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A version of the Bethe-Salpeter equation appropriate for calculating recoil corrections in highly charged
hydrogenlike ions is presented. The nucleus is treated as a scalar particle of charge Z, and the electron treated
relativistically. The known recoil corrections of order m2 /M�Z��4 are derived in both this formalism and in
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I. INTRODUCTION

Precision tests of QED in atoms were first carried out for
hydrogen, and have been extended to other one-electron sys-
tems such as positronium and muonium, as well as helium
�1�, lithium �2�, and even beryllium �3�. In all these cases the
nuclear charge Z is low, so the basic expansion parameter of
bound state QED, Z�, is a small quantity. For this reason,
techniques in which the smallness of this parameter is ex-
ploited have been refined in sophistication over the years,
culminating in the present widespread use of effective field
theories such as NRQED �4� and the effective Hamiltonian
method �5�. However, at the same time experiments of in-
creasing precision have been carried out on both highly
charged hydrogenlike ions and also ions with more electrons,
where as an example of the accuracy achieved at the highest
Z we note the recent determination �6� of the 2p1/2-2s1/2
transition energy in lithiumlike uranium,

E2p1/2
-E2s1/2

= 280.645�15� eV. �1�

As the expansion parameter Z� is no longer small in this
case, techniques in which an expansion in it is avoided are
necessary. In the nonrecoil limit, in which the nuclear mass is
taken to infinity, Furry representation QED �7� allows a sys-
tematic Feynman diagram based treatment of highly charged
ions. A central structure in this approach is the electron
propagator in a Coulomb field, the Dirac-Coulomb propaga-
tor, which satisfies the equation

��E +
Z�

�x�� ��0 + i�� · �� − m	SF�x�,y� ;E� = �3�x� − y�� . �2�

As pointed out by Wichmann and Kroll �8� for the vacuum
polarization, and by Brown, Langer and Schaefer �9� for the
self-energy, treating this propagator exactly using numerical
methods allows a determination of the Lamb shift that auto-
matically accounts for all orders of an expansion in Z�.

When applied to lithiumlike uranium, use of this propa-
gator gives a one-loop Lamb shift contribution �including
screening corrections� to the 2p1/2-2s1/2 splitting of
−41.793 eV, which when combined with the nonradiative
energy shift of 322.231 eV leaves a 0.207 eV discrepancy
with experiment. This can be used to infer the two-loop
Lamb shift, which has recently been calculated for the
ground state of hydrogenic ions �10�, but before this can be
done recoil terms, the subject we wish to address in this
paper, must be reliably calculated.

Recoil effects have, of course, been treated for low-Z at-
oms, but again the techniques cannot be directly extended to
high-Z ions. The general level of treatment of these small
corrections in this latter case is to scale the overall energies
by a factor of � /m, where the reduced mass � is defined in
the usual way in terms of the electron mass m and the
nuclear mass M,

� =
mM

m + M
. �3�

This has a relatively small effect for the transition we are
discussing, amounting to only −0.006 eV, below the experi-
mental error. A larger effect comes from the mass-
polarization operator

HMP = 

i�j

p� i · p� j

M
. �4�

When this term is evaluated in a realistic potential it contrib-
utes −0.081 eV, for a total lowest order effect of −0.087 eV,
42% of the discrepancy. To accurately infer the two-loop
Lamb shift, a more sophisticated treatment of recoil effects is
clearly needed. The only such treatment we are aware of that
has been applied to highly charged ions is that given by
Shabaev �11� and collaborators �12� who, in fact, find signifi-
cant corrections to the above result. We note, however, that
the calculations of Pachucki and Grotch �13� and Eides and
Grotch �14� described in the Appendix, while applied to hy-
drogen, are also all-orders methods that could, in principle,
be applied to the high-Z case. The present paper is intended
to lay the groundwork for an alternative approach. We will
restrict our attention to the hydrogen isoelectronic sequence,
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and in addition restrict our attention to diagrams that contrib-
ute in the low-Z case to order m2�Z��4 /M, leaving the treat-
ment of a more complete set of diagrams, along with the
treatment of the many-electron problem, for a later paper.

While considerable progress has been made in QED in
recent years with the use of effective field theories, these rely
on expanding around the nonrelativistic Schrödinger equa-
tion, which, as just discussed, is not appropriate for highly
charged ions. However, the Bethe-Salpeter formalism �15�,
introduced first to treat the binding of the deuteron and
shortly afterwards applied to the atomic problem by Salpeter
�16�, allows the problem to be treated in a systematic man-
ner. However, this equation is famously difficult to apply,
and most applications rely on expanding around the nonrel-
ativistic limit, which we wish to avoid.

The treatment given by Shabaev is fairly complicated, and
we wish to provide a cross check by introducing as simple a
formalism as possible. This can be done by slightly modify-
ing a formalism introduced by Lepage �17�, and it is this
approach we will now describe.

The plan of the paper is to set up in the following section
a three-dimensional formalism equivalent in rigor to the
Bethe-Salpeter equation. In the next section the one- and
two-photon exchange diagrams that contribute to order
m2�Z��4 /M will be evaluated in the Coulomb gauge, and
their nonrelativistic limit will be taken. This will be followed
by a NRQED treatment, and in the Conclusion we will de-
scribe how a calculation relevant to highly charged ions can
be carried out. The Appendix describes in more detail the
history of the calculation of recoil corrections in hydrogenic
ions.

II. FORMALISM

It has been known for quite some time �18� that there is an
arbitrary number of bound state equations equivalent in rigor
to the original form of the Bethe-Salpeter equation, but that
are effectively three-dimensional. Many practical calcula-
tions have used formulations that also incorporate the
Schrödinger equation �19,20�. However, for the problem we
are considering a relativistic approach is demanded. We note
that a fairly detailed discussion of a number of notational and
formal issues involved with the use of three-dimensional
forms of the Bethe-Salpeter equation is given in Ref. �20�, to
which we refer to the reader interested in more detail.

The spectrum of many high-Z ions has been studied, and
it would be impractical to consider the differing spins of each
nucleus. For this reason we simply treat the nucleus as a
spinless particle of charge Z�e�. The Feynman rules for the
electrodynamics of a spin-0 particle involve the coupling
iZ�e��p+ p��� for the one-photon vertex, and 2i�Ze�2g�� for
the seagull vertex. The �=0 component of the one-photon
vertex for a nucleus close to a mass shell will then be domi-
nated by the factor 2M, where M is the mass of the nucleus.
Hyperfine effects associated with nuclear spin can be treated
separately. We can also model the finite size of the nucleus
by replacing the nuclear charge Z with a form factor Z�q�2� if
desired, but this will not be done in this paper.

We now consider the truncated two-particle Green’s func-
tion for the scattering of an electron and nucleus. We define

the initial and final electron three momenta as k� and l�, re-
spectively, and work in the center of mass so that the corre-

sponding nuclear momenta are −k� and −l�. For the fourth
component of the momentum we choose E1+k0 and E1+ l0
for the electron line and E2−k0 and E2− l0 for the nuclear
line, where E1 and E2 will be chosen close to the electron
and nuclear masses, and when the total center of mass energy
E=E1+E2 is a bound state energy a pole will be present. The
formalism to be described below in its simplest form leads to
a perturbation expansion about E1=� and E2=M, with �
equal to the Dirac bound state energy,

� = m�1 + � Z�

n − �j + 1/2� + ��j + 1/2�2 − �Z��2�2	−1/2

= m�1 −
�Z��2

2n2 −
�Z��4

2n3 � 1

j + 1/2
−

3

4n
� + O„�Z��6

… ,

�5�

giving a total bound state energy E=M +�=M +m
−m�Z��2 /2n2+¯. However, since this does not incorporate
the known reduced mass dependence of the nonrelativistic
binding energy, we will instead arrange the formalism so that

E1=E=� /m� and E2=M +m−��M̃. We incorporate these

energies into the four vectors P1= �E ,0�� and P2= �M̃ ,0��. If

we also define four vectors k= �k0 ,k�� and l= �l0 , l��, the initial
electron and nuclear momenta are P1+k, P2−k, and the final
momenta P1+ l, P2− l. The truncated two-particle Green’s
function obeys the equation

GT�P1 + k,P2 − k;P1 + l,P2 − l�

= iK�P1 + k,P2 − k;P1 + l,P2 − l�

+� d4q

�2��4K�P1 + k,P2 − k;P1 + q,P2 − q�S�q�GT�P1

+ q,P2 − q;P1 + l,P2 − l� , �6�

where K represents all two-particle irreducible kernels and
the spin-1

2 -spin-0 two-particle propagator has the form

S�q� =
i

��P1 + q� − m + i�

i

�P2 − q�2 − M2 + i�
. �7�

For brevity in the following we will write the above as

GT�k,l;E� = iK�k,l;E� +� d4q

�2��4K�k,q;E�S�q�GT�q,l;E� .

�8�

The main point of all simplifications of the Bethe-Salpeter
formalism is that we can replace the relatively complicated
two-particle propagator S with a simplified form S0 and write

GT�k,l;E� = iK̄�k,l;E� +� d4q

�2��4 K̄�k,q;E�S0�q�GT�q,l;E� ,

�9�

which serves to define K̄ through
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K̄�k,l;E� = K�k,l;E�

+� d4q

�2��4K�k,q;E��S�q� − S0�q��K�q,l;E�

+� d4q

�2��4 � d4p

�2��4K�k,q;E��S�q� − S0�q��

	K�q,p;E��S�p� − S0�p��K�p,l;E� + ¯ .

�10�

Our choice for S0�q� is

S0�q� =
���q0�

M̃

i

E�0 − �� · q� − � + i�
�

i���q0�

M̃
S0�q�� .

�11�

As mentioned above, we could have chosen another form
with E and � replaced with � and m, which would lead to the
Dirac equation with mass m in the M→
 limit. Our method
will lead to a Dirac equation with reduced mass � in that
limit. We note that this method of building in the reduced
mass is relatively simple, in particular, requiring no rescaling
of coupling constants. The � function we have chosen differs
from that of Ref. �17�, in which a � function that puts the
nucleus on a mass shell is chosen. While the latter choice has
a number of advantages when the Feynman gauge is used,
we use Coulomb gauge in this calculation, and putting the
nucleus on-shell is not needed. At this point we can go to a
completely three-dimensional formalism by choosing k0= l0
=0, a choice that has no effect on the location of the bound
state poles, and which allows us to replace the four vectors k

and l with k� and l�. In this case Eq. �9� takes the three-
dimensional form

GT�k�,l�;E� = iK̄�k�,l�;E�

+
1

2M̃
� d3q

�2��3 iK̄�k�,q� ;E�S0�q��GT�q� ,l�;E� .

�12�

One gets to a bound state equation by creating an untrun-

cated Green’s function Ḡ�k� , l�;E� defined through

Ḡ�k�,l�;E� =
1

2M̃
S0�k���2��3�3�k� − l��

+
1

4M̃2
S0�k��GT�k�,l�;E�S0�l�� �13�

that satisfies

Ḡ�k�,l�;E� =
1

2M̃
S0�k���2��3�3�k� − l��

+ S0�k��
1

2M̃
� d3q

�2��3 iK̄�k�,q� ;E�Ḡ�q� ,l�;E� .

�14�

While this function differs from the Bethe-Salpeter untrun-

cated Green’s function, it has poles at exactly the same total
energy �21�. In order to obtain a solvable problem, we now
introduce the simpler equation

G0�k�,l�;E� =
1

2M̃
S0�k���2��3�3�k� − l��

+ S0�k��
1

2M̃
� d3q

�2��3 iK1C�k�,q� ;E�G0�q� ,l�;E� ,

�15�

which can be written, because the kernel K1C for one-
Coulomb-photon exchange is

K1C =
4�iZ�

�k� − q� �2
2M̃�0, �16�

as

�E�0 − �� · k� − ��G0�k�,l�;E�

=
1

2M̃
�2��3�3�k� − l�� − 4�Z�� d3q

�2��3

1

�k� − q� �2
�0

	G0�q� ,l�;E� , �17�

where we have multiplied by S0
−1�k��.

In the following section we will discuss the effect of ex-

panding Ḡ about G0, but here we restrict our attention to the

latter function, which, except for the factor of 1 /2M̃ multi-
plying the � function, is precisely the momentum space form
of Eq. �2� with the electron mass replaced with the reduced
mass. It has the spectral representation

G0�k�,l�;E� = 

n

�n�k���̄n�l��
E − En

, �18�

where �n�l�� is the solution to the Dirac equation with the

usual normalization factor multiplied by �1/2M̃, and has

poles when E=M̃ +En�E0. To illustrate, the ground state �g�
wave function has energy

E0
g = M̃ + �� �19�

where �=�1− �Z��2, and the form

�0
g�p�� =� 1

2M̃
��Z��−3/2� g�p��−1��p̂�

� · p�

2�
f�p��−1��p̂� � , �20�

where g�p� and f�p� can be expressed in terms of the dimen-
sionless variable q= p / ��Z��,

g�p� =
N

2q
sin���1 + ����1 + q2�−�1+��/2,
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f�p� =
N

q3�1 + ��� sin����
�

�1 + q2 − q cos���1 + ���	
	�1 + q2�−�1+��/2. �21�

Here �� tan−1 q and the normalization factor N is

N = 2�+3���1 + ��� �1 + ��
��1 + 2��

. �22�

The ��’s are two-component eigenfunctions of J2, Jz, L2, and
S2 and are labeled by �= � �j+1/2� for j=�±1/2 and �, the
quantum number corresponding to Jz. The spherical spinors
are normalized so that �†�, when integrated over a solid
angle, gives 1. In the following we adopt the convention of
working with Dirac wave functions with the usual normal-
ization, which we account for by multiplying a factor

1 / �2M̃� into expressions for energy shifts, which always in-
volve two Dirac wave functions. We note that in most three-
dimensional formalisms a lowest order potential that differs
from the one-Coulomb photon exchange kernel must be de-
vised to obtain a Schrödinger or Dirac equation and it, in
general, has energy dependence, which leads to derivative
terms: neither complication appears in the present formalism.
With this definition of our lowest order problem, we now
turn to the calculation of corrections to the lowest order en-

ergy, M̃ +E.

III. PERTURBATION EXPANSION

Perturbative corrections to the lowest order energy can be

derived by calculating the shift of the pole position in Ḡ. To
the order we are interested in here, the shift can be shown to
be

E − E0 � �E1 =
1

2M̃
� d3k d3l

�2��6 �̄�k���iK̄�k�,l�;E�

− iK1C�k�,l�,E����l�� . �23�

Schematically we can write

K̄ = K1C + K1T + KCCX + KCCs + K1C�S − S0�K1C + ¯ .

�24�

Here 1C and 1T refer to one-Coulomb- and one-transverse-
photon exchange, CCX is the crossed ladder diagram with
two Coulomb photons, CCs is the seagull diagram with two-
Coulomb photons, and the last term is the leading part of the
correction induced in the kernel by our change of propaga-
tors as given in Eq. �10�. The term K1CSK1C is an uncrossed
ladder diagram, denoted KCC, and it is easy to see that the
term −K1CS0K1C is equivalent to −K1C when used to evaluate
�E1. The net effect, illustrated in Fig. 1, is that

K̄ = K1T + KCC + KCCX + KCCs + ¯ . �25�

Only these four terms need be considered to obtain the cor-
rections of order m2�Z��4 /M, and we now turn to their
evaluation.

A. One-transverse-photon exchange

The transverse-photon propagator with momentum q de-
pends on both q0 and q� . It simplifies in our formalism, which
forces q0=0, and K1T gives the energy shift

�E1T = −
4�Z�

2M̃
� d3k d3l

�2��6

1

�q�2�2 �q�2�†�k���� · �k� + l����l��

− q� · �k� + l���†�k���� · q���l��� , �26�

where q� =k� − l�. If we approximate the Dirac wave functions
in terms of Schrödinger wave functions through

��p�� = � �NR�p�����p̂�
� · p�

2�
�NR�p�����p̂� � , �27�

this simplifies to

�E1T�NR� = −
4�Z�

4mM̃
� d3k

�2��3 � d3l

�2��3�NR
† �k��NR�l�

	� �k� + l��2 + 2i� · �k� 	 l��
q2 −

�k2 − l2�2

q4 	
= −

4�Z�

mM̃
� d3k

�2��3 � d3l

�2��3�NR
† �k��NR�l�

	� k2l2 − �k� · l��2

q4 +
i� · �k� 	 l��

2q2 	 , �28�

where the spherical spinors are understood. This can be
Fourier-transformed into coordinate space, leading to spin-
independent and spin-dependent operators HR and HSO,

HR = −
Z�

2�2r
��ij + x̂ix̂ j�pipj ,

HSO =
Z�

4�2r3L� · � . �29�

After working out the expectation value of HR one finds

FIG. 1. Contributions to energy levels of hydrogenlike ions at
order m2�Z��2 /M. Initial and final wave functions are implicit. Ver-
tices on the top �electron� line are the usual spin-1

2 QED factors
−ie�� �where e= �e��. Vertices on the bottom �nucleus� line are those
appropriate for spin-0 QED: iZe�p+ p��� for the one-photon vertex
and 2i�Ze�2g�� for the seagull vertex. Part �a� represents the ex-
change of a transverse photon; �b� represents the exchange of two
Coulomb ladder photons; �c� represents the Coulomb-Coulomb
crossed ladder; and �d� represents the Coulomb-Coulomb seagull.
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�ET =
m

M
m�Z��4� 1

n4 +
��,0

n3 −
3

n3�2� + 1� +
m

M
�2HSO� ,

�30�

where

�HSO� =
��Z��4�j�j + 1� − ��� + 1� − 3/4�

2n3��� + 1��2� + 1�
. �31�

It is, of course, straightforward to simply use exact wave
functions and evaluate the integral �26� numerically. The re-
sults of doing this for the ground state using the adaptive
multidimensional integration program VEGAS �24� are
shown in Fig. 2, where the exact result is compared with the
NR approximation. As is also typical for the nonrecoil case,
significant differences that would be poorly treated with an
expansion in Z� arise at high Z. We note that a fit can be
carried out, giving

�E1T�1s� =
m2�Z��4

M̃
�− 1 − 1.50�1��Z��2 + ¯ � �32�

consistent with the known �Z��6 behavior.

B. Coulomb-Coulomb ladder

The diagram which requires the greatest care is the two-
Coulomb photon ladder diagram, as it has a binding singu-
larity. In addition, a new feature, present in a number of loop
diagrams when the nucleus is treated as a scalar, is poor
convergence in the integration over the fourth component of
momentum, q0, when Coulomb photons are present. Cou-
lomb photon propagators, being independent of q0, provide
no convergence, and the remaining q0 is nominally logarith-
mically divergent, though that divergence vanishes by sym-

metry. We regulate this near divergence by introducing a
factor �2 / �q0

2+�2� and subsequently taking � to infinity.
This procedure introduces a term that will be shown to can-
cel when a gauge invariant set of graphs is considered. In-
cluding this factor into the diagram of Fig. 1�b� gives the
energy shift

�ECC = i
�4�Z��2

2M̃
� d4q

�2��4 � d3k d3l

�2��6

�2M̃ − q0�2

�M̃ − q0�2 − q�2 − M2 + i�

�2

�2 + q0
2

1

�k� − q� �2�q� − l��2
�̄�k���0��E + q0��0 − �� · q� + m��0��l��

��E + q0�2 − q�2 − m2 + i��
.

�33�

The Dirac equation can be used to carry out the k� and l� integrations, leaving

�ECC =
i

2M̃
� d4q

�2��4

�2M̃ − q0�2

�M̃ − q0�2 − �q
2 + i�

�2

�2 + q0
2

�̄�q���E�0 − �� · q� − ����E + q0��0 − �� · q� + m��E�0 − �� · q� − ����q��

��E + q0�2 − �q
2 + i��

, �34�

where �q=�q�2+M2 and �q=�q�2+m2. We note the “mismatch” in the numerator between terms with � and with m: the former
comes from the formalism, and the latter from the electron propagator in the diagram, which is not altered by the choice of
formalism. We now carry out the q0 integration by closing above with Cauchy’s theorem: once this is done we are free to
introduce a new four-vector q= �E ,q��. Three terms result, with the simplest arising from the regulator,

�ECC1 =
1

4M̃
� d3q

�2��3 �̄�q���q” − ���0�q” − ����q�� . �35�

This term contributes in order m2�Z��4 /M, but as it will be shown to cancel we do not evaluate it explicitly. The other two
terms are both nonrecoil, with the most sensitive being

FIG. 2. Plot of �ET for the ground state as a function of Z� in
units of m2�Z��4 /M. The data points represent the result of a nu-
merical evaluation of �26� without approximation. The solid curve
is the function −1− � 3

2
��Z��2, which includes the first relativistic

correction. We note that the expansion in Z� works well for small
values of Z but fails badly for large Z.
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�ECC2 =
1

2M̃
� d3q

�2��3 �M̃ + �q�2 1

2�q
	

�̄�q���q” − ����E + M̃ − �q��0 − �� · q� + m��q” − ����q��

�E + M̃ − �q�2 − �q
2

. �36�

If we use the fact that

�M̃ + �q�2

�2M̃��2�q�
= 1 + O�1/M2� �37�

this simplifies to

�ECC2 =� d3q

�2��3

�̄�q���q” − ����E + M̃ − �q��0 − �� · q� + m��q” − ����q��

�E + M̃ − �q�2 − �q
2

. �38�

We proceed by rearranging the interior numerator in the
above as follows:

�0�E + M̃ − �q� − �� · q� + m

= �q” + �� + �0�M̃ − �q� + �m − ��

= �q” + �� +
m

M
��0�m −

q�2

2m
� + m

= �q” + �� +
m

M
��0E + �0�m − E� + m − �0 q�2

2m


= �q” + �� +
m

M
��q” + �� + �0�m − E� + �� · q� − �0 q�2

2m
 ,

�39�

where in the last manipulation we have replaced m with �,
with the difference being higher order in 1/M. If we now
define �=q2−�2 and restore the factors q” −� on the left and
right of the interior numerator we get

��1 +
m

M
��q” − �� +

m

M
�q” − ����0�m − E� + �� · q� − �0 q�2

2m
	

	�q” − �� . �40�

We further make the expansion of the denominator

�E + M̃ − �q�2 − �q
2

= �E2 − q�2 − �2� + 2E�M̃ − �q� − �m2 − �2� + O�1/M2�

= � +
E
M

�2m2 − q�2� − 2m3/M + O�1/M2�

= � +
1

M
�E�E2 − q�2 − m2� − E3 + 3Em2 − 2m3� + ¯

= � +
1

M
�E� − �m − E�2�2m + E� + ¯ �

= ��1 +
E
M

−
�m − E�2�2m + E�

M�
+ ¯ 	 . �41�

Combining these two forms then gives

�ECC2 =� d3q

�2��3 �̄�q���q” − ���1 +
�m − E�

M

+
�m − E�2�2m + E�

M�

+
m

M�
��0�m − E� + �� · q� − �0 q�2

2m
��q” − ����q�� .

�42�

If we label the terms in the curly brackets in �42� parts 1–6,
the various contributions are

�ECC21 = �V�Dirac, �43�

�ECC22 =
m

M
m�Z��4� − 1

2n4 , �44�

�ECC23 =
m

M
m�Z��4� 3

8n4 , �45�

�ECC24 =
m

M
m�Z��4� − 1

4n4 , �46�

�ECC25 =
m

M
m�Z��4� − 1

2n4 +
2

n3�2� + 1�
−

��,0

n3  −
m

M
�2HSO� ,

�47�
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�ECC26 =
m

M
m�Z��4� − 1

4n4 +
1

n3�2� + 1� . �48�

To cancel the factor of � in the denominator, we note that its
nonrelativistic limit is −q�2− ��Z��2 /n2, so that the
Schrödinger equation reads

− �

2�
�NR�q�� = 4�Z�� d3p

�2��3

1

�q� − p� �2
�NR�p�� . �49�

The strategy for the last three terms is then to “undo” the
Dirac equation so that the Coulomb potential is explicitly
present, take the nonrelativistic limit as in Eq. �27�, and then
use the Schrödinger equation. We illustrate this with �ECC25,

�ECC25 =� d3q

�2��3

m

M�
�̄�q���q” − ���� · q��q” − ����q��

=
�4�Z��2

�2��9 � d3kd3qd3l

�k� − q� �2�q� − l��2
m

M�
�̄�k���0�� · q��0��l��

� −
�4�Z��2

�2��9 � d3kd3qd3l

�k� − q� �2�q� − l��2
m

2M�
�†

NR�k��

	�� · q�� · l� + � · k�� · q���NR�l��

�
4�Z�

�2��6 � d3qd3l

�q� − l��2
1

2mM
�†

NR�q��

	�q� · l� + i� · �q� 	 l����NR�l�� . �50�

The total contribution of term CC2 is then

�ECC2 = �V�Dirac +
m

M
m�Z��4� − 9

8n4 −
��,0

n3 +
3

n3�2� + 1�
−

m

M
�2HSO� , �51�

where the formalism subtracts off the first, nonrecoil term. It
is of interest that had we used the formalism with E→�,

M̃→M mentioned above, the cancellation, while still remov-
ing the nonrecoil term, would leave a contribution that can
be shown to start with the term m2�Z��2 /2Mn2, the standard
reduced mass contribution to the nonrelativistic energy. As
we have chosen to build this into our lowest order solution,
the cancellation is finer, and leaves terms starting in order
m2�Z��4 /M.

The remaining part of the CC calculation involves closing
around a negative energy electron pole, which, while leading
to higher powers of Z� than when the nuclear pole is en-
circled, is also nonrecoil. Its full contribution is

�ECC3 =
1

2M̃
� d3q

�2��32�q
�2M̃ + E + �q�2

	
�̄�q���q” − ���− �q�0 − �� · q� + m��q” − ����q��

�E + M̃ + �q�2 − �q
2

,

�52�

but we can approximate E=m, �q=m, and �q=M in the
nuclear propagator, leading to the simpler expression

�ECC3 =
1

2M̃
� d3q

�2��32�q

�2M̃ + 2m�2

�M̃ + 2m�2 − M2
�̄�q���q” − ��

	�− �q�0 − �� · q� + m��q” − ����q�� . �53�

We will show below that although this term is nonrecoil,
starting in order m�Z��5, the nonrecoil part cancels with a
contribution from the crossed Coulomb ladder.

C. Crossed Coulomb diagram

The crossed ladder �CCX� diagram of Fig. 1�c� is given
by

�ECCX = i
�4�Z��2

2M̃
� d4q

�2��4 � d3k d3l

�2��6

�2M̃ + q0�2

�M̃ + q0�2 − �q� − k� − l��2 − M2 + i�

	
�2

q0
2 + �2

1

�k� − q� �2�q� − l��2
�̄�k���0��E + q0��0 − �� · q� + m��0��l��

��E + q0�2 − �q
2 + i��

. �54�

Taking a pole of the regulator term gives the same result as with the ladder, thus doubling �ECC1. While the pole from the
nuclear line enters in the entirely negligible order m5 /M4, the electron pole contributes at the level of nonrecoil fine structure,
and is

�ECCX =
�4�Z��2

2M̃
� d3q

�2��3 � d3k d3l

�2��6

�2M̃ − E − �q�2

�M̃ − E − �q�2 − �q� − k� − l��2 − M2

1

2�q

1

�k� − q� �2�q� − l��2
�̄�k���0�− �q�0 − �� · q� + m��0��l�� .

�55�
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It is again legitimate to make the approximations E=m, �q

=m, and M2+ �q� −k� − l��2=M2, and further use of the Dirac
equation gives the approximation

�ECCX =
1

2M̃
� d3q

�2��32�q

�2M̃ − 2m�2

�M̃ − 2m�2 − M2
�̄�q���q” − ��

	�− �q�0 − �� · q� + m��q” − ����q�� . �56�

This term can now be combined with the CC3 contribution,
and the nonrecoil term can easily be seen to cancel. There
remains a nonvanishing recoil term of order m2�Z��5 /M,

�ECC3 + �ECCX =
1

2M̃
� d3q

�2��32�q
�̄�q���q” − ��

	�− �q�0 − �� · q� + m��q” − ����q�� ,

�57�

which we keep, although beyond the order of interest we are
considering here, as it has an interesting connection with the
seagull diagram.

D. Seagull diagram

A different feature of our formalism is the presence of
so-called seagull graphs. In the Coulomb gauge the seagull
graph consists of a Coulomb-Coulomb �CC� term and a
transverse-transverse term �TT�, with the latter beyond our
present order of interest. Again regularizing the q0 integra-
tion, the CC seagull graph �see Fig. 1�d�� contributes

�ECCs = − 2i
�4�Z��2

2M̃
� d4q

�2��4 � d3k d3l

�2��6

�2

�2 + q0
2

1

�k� − q� �2�q� − l��2
�̄�k���0��E + q0��0 − �� · q� + m��0��l��

��E + q0�2 − q�2 − m2 + i��
. �58�

If we again close above to carry out the q0 integration the
regulator term contributes −2�ECC1: as �ECC1 was doubled
from the crossed Coulomb diagram, this completes the can-
cellation of contributions arising from the regulator term.
The other pole picks up a negative energy electron contribu-
tion, and gives, using the Dirac equation,

�ECCs = − 2
1

2M̃
� d3q

�2��32�q
�̄�q���q” − ���− �q�0 − �� · q� + m�

	�q” − ����q�� . �59�

The net result is that the only role of the seagull diagram to
order m2�Z��4 /M is in canceling the regulator terms from
the ladder and crossed ladder, and in addition it combines
with m2�Z��5 /M terms coming from the negative energy
pole terms in those diagrams.

IV. TOTAL AT ORDER „Z�…4

The combination of the CC, CCX, CCs, T, and C graphs
gives

�E =
m

M
m�Z��4� − 1

8n4 . �60�

In order to find the total recoil contribution at this order, one
must combine this with the recoil contribution from
��f�n , j�−1�, which is −�m2 /M��f�n , j�−1�, where f�n , j�
=� /m is defined through Eq. �5�. The total recoil contribution
through terms of order �Z��4 is

�Erecoil =
m2

M
�− �f�n, j� − 1� −

�Z��4

8n4 
=

m2

M
� �Z��2

2n2 + �Z��4� − 1

2n4 +
1

2n3�j + 1/2�� .

�61�

This is the known Barker and Glover result �22� for the re-
coil contribution at this order.

V. SALPETER CORRECTION

One of the first accomplishments of a fully relativistic
treatment of the two-body bound state problem was Sal-
peter’s discovery �16� that corrections of order �m /M times
fine structure were present in hydrogenlike atoms: use of the
older formalism of the Breit equation had found no such
contributions �23�. While we are not calculating all such
terms here, we show how they arise from one and higher
Coulomb exchanges that are crossed by a transverse photon,
illustrating with the graph of Fig. 3�a�. This gives rise to the
somewhat complicated expression

FIG. 3. Graphs contributing to the Salpeter correction of order
m2�Z��5 /M. In graph �a� a transverse photon crosses two-Coulomb
photons. In graph �b� the transverse photon crosses a single-
Coulomb photon, with a Coulomb ladder photon on the side. There
are two graphs like �b� since the ladder photon can be on either side.
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�E = −
�4�Z��3

2M
� d4k

�2��4 � d4l

�2��4 � d3p d3p�

�2��6

�2M + 2k0 − l0�

�M + k0�2 − �k� − p� �2 − M2 + i�

	
�2M + k0 − l0�

��M + k0 − l0�2 − �k� − l��2 − M2 + i��

�k − 2p� j��ij − kikj/k�
2�

k0
2 − k�2 + i�

1

�l� − p� �2
1

�k� − l� + p���2

	 �̄�p����i
1

�E + k0��0 − �� · �k� + p��� − m + i�
�0

1

�E + l0��0 − �� · l� − m + i�
�0��p�� . �62�

We wish to show that this expression is dominated by a term that contains part of the Dirac-Coulomb propagator of Eq. �2�.
Specifically, if we expand the momentum space form of that equation in powers of the Coulomb potential, the term involving
one potential is

SF
1C�p��,p� ;E� =

1

E�0 − �� · p�� − m

− 4�Z�

�p�� − p� �2
�0

1

E�0 − �� · p� − m
, �63�

where the distinction between m and � is dropped in this section as the graph being considered has a factor m /M. To see how
this arises from the graph of Fig. 3�a�, we first close the k0 contour above and take the transverse-photon pole to get

�E = i
�4�Z��3

4M
� d3k

�2��3

1

k
� d4l

�2��4 � d3p d3p�

�2��6

�2M − 2k − l0�

�M − k�2 − �k� − p� �2 − M2

�2M − k − l0�

��M − k − l0�2 − �k� − l��2 − M2 + i��
�− 2p� j

	��ij −
kikj

k�2 � 1

�l� − p� �2
1

�k� − l� + p���2
�̄�p����i

1

�E − k��0 − �� · �k� + p��� − m
�0

1

�E + l0��0 − �� · l� − m + i�
�0��p�� . �64�

Because we are dropping terms of order m3 /M2, the first
nuclear denominator simplifies to −2Mk, and further carry-
ing out the l0 integration by closing the above gives a term
from the second nuclear denominator that forces l0=−k, giv-
ing

�E = −
�4�Z��3

4M
� d3k

�2��3

1

k2 � d3l

�2��3 � d3p d3p�

�2��6

	�− 2p� j��ij −
kikj

k�2 � 1

�l� − p� �2
1

�k� − l� + p���2
�̄�p����i

	
1

�E − k��0 − �� · �k� + p��� − m
�0

1

�E − k��0 − �� · l� − m

	�0��p�� . �65�

Using Eq. �63� then allows us to write

�E =
�4�Z��2

4M
� d3k

�2��3

1

k2 � d3l

�2��3 � d3p d3p�

�2��6 �− 2p� j

	��ij −
kikj

k�2 � 1

�l� − p� �2
�̄�p����iSF

1C�p�� + k�,l�;E − k��0��p�� .

�66�

The same kinds of argument apply for any number of Cou-
lomb exchanges, allowing the replacement of SF

1C with SF.
Care is required, however, for the first term of the expansion
of SF, which requires an ultraviolet cutoff in the k integration
because of the approximations we have made. However, this

term is finite when simply treated as a one-loop diagram. The
actual calculation of the Salpeter correction would involve
evaluating the one-loop diagram without approximation and
then evaluating the above expression and higher Coulomb
exchanges by using SF−S0, a technique that is standard in
self-energy calculations. Replacing SF

1C in the above with the
spectral representation of SF then gives

�E =
�4�Z��2

4M
� d3k

�2��3

1

k2 � d3l

�2��3

	� d3p d3p�

�2��6 �− 2p� j��ij −
kikj

k�2 � 1

�l� − p� �2

	

m

�̄�p����i�m�p�� + k���̄m�l���0��p��
E − Em − k

. �67�

Replacing −2pj with −2�p− l� j leads to the integral

� d3p d3l

�2��6 �p − l� j
4�Z�

�l� − p� �2
�̄m�l���0��p��

= − iZ�� d3x
xj

x3 �̄m�x���0��x�� = �E − Em��m�pj�0� ,

�68�

where E is the Dirac energy of the state � of interest, here
taken to be the ground state. Equations �67� and �68� lead to
the relativistic generalization of Salpeter’s �16� Eq. �45�. The
replacement of −2pj by −2�p− l� j arises from consideration
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of the reducible graph shown in Fig. 3�b�, which comes from
the formalism when the three-photon exchange is consid-
ered, as described in Ref. �25�. In this diagram there are two
nuclear propagators that depend on l0, with one of them lead-
ing to the replacement mentioned above, and the other to a
bound state singularity canceled by the formalism.

VI. NRQED CALCULATION OF THE ENERGY SHIFT TO
ORDER „Z�…4 INCLUDING RECOIL

We base our expression of NRQED on the work of Ki-
noshita and Nio �26�. The NRQED Lagrangian for a particle
of spin-1

2 and one of spin-0 has the form

L = �†�iDt +
D� 2

2m
+

D� 4

8m3 + cF
e� · B�

2m
+ cD

e�D� · E� − E� · D� �
8m2

+ cS
ie� · �D� 	 E� − E� 	 D� �

8m2 + ¯ �

+ ��iDt +
D� 2

2M
+ ¯ � + LEM, �69�

where Dt=�t+ ieA0 and D� =�� − ieA� for the electron, and simi-
larly but with e→−Ze for the nucleus. Electromagnetism is
described by the usual Lagrangian LEM= �− 1

4
�F��F��, and we

use the Coulomb gauge in our calculations. In terms of Feyn-
man rules, we build on those given by Kinoshita and Nio in
their Fig. 3. The new rules include a Coulomb vertex
for the nucleus −Ze, a dipole vertex for the nucleus
Ze�p��+ p�� / �2M�, and a propagator for the nucleus
�E− p�2 / �2M�+ i��−1. The rule is to multiply all propagators
by i, all vertices by −i, and to include an overall factor of i
when calculating energy shifts. Loop integrals are done over
all momenta with the measure d4k / �2��4. The Bethe-
Salpeter equation for NRQED �with lowest order propaga-
tors and vertices� is exactly the Schrödinger-Coulomb equa-
tion with reduced mass, which is also described in Kinoshita
and Nio. We use the symbol ��p� for the NRQED Bethe-
Salpeter wave function. For example, the ground state wave
function is

��p� = �2����p0���p�� , �70�

where

��p�� =
16��5/2

�p�2 + �2�2�−1� �71�

with �=�Z� and, for example, �−1,1/2
† =−1/�4��1,0�.

The relevant graphs for the calculation of energies up to
O(�Z��4) and including recoil �to first order: m /M� are
shown in Fig. 4. In the calculation of bound state NRQED
graphs we take the electron line to enter with momentum
�E0 , p�� and the nucleus with momentum �0,−p��, where
E0=−��Z��2 / �2n2� is the Bohr energy level.

The crossed Coulomb ladder �Fig. 4�a�� has the form

�ECCX = i� d3q

�2��3

d4l

�2��4

d3p

�2��3�†�q��

	�− ie�
i

l0 + E0 − l�2/2m + i�
�− ie���p��

	
i

�q� − l��2

i

�l� − p��2
�iZe�

i

l0 − ��l� − p� − q��2�/2M + i�

	�iZe� . �72�

The poles of the l0 integral

� dl0

2�i

1

l0 + E0 − l�2/2m + i�

1

l0 − ��l� − p� − q��2�/2m + i�
= 0.

�73�

are both on the same side of the real axis. It follows that the
l0 integral vanishes, as does the crossed Coulomb ladder con-
tribution: �ECCX=0.

The relativistic kinetic energy correction �Fig. 4�b�� is

�EK = i� d3q d3p

�2��6 �†�q���− i��− p�4

8m3��2��3��p� − q����p��

= ��

m
�3

�HK� � �1 −
3m

M
��HK� , �74�

where

�HK� =� d3p

�2��3�†�p���− p�4

8�3 ���p��

= ��Z��4� 3

8n4 −
1

�2� + 1�n3� . �75�

The spin-orbit correction to the electron line �Fig. 4�c�� is

FIG. 4. NRQED contributions to energies at order m2�Z��4 /M.
Graph �a� is the two-Coulomb crossed ladder, �b� represents the p4

relativistic kinetic energy correction to the electron line, �c� is the
spin-orbit correction to the electron line �with Coulomb photon ex-
change�, �d� is the Darwin correction to the electron line �with
Coulomb photon exchange�, �e� shows transverse photon exchange
with dipole vertices on both electron and nuclear lines, and �f�
represents transverse photon exchange with a Fermi vertex on the
electron line and a dipole vertex on the nuclear line.
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�ESO = i� d3q d3p

�2��6 �†�q���− i�
ie

4m2 �q� 	 p�� · � ��p��
i

k�2
�iZe�

=
i

4m2 � d3q d3p

�2��6 �†�q���q� 	 p� · � ���p��VC�k��

= ��

m
�2

�HSO� � �1 −
2m

M
��HSO� , �76�

where k� =q� − p� and

�HSO� = � Z�

4�2r3L� · �� �77�

as before.
The Darwin correction to the electron line �Fig. 4�d�� is

�ED = i� d3q d3p

�2��6 �†�q��
ie

8m2 �q� − p� �2��p��
i

k�2
�iZe�

= ��

m
�24�Z�

8�2 ���0��2 � �1 −
2m

M
��HD� , �78�

where

�HD� =
4�Z�

8�2 ���0��2 = ��Z��4��,0

2n3 . �79�

The dipole-dipole transverse-photon exchange contribu-
tion �Fig. 4�e�� is

�EDD = i� d3q d3p

�2��6 �†�q��
ie

2m
�p + q�i i�ij

T�k��

− k�2

	��p��
− iZe

2M
�− p − q� j

=
− 4�Z�

mM
� d3q d3p

�2��6 �†�q��
p�2q�2 − �p� · q��2

k�4
��p��

=
m

M
�HR� , �80�

just as in the relativistic calculation of one-transverse-photon
exchange. We note that the expectation value �HR� can be
written as

�HR� = � 1

n4 +
��,0

n3 −
3

n3�2� + 1���Z��4

= 3�HK� + 2�HD� −
1

8n4��Z��4. �81�

Finally, the Fermi correction �Fig. 4�f�� is

�EF =
− 4�Z�

4mM
� d3q d3p

�2��6 �†�q��

	
− i�ijk�q − p� jk�in

T �k���p + q�n

k�2
��p��

=
2i

4mM
� d3q d3p

�2��6 �†�q��q� 	 p� · � ��p��VC�k��

=
m

M
� Z�

2m2r3L� · �� �
m

M
�2HSO� . �82�

The sum of all contributions is

�E = �ECCX + �EK + �ESO + �ED + �EDD + �EF

= �1 −
3m

M
��HK� + �1 −

2m

M
��HSO� + �1 −

2m

M
��HD�

+
m

M
�3�HK� + 2�HD� −

1

8n4��Z��4� +
m

M
�2HSO�

= �HK + HSO + HD� −
m2

M

�Z��4

8n4 , �83�

which again is the known Barker and Glover result for the
fine structure with the recoil correction.

VII. CONCLUSIONS

A form of the Bethe-Salpeter equation of particular sim-
plicity has been introduced that can be applied to the entire
hydrogen isoelectronic sequence. We have shown that the
power series expansion of the 1T kernel is nonperturbative at
high Z, demonstrating the need for a complete numerical
calculation for all kernels. Such a calculation has been done
using a Green’s function formalism by Shabaev and collabo-
rators �11,12�, but it is always desirable in QED to have
checks on these complex calculations. We are presently cal-
culating the remaining one-loop diagrams that enter in order
m2 /M�Z��5. As an indication of the numerical importance of
these calculations for the transition discussed in the Introduc-
tion, we note that Ref. �12� finds a correction of −0.04 eV for
the 2p1/2-2s transition in hydrogenic uranium, to be com-
pared to the 0.207 eV discrepancy presumably dominated by
the two-loop Lamb shift. However, this is only part of the
effect of recoil for lithiumlike uranium, and the question of
relativistic corrections to mass polarization cannot be ad-
dressed in our formalism, which is strictly a two-body ap-
proach. We are presently investigating the relatively unex-
plored problem of forming many-particle generalizations of
the Bethe-Salpeter equation that have the three-dimensional
and relativistic aspects of the equation described in the
present work.
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APPENDIX

In this appendix we give a fuller description of the present
status of the recoil problem, which has advanced well be-
yond the basically pedagogic example we have used to illus-
trate our method. As mentioned above, the first application of
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the Bethe-Salpeter equation to atomic physics was made by
Salpeter �16�, who found the correction

ES =
m2�Z��5

�Mn3 �−
2

3
�l0 ln�Z�� −

8

3
ln k0�n,l� −

1

9
�l0 −

7

3
an	 ,

�A1�

where

an = − 2�l0�ln
2

n
+ 1 −

1

2n
+ 


i=1

n
1

i 	 +
1 − �l0

l�l + 1��2l + 1�
,

�A2�

ln k0�n , l� is the Bethe logarithm, and terms of order m3 /M2

have been dropped. About ten years ago considerable activity
was devoted to calculating higher order terms, which can be
parametrized as

ER =
m2�Z��6

Mn3 D60�n,l,Z�� . �A3�

Some care is required with this definition, which depends on
the formalism. For example, our formalism absorbs some
terms of this order into the lowest order energy, but if that
energy is defined with m rather than � those terms would be
part of D60. Another source of formalism dependence is the
fact that the Barker-Glover contribution of order m2 /M�Z��4

treated in this paper can be treated as the first term in the Z�
expansion of the expression

EBG = −
m2

2M
�f�n, j� − 1�2. �A4�

In the following we will assume that terms of order
m2 /M�Z��6, arising from both these sources, have been in-

corporated into the formalism. The remaining contributions
of this order are then associated with the function
D60�n , l ,Z��. This function can be studied as an expansion in
Z�, or treated exactly, with our present method intended to
provide the latter treatment. As mentioned above, exact re-
sults have been obtained by Shabaev et al. �11�. Somewhat
before these all-order results appeared, Pachucki and Grotch
�13�, using a method valid for arbitrary Z but applied to the
low-Z case, found the first term in the perturbative expansion
of D60�n , l ,Z�� for s states,

D60�n,0,0� = 4 ln 2 − 7
2 . �A5�

This result was subsequently confirmed in Ref. �14�.
Golosov et al. �27�, Elkhovskii �28�, and Jenschura and Pa-
chucki �29� extended the results to non-s states, finding

D60�n,l � 0,0� = �3 −
l�l + 1�

n2 	 2

�4l2 − 1��2l + 3�
. �A6�

However, while these results agree with Ref. �11�, we note
that different results have been obtained by Yelkhovsky �30�,
and no explanation for the discrepancy has been found.
While generally agreement between the perturbative expan-
sion and all-order methods is strong evidence of correctness,
another check of the all-orders method that application of our
technique will provide would be of interest. We note finally
that further terms in the expansion of D60�n ,0 ,Z�� have
been calculated �31�, with the result

D60�n,0,Z�� = 4 ln 2 −
7

2
+

11

30�
�Z��ln�Z�� . �A7�
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