intracule fc
��r12� can be expanded in its

Taylor series around r12=0 up to some order M,

fc
��r12� = 


n=0

M−1

cn���r12
n + O�r12

M � . �13�

By inserting this expansion into Eq. �10� we find �10�

�

��
Ēc,SR

� �n� = − 4	� 

n=0

M−1
cn���
�n+3 	�n + 3

2
� + O� 1

�M+3� .

�14�

This means that when �→�, i.e., when we are approaching
the full interaction 1/r12, the correlation energy functional

Ēc,SR
� �n� has an expansion in powers of �−1 whose coeffi-

cients are determined by the short-range behavior of fc
�. In

order to determine as many coefficients as possible in the

FIG. 1. The splitting of the Coulomb interaction 1/r12 into a
short-range �SR� and a long-range �LR� part as defined in Eq. �1�.
Here �=1. When �→� we have vSR→0 and vLR→1/r12, and
when �→0 we have vSR→1/r12 and vLR→0.
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expansion of Eq. �14� we thus have to know how the cn���
behave in the limit of large �. In Ref. �10� the same expan-
sion was considered, and the first two terms were obtained
by simply inserting in Eq. �14� the values of c0 and c1 for the
physical system �with Coulomb interaction�. In the next Sec.
III we study the general problem of determining the short-
range behavior of f��r12� in the limit �→�. We find the
same result of Ref. �10� for the first term �
�−3� of Eq. �14�,
but a different result for the second term �
�−4�, and we
explain why. Moreover, we obtain the first-order �in �−1�
term of the expansion for large � of the on-top f��0�.

III. SHORT-RANGE BEHAVIOR OF A SYSTEM WITH
INTERACTION erf„�r12… /r12 WHEN �\�

We start from the Schrödinger equation for the wave func-
tion ��,

H��� = E���,

H� = − 

i=1

N
�i

2

2
+ 


i�j=1

N
erf���ri − r j��

�ri − r j�
+ 


i=1

N

v��ri� , �15�

where the one-body potential v��r� keeps the density equal
to the one of the physical system for every �.

When �→� the interaction erf��r12� /r12 gets larger and
larger for small r12 �r12�1/��. If we thus fix a finite but
very large value of �, we can use the same arguments that
lead to the derivation of the electron-electron cusp condition
for the Coulomb interaction �18–21�, i.e., we can isolate two
coalescing electrons �say, 1 and 2� in the Hamiltonian of Eq.
�15�, and switch to variables r12=r1−r2 and R= �r1+r2� /2.
In the limit r12= �r12�→0 there must be a term in H��� that
compensates the divergence �or, more precisely, the very
large value� of erf��r12� /r12. As for the Coulombic systems,
this compensation comes from the relative kinetic energy
term, and to determine the small r12 behavior of the spherical
average of ����2 we only need to look at the Schrödinger
equation for the relative motion of two electrons �18–20�
approaching each other with relative angular momentum �
=0. Higher �, in fact, will contribute to ����2 to orders r12

2� in
the limit of small r12. Only in the case of a fully polarized
system the case �=1 must be considered to determine the
r12→0 behavior of ����2, since only odd � are allowed �19�
�triplet symmetry�; this case is considered in Appendix B.
The rare case of unnatural parity singlet states �20� �which
needs �=2� is not considered in this work.

As it was done for the Coulomb electron-electron interac-
tion �18–20�, we thus focus on the relative wave function

��r12� for two electrons in the �=0 state. By defining x
=r12 and u��x�=x
��x�, the relevant Schrödinger-like equa-
tion reads


−
d2

dx2 +
erf��x�

x
�u��x� = E��x,R,r3, . . . ,rN�u��x� ,

�16�

where E� is a complicated operator that does not affect the
result as long as it remains bounded when �→� and x→0,

as it is reasonable to assume from the Hamiltonian of Eq.
�15� �18–20�. We change variable y=�x, and divide both
members of Eq. �16� by �2 to obtain


−
d2

dy2 +
1

�

erf�y�
y

�u��y� =
1

�2E
��y,R,r3, . . . ,rN�u��y� .

�17�

We then expand u��y� for large �,

u��y� = u����y� +
1

�
u�−1��y� + O� 1

�2� , �18�

insert this expansion into Eq. �17�, and impose that the left-
hand side be of order �−2 as the right-hand side. With the
boundary condition that 
��x� is finite at x=0, we obtain

u����y� = ay , �19�

d2u�−1��y�
dy2 = a erf�y� , �20�

and we find that the final solution for 
��x� from Eqs. �19�
and �20� is


��x� = a
1 + xp1��x� +
1

	��
+

A1

�
+ ¯ � , �21�

where A1 is a constant coming from the integration of Eq.
�20� that is not determined by the condition that 
��x� is
finite in x=0, and a determines the value 
�0� for the Cou-
lombic system ��=��. The function p1�y� is given by

p1�y� =
e−y2

− 2

2	�y
+ �1

2
+

1

4y2�erf�y� , �22�

and has the following asymptotic behaviors:

p1�y → 0� =
y

3	�
+ O�y3� , �23�

p1�y → �� =
1

2
−

1
	�y

+ O� 1

y2� . �24�

The spherically and system-averaged pair density of Eq. �12�
has thus, to leading orders in 1/� for large �, the small-r12
expansion

f��r12� = f�0�
1 + 2r12p1��r12� +
2

	��
+

2A1

�
� , �25�

where f�0� is the on-top value corresponding to the full in-
teracting system �f�0� is proportional to a2, where a deter-
mines u����y� in Eq. �19��. Equation �24� tells us that if in Eq.
�25� we fix r12 equal to a small value r0�1, and then let �
go to � we recover the Coulombic cusp, f�r0�= f�0��1+r0

+ ¯ �. But for any finite large �, Eq. �23� shows that we
always obtain a quadratic behavior for small r12, f��r12�
= f�0��1+2r12

2 � /3	�+ ¯ �. This is how the cuspless wave
function corresponding to the interaction erf��r12� /r12 devel-
ops the Coulombic cusp in the �→� limit. An alternative
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derivation of Eq. �25�, more similar to what one usually does
for the Coulombic cusp �18–21�, is reported in Appendix A.

To obtain the complementary short-range correlation
functional we can insert Eq. �25� into Eq. �14�, which gives

�

��
Ēc,SR

� �n� = − 2�
fc�0�
�3 − 4�	2� + A1��

f�0�
�4 + O� 1

�5� .

�26�

We see that to fully determine the term 
�−4 in Eq. �26� we
have to know the value of the constant A1. This constant
determines how the on-top f��0� approaches the Coulombic
value f�0� for large �. In fact, from Eq. �25� we have

f��0� = f�0�
1 +
1

�
� 2

	�
+ 2A1�� + O� 1

�2� . �27�

In Ref. �10� the �→� limit of the long-range interaction was
formally rewritten as the Coulomb interaction 1/r12 plus a
perturbation �10�

erf��r12�
r12

=
1

r12
−

�

�2��r12� + O� 1

�3� , �28�

where ��r� is the Dirac delta function. The fact that the per-
turbation is of order �−2 leads to the conclusion �10� that the
perturbation on �� is also of order �−2 with respect to the
Coulombic case, which would correspond to A1=−1/	� in
Eq. �27�. However, because of the singular nature of the
Dirac delta function, this argument does not hold at r12=0.

To determine the correction to the on-top value when
�→�, here we take a large value of � and a small value
r12=r0 such that �−1�r0�1 �take, e.g., r0=1/�1−q with 0
�q�1�. For such value of r0 we have �r0�1 so that from
Eqs. �24� and �25� we obtain

f��r0� = f�0��1 + r0 +
2A1

�
� + ¯ , �29�

where the next leading terms are of order 1 /�2 and/or r0
2. We

then notice that A1 cannot be equal to −1/	�, since any
value of A1�0 would make f��r0� smaller than the full in-
teracting value f�r0�, while, because for small r12 the long-
range interaction erf��r12� /r12 is less repulsive than 1/r12,
for r0 small enough we expect that f��r0�� f�r0�. So A1�0,
and thus the correction to the on-top value must be of order
1 /�. However, the argument of Ref. �10� should be valid
when r12�1/�. That is, we still expect from Eq. �28� that
the perturbed �� differs from the Coulombic � of an order
higher than 1/� for r12�1/�. This is achieved only if A1
=0, as shown by Eq. �29�. The result corresponding to A1
=0 is illustrated in Fig. 2, where we compare the Coulomb
cusp f�0��1+r12� to the short-range expansion of f��r12� of
Eq. �25�, with A1=0. Any value of A1 larger than zero makes
the difference between the Coulombic f�r12� and f��r12� of
order 1 /� also in the region r12�1/�, while with A1=0 �as
in Fig. 2� this difference is of higher order, as expected from
Eq. �28�.

We thus conclude that

f��0� = f�0��1 +
2

	��
� + O� 1

�2� . �30�

This equation is also confirmed in the next section �IV�, for
the case of the high-density electron gas that can be treated
exactly.

The final expansion of the short-range functional Ēc,SR
� �n�

for large � is then

Ēc,SR
� �n� = fc�0�

�

�2 + f�0�
4	2�

3�3 + O� 1

�4� , �31�

where f�0� and fc�0� are the on-top value and its correlated
part, fc= f − fKS, of the physical system. This expansion dif-
fers from the one of Ref. �10� by a factor 	2 in the second
term �see Appendix A for comments on this discrepancy�.
The two expansions for the case of the He atom are com-

pared in Fig. 3 with the “exact” results �9,10� for Ēc,SR
� �n�

=Ec−Ec,LR
� �n�. The “exact” on-top value f�0� is taken from

Ref. �22�. We see that the new expansion more accurately

FIG. 2. The Coulombic cusp f�0��1+r12� �with f�0�=1� is com-
pared to the expansion of f��r12� in the �→� limit, f��r12�= f�0�
��1+2r12p1��r12�+2/ �	���+2A1 /��, with A1=0. Any value A1

�0 makes f��r12� differ from the Coulombic f�r12� of orders 1 /�
also in the region r12�1/�.

FIG. 3. The “exact” values of Ēc,SR
� �n�=Ec−Ec,LR

� �n� for the He
atom �9,10� are compared with the large-� expansion of Eq. �31�,
and with the previous result for the same expansion given in Eq.
�30� of Ref. �10�. In both expansions the “exact” on-top value is
taken from Ref. �22�.
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reproduces the “exact” data for large �, and that the � value
for which it breaks down �i.e., where the expansion has its
minimum� coincides with the minimum value of � for which
it still gives accurate short-range correlation energies.

In general the on-top value of the physical system, f�0�, is
not accessible. A plausible approximation proposed in Ref.
�10� consists in replacing f�0� in Eq. �31� with its local-
density approximation �LDA� value,

fLDA�0� =
1

2
� n�r�2g„r12 = 0;n�r�…dr , �32�

where g�r12;n� is the pair-distribution function �16,23� of the
standard electron gas model �with Coulomb interaction
1/r12� of uniform density n. The new Eq. �30� allows us to
estimate the physical on-top value starting from the one of
the model system ��. Potential applications of this idea are
discussed in Sec. V, together with simple examples. Notice
also that Eq. �30� is also valid locally, i.e., we have

P̃2
��r,r12 = 0� = P̃2�r,r12 = 0��1 +

2
	��

� + O� 1

�2� ,

�33�

where P̃2
��r ,r12� was defined in Eq. �11�, and P̃2�r ,r12� is the

pair density of the physical system ��=��.
In Appendix B we also consider the case of a fully polar-

ized system, for which we find that the short-range correla-
tion energy has the large-� expansion

Ēc,SR
� �n = n↑� = fc��0�

3�

8�4 + f��0�
3	2�

10�5 + O� 1

�6� , �34�

where f��0� and fc��0� are the second derivative at r12=0 and
its correlated part of the physical, fully interacting, system
�24�. We also found that, again only in the case of a fully
polarized system, the second derivative of f��r12� at r12=0
approaches the one of the Coulombic system as

�f����0� = f��0��1 +
2

3	��
� + O� 1

�2� . �35�

IV. ON-TOP PAIR DENSITY OF A UNIFORM SYSTEM
WITH INTERACTION erf„�r12… /r12

Before coming to applications, we consider the special
case of the uniform electron gas, for which something more
than Eq. �30� can be done. We consider a uniform system
with long-range-only interaction,

H� = −
1

2

i=1

N

�ri

2 + VLR
� + Veb

� + Vbb
� , �36�

where VLR
� is the modified electron-electron interaction

VLR
� =

1

2 

i�j=1

N
erf���ri − r j��

�ri − r j�
, �37�

Veb
� is, accordingly, the interaction between the electrons and

a rigid, positive, uniform background of density n
= �4�rs

3 /3�−1,

Veb
� = − n


i=1

N � dx
erf���ri − x��

�ri − x�
, �38�

and Vbb
� is the corresponding background-background inter-

action

Vbb
� =

n2

2
� dx� dx�

erf���x − x���
�x − x��

. �39�

When �→� H� tends to the standard jellium Hamiltonian,
while when �→0 we recover the noninteracting electron
gas.

We focus on the � dependence of the on-top value of the
pair-distribution function �16,23� g�r12=0 ,rs ,��, which has
its own interest to construct the LDA approximation for the
long-range and short-range functionals, and for spin-density
functional theory in the framework of the alternative on-top
interpretation �25�. The relation between the function g and
the function f of Eq. �12� is g=2f /nN.

A. High-density limit

As in the Coulomb gas, by switching to scaled units si
=ri /rs, we see that when rs→0 the potential of Eqs.
�37�–�39� becomes a perturbation to the noninteracting gas.
Defining the correlation contribution to the on-top value,
gc�0,rs ,��=g�0,rs ,��− 1

2 , and following Kimball �26�, the
first-order correction �with respect to the interaction poten-
tial� to the on-top pair density is

gc�0,rs → 0,�� = 6�
0

�

�SD�t,��t2dt + ¯ , �40�

where �SD�t ,�� is the direct second-order contribution to the
static structure factor �26�,

�SD�q,�� =
4

N



k�,k���

vee�q�

�
nF�k�nF�k���1 − nF�k + q���1 − nF�k� − q��

k2 + k�2 − �k + q�2 − �k� − q�2 ,

�41�

nF is the usual Fermi occupation function �26�, and vee�q� is
the Fourier transform of the electron-electron interaction. In
Eq. �40� the scaled variable t=q /2kF �kF= ��rs�−1 ,�
= �4/9��1/3� has been used. The function �SD�t ,�� is thus
equal to the one computed by Kimball �26� and reported in

his Eq. 11, except for a multiplying factor e−t2kF
2 /�2

coming
from the Fourier transform of erf��r12� /r12. From Eqs. �40�
and �41� we find

gc�0,rs → 0,�� = rsh��/kF� + ¯ , �42�

where the function h�z� has the following asymptotic behav-
iors:

h�z → 0� = −
6�

�
�1 − ln 2�z2 + O�z3� , �43�
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h�z → �� = aHD +
�

	�z
+ O�z−2� , �44�

and aHD=−���2+6 ln 2−3� /5��−0.365 83 is the high-
density limit of the standard jellium model. Notice that Eq.
�44� confirms, for the high-density electron gas, Eq. �30�.

For intermediate values of z we numerically computed the
function h�z�, and found that it can be accurately fitted by the
Padé form,

h�z� =
a1z2 + a2z3

1 + b1z + b2z2 + b3z3 , �45�

with a1=−�6� /���1−ln 2�, b1=1.4919, b3=1.915 28, a2

=aHDb3, b2= �a1−b3� /	�� /aHD. The numerical results and
the fitting function of Eq. �45� are reported in Fig. 4.

B. Interpolation formula

The high-density limit of Eq. �42� and of Fig. 4 tells us
how �at least for small rs� gc�0,rs ,�� approaches the two
limits, the noninteracting gas ��→0� and the Coulomb gas
��→��.

A simple interpolation formula for all densities can be
built by assuming that the � dependence of gc�0,rs ,�� is
roughly the same at each rs. We thus start from the param-
etrization of the on-top pair density of the jellium model
given in Ref. �16�,

g�0,rs,� = �� =
1

2
�1 − Brs + Crs

2 + Drs
3 + Ers

4�e−drs,

�46�

where C=0.081 93, D=−0.012 77, E=0.001 859, d=0.7524,
and B=−2aHD−d, and we simply rescale homogeneously all
the coefficients with the function h�z=� /kF� /aHD,

gc�0,rs,�� =
e−drsh�z�/aHD

2
�1 − B

h�z�
aHD

rs + C
h�z�2

aHD
2 rs

2 + D
h�z�3

aHD
3 rs

3

+ E
h�z�4

aHD
4 rs

4� −
1

2
. �47�

This simple guess smoothly interpolates between the �→0
and �→� limits, and is exact when rs→0.

C. Results from the Overhauser model

To check the validity of the interpolation formula of Eq.
�47� we evaluated the on-top gc�0,rs ,�� within the “ex-
tended Overhauser model” �15,16�, which gave good results
for the standard jellium model �16� and for two-electron at-
oms �27�. Notice that the on-top value is not known exactly.
The differences between the jellium on-top pair densities
from different approximate methods �including the “ex-
tended Overhauser model”� are discussed in Refs. �28–30�.

The scattering equations of the “extended Overhauser
model” are widely explained in Refs. �16,31�. Here we sim-
ply solved the same equations with the electron-electron in-
teraction erf��r12� /r12 screened by a sphere of radius rs of
uniform positive charge density n and attracting the electrons
with the same modified interaction,

Veff�r12,rs,�� =
erf��r12�

r12
− �

�r���rs

n
erf���r� − r12��

�r� − r12�
dr�.

�48�

This potential is reported in the Appendix of Ref. �27�, where
it has been used for two-electron atoms with rather accurate
results for the corresponding short-range correlation energy.
Veff�r12,rs ,�� is a screened potential that tends to the “Over-
hauser potential” �15,16�; when �→�, and which goes to
zero when �→0. As in the original Overhauser model, the
idea behind Eq. �48� is that the radius of the screening “hole”
is exactly equal to rs.

The results for the on-top gc�0,rs ,�� from the Overhauser
model are reported in Fig. 5 as a function of rs for different
values of �. We see that the the simple interpolation formula
of Eq. �47� accurately captures the � and rs dependence of
gc�0,rs ,��.

V. APPLICATIONS, PERSPECTIVES, AND CONCLUSIONS

The main results of this work are �i� the corrected expan-
sion of the short-range correlation energy functional, Eq.
�31�, �ii� the expansion of the on-top pair density of Eqs. �30�
and �33�, and �iii� the parametrization of the � dependence of
the on-top pair density of the uniform electron gas, Eq. �47�.
All these results �i�–�iii� can be useful for the construction of
approximate short-range correlation energy functionals:

�i� In Ref. �10� the large-� expansion of the correlation
energy functional has been already used to construct approxi-
mations: the idea is �10� to interpolate between a given den-
sity functional approximation �DFA� of standard KS theory

�32� at �=0, and the �→� expansion of Ēc,SR
� �n�. In the

FIG. 4. The function h�z� that determines the high-density limit
of the on-top pair density of the “erf” gas �see Eq. �42��. The nu-
merical evaluation of Eq. �40� �points� is compared to the fitting
function of Eq. �45� �solid line�.
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spirit of the usual DFT approximations, this interpolation is
done locally, i.e.,

Ēc,SR
� �n� =� drn�r��̄c,SR

� �r� , �49�

where �̄c,SR
� �r� is built, e.g., as �10�

�̄c,SR
� �

�c
DFA

1 + d1� + d2�2 . �50�

The parameters d1 and d2 are fixed by the condition that Eq.

�49� recovers the correct �→� expansion of Ēc,SR
� �n�, and

�c
DFA can be, e.g., the PBE correlation functional �33� of stan-

dard Kohn-Sham theory or any other available approxima-
tion. This correlation functional can be combined with a
similar interpolation for exchange �10�, or with the exchange
functional of Heyd, Scuseria, and Ernzerhof �6�. This way of
constructing approximations should be improved by using
the corrected expansion of Eq. �31�, as suggested by Fig. 3.
In Fig. 6 we also show similar data for the Be atom: again,
the corrected expansion is closer to the exact data �9,10� at
large � than the previous expansion used in Ref. �10�.

�ii� To impose the correct large-� expansion in approxi-
mations like the one of Eq. �50� we need an estimate of the

physical ��=�� on-top pair density P̃2�r ,r12=0�. In Ref.
�10� the LDA approximation �the integrand of the right-hand
side of Eq. �32�� was used. The new Eq. �33� allows us to use
the on-top pair density of the partially correlated wave func-

tion �� to estimate P̃2�r ,r12=0�. In fact, once we have made
a calculation at a given �moderately large� � �say, �=�0� we

can estimate P̃2�r ,r12=0� as

P̃2�r,r12 = 0� � P̃2
�0�r,r12 = 0��1 +

2
	��0

�−1

. �51�

There are cases in which this estimate could be much better
than the one obtained by using the LDA approximation for
the physical on-top pair density. In fact, the use of the par-

tially correlated P̃2
��r ,r12=0� would correct the self-

interaction error of LDA, becoming exactly equal to zero for
any one-electron density. Consider the example of the
stretched H2 molecule, for which the estimate from Eq. �51�
would be essentially exact �equal to zero for any ��0�,
while LDA gives a spurious nonzero on-top value, unless we
consider the spin broken-symmetry solution.

To show that Eq. �51� gives indeed a quantitative reliable
estimate of the physical on-top pair density we have consid-
ered the simple example of the He atom, and we have in-
serted Eq. �51� directly in the expansion of Eq. �31�: the error
on the estimated short-range correlation energy at �0=2.5 is

3 mH; if we choose �0=2 the error in Ēc,SR
�0 �n� is 5 mH, and

for �0=1 is 11 mH. Of course, when �0 becomes too small,
the large-� expansion of Eqs. �31� and �51� is no longer
valid.

�iii� The on-top pair density of the uniform electron gas
with long-range-only interaction of Eq. �47� can be used, in
combination with the correlation energy of the spin-polarized
long-range electron gas �34�, to implement the local approxi-
mation for the on-top pair density interpretation of spin-
density functional theory �25�.

Another interesting application of Eq. �47� is connected to
point �ii�: the construction of functionals that explicitly de-

pend on the on-top f��0� �or locally on P̃2
��r ,r12=0�� of the

partially correlated wave function could use the � depen-
dence of the on-top LDA value to go beyond Eq. �51�,

fc�0� � fc
�0�0�

� n�r�2gc„0,rs�r�,� = �…dr

� n�r�2gc„0,rs�r�,�0…dr

. �52�

For example for the He atom Eq. �52� at �0=2 gives fc�0�
=−0.086, while Eq. �51� gives −0.090. The corresponding
exact value �22� is −0.085. Local versions of Eq. �52� can be
also considered, e.g.,

FIG. 5. The correlation on-top pair density of the electron gas
with interaction erf��r12� /r12 for different � �in a.u.� as a function
of the dimensionless density parameter rs. The results from the
Overhauser model are compared with the interpolation formula of
Eq. �47�. The dotted line corresponds to the standard jellium model
with interaction 1/r12.

FIG. 6. The exact values of Ēc,SR
� �n�=Ec−Ec,LR

� �n� for the Be
atom �9,10� are compared with the large-� expansion of Eq. �31�,
and with the previous result for the same expansion given in Eq.
�30� of Ref. �10�. In both expansions the exact on-top value is taken
from Ref. �22�.
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fc�0� � � n�r�2P̃2,c
�0�r,r12 = 0�

gc„0,rs�r�,� = �…

gc„0,rs�r�,�0…
dr ,

�53�

where P̃2,c
�0�r ,r12� is obtained by subtracting the Kohn-Sham

pair density from P̃2
�0. Again, the advantage of including in

the construction of short-range functionals the on-top

P̃2,c
� �r ,r12=0� is to locally remove the self-interaction error.

In conclusions, we have presented a comprehensive study
of the short-range behavior of systems interacting with the
potential erf��r12� /r12, in connection with the properties of
long- and short-range correlation energy density functionals.
The same kind of analysis can be of course repeated for other
splittings of the Coulomb electron-electron interaction
�7,35�. Future work will be mainly oriented to the explora-
tion of the promising approach of short-range functionals

that explictly depend on P̃2
��r ,r12=0�.
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APPENDIX A: ALTERNATIVE DERIVATION OF EQ. (25)

Start from Eq. �16�, and consider the following series ex-
pansions around x=0:

u��x� = 

n=0

�

an���xn+1, �A1�

erf��x�
x

= 

n=0

�

bn���x�2n,

bn =
2

	�

�− 1�n

�2n + 1�n!
. �A2�

This last series has an infinite radius of convergence for any
finite �.

The complicated operator E� can be also expanded in
powers of x around x=0. Its expansion will only contain
even powers of x because the Hamiltonian of Eq. �15� is
even in x=r12. As expected, the expansion of E� does not
play any role, so we do not consider its nonspherical com-
ponents �moreover, in the end we are only interested in the
spherically averaged pair density�. The only important re-
quirement is that E� remains bounded when �→� and x
→0, as it happens for the Coulomb interaction �18,19�. We
thus write

E� = 

k=0

�

e2k���x2k. �A3�

By inserting Eqs. �A1�–�A3� into Eq. �16� we find that the
an��� with odd n are zero �as expected from the fact that
erf��x� /x is an even function of x�, while the even n coeffi-

cients with n�2 diverge as � increases, and, to leading or-
der when �→�, they are all proportional to a0���,

a2k+2��� = a0���
 bk�
2k+1

�2k + 2��2k + 3�
+

�2k

�2k + 2��2k + 3�

� 

i=1

k
bk−ibi−1

2i�2i + 1�� + O��2k−1� . �A4�

This relation shows that 
��x� has the structure


��x� = a0����1 + xp1��x� + x2p2��x� + ¯ � , �A5�

where

p1�y� = 

k=0

�
bky

2k+1

�2k + 2��2k + 3�
, �A6�

p2�y� = 

k=1

� � y2k

�2k + 2��2k + 3�
i=1

k
bk−ibi−1

2i�2i + 1�� . �A7�

Equation �A6� gives exactly the same function p1�y� of Eq.
�22�, and Eq. �A4� confirms that all the terms beyond the
ones considered in Eq. �25� contribute to Eq. �26� to orders
�−5 or higher.

We can now clearly see where the discrepancy with the
result of Ref. �10� comes from: the small-r12 expansion of
f��r12� only contains even powers of r12 for any finite �. It is
thus incorrect to insert the odd coefficient c1 of the Coulom-
bic system in Eq. �14�, as it was done in Ref. �10�. What
happens, instead, is that all the even coefficients of the small-
r12 expansion of f��r12� diverge for large � and they all
contribute to the term 
�−4 in Eq. �14�. Furthermore, in Ref.
�10� it was assumed that the leading order in the large-�
expansion of the on-top value f��0� is 1 /�2, while we have
shown that the correction to f��0� with respect to the Cou-
lombic case is of order 1 /�.

APPENDIX B: THE CASE �=1

We insert the expansion of u��y� for large � of Eq. �18�
into the equivalent of Eq. �17� for the case �=1,


−
d2

dy2 +
2

y2 +
1

�

erf�y�
y

�u��y� =
1

�2E
�u��y� . �B1�

The condition that the left-hand side be of order 1 /�2 yields

u����y� = by2, �B2�


 d2

dy2 −
2

y2�u�−1��y� = by erf�y� . �B3�

By solving Eq. �B3� we find that the intracule f��r12� has, for
large �, the small-r12 expansion

f��r12� =
f��0�

2
r12

2 
1 + 2r12q1��r12� +
2

3	��
+

B1

�
� ,

�B4�

where the function q1�y� is equal to
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q1�y� =
e−y2

�2y2 − 1�
8	�y3

−
1

3	�y
+

erf�y��4y4 + 1�
16y4 , �B5�

and B1 is a constant of integration that is not determined by
the requirement that f� vanishes at r12=0. The function q1�y�
has the asymptotic behaviors

q1�y → 0� =
y

5	�
+ O�y3� , �B6�

q1�y → �� =
1

4
−

1

3	�y
+ O� 1

y3� . �B7�

Again, we see that if we fix r12=r0�1, and then let �→�
we find f��r0�
r0

2�1+r0 /2+ ¯ �, which is the parallel-spin
cusp condition for the Coulomb interaction �19�. But for any
finite � we have, for small r12, f��r12�
r12

2 �1+r12
2 2� /5	�

+ ¯ �. The proof that B1=0, and thus of Eqs. �34� and �35� is
then completely analogous to the one for the case �=0.
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