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We report on cold atom photoassociation of 87Rb giving spectroscopy data of the �5s1/2+5p1/2�0g
− long-range

molecular states in the asymptotic range of �−12.5 cm−1, −1.5 cm−1� below the dissociation limit. Using a
Lu-Fano approach to analyze the data, we show that an improved LeRoy-Bernstein model has to be applied.
This approach lets us determine the phase shift of the wave function at the dissociation limit of the 0g

− series.
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I. INTRODUCTION

The photoassociation of cold atoms, proposed 1987 �1�
and experimentally demonstrated in 1993 �2�, has become a
precise and powerful technique for molecular spectroscopy
�3�. It allows the detailed analysis of long-range molecular
states. Especially for the alkali-metal dimers, this technique
is fruitful for the molecular states belonging to series which
converge to the first s+ p dissociation limit. The molecular
data, deduced from the photoassociation spectra, are mainly
the energy of the bound states. These data are essential for
the determination of the molecular parameters and therefore
for the molecular curves.

In the case of cold atom photoassociation, many details
can be deduced concerning the long-range part of the mo-
lecular potential. In the near-dissociation region, the molecu-
lar interaction is fully described by asymptotic laws and
some models lead to a quite simple description of the ob-
served molecular states. One of the models that is often ap-
plied was developed by LeRoy and Bernstein �4�.

For the rubidium atom, a lot of experimental studies were
reported, giving data for both isotopes. Available data mainly
concern the molecular states belonging to series converging
to the 5s1/2+5p3/2 limit �5–9�. Only a few experimental data
have been established for series converging to the 5s1/2
+5p1/2 limit for the isotope 85 �6,10–13� and isotope 87
�13,14�. In this paper, we present results of the photoassocia-
tion spectroscopy of 87Rb atoms leading to molecular states
of the �5s1/2+5p1/2�0g

− series in the asymptotic range of
�−12.5cm−1, −1.5cm−1� below the dissociation limit.

In an usual point of view, the spectroscopy of the 87Rb2
�5s1/2+5p1/2�0g

− states presents many similarities with experi-
mental works published for alkali-metal atoms: H2 �1s+2p�
�15�, Li2 �2s+2p1/2� �16,17�, Na2 �3s+3p1/2� �18�, K2 �4s
+4p1/2� �19�, and Cs2 �6s+6p1/2� �20–22�. The quantitative
analysis of these spectroscopic data was done mainly by fit-
ting with the LeRoy-Bernstein formula or by using numeri-
cal calculations of a RKR �Rydberg-Klein-Rees� potential.

In this paper, we examine the data with a different ap-
proach, which combines the LeRoy-Bernstein formula and
the Lu-Fano approach. This approach, usually used for the
Rydberg states, is very sensitive to any deviation of an as-
sumed law. Here the deviation to the LeRoy-Bernstein for-
mula allows us to value the required modification of the

model. The Lu-Fano graph exhibits a linear variation of the
quantum defect versus the energy, and is well interpreted by
applying the recently proposed improved LeRoy-Bernstein
formula �23�.

The first section of the paper is devoted to the experiment,
the presentation of spectra, and the deduced data. In the sec-
ond part, the LeRoy-Bernstein approach is recalled, the po-
tential curve is defined, and the Lu-Fano plot is presented
and analyzed. The improved LeRoy-Bernstein formula is
then applied to deduce the phase-shift parameter and the
slope of the linear variation. These parameters, coupled to
simple proposed analytic models, allow us to deduce some
short-range potential characteristics, such as the location of
the barrier and the minimum.

II. EXPERIMENT

The experiment is performed on 87Rb atoms, trapped in a
magneto-optical trap �MOT�. The photoassociation is ana-
lyzed by applying the trap loss spectroscopy technique �24�.
This method consists in recording the atom number while the
photoassociation laser is frequency-scanned. If the laser
wavelength is resonant to a molecular state, the photoasso-
ciation creates long-range excited molecules. These excited
molecules, having a very short lifetime, rapidly desexcite
either to molecules in a fundamental state or to fast atoms. In
both cases, the produced species cannot be trapped in the
MOT. Therefore, an atom loss is observed.

A general view of the experiment is presented in Fig. 1.

FIG. 1. Experimental setup.
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The magneto-optical trap is produced in the ultrahigh-
vacuum chamber made of nonmagnetic stainless steel. The
background Rb pressure is in the 10−9 mbar range. The atom
trap is created at the center of a quadripolar magnetic-field
gradient, where three pairs of counterpropagating, retrore-
flected laser beams �8 mm diameter� in the standard �+ /�−

configuration orthogonally cross each other. In this region,
the earth magnetic field and any other magnetic fields are
compensated by using three pairs of Helmholtz coils. The
lasers of the trap are provided by laser diodes �Hitachi and
Sanyo� emitting about 50 mW laser power at �780 nm
wavelength. The trapping laser is a Sanyo device having a
linewidth about 1 MHz. It is frequency-locked near the ru-
bidium line 5s1/2F=2→5p3/2F�=3, with a detuning of −2�
�� being the natural linewidth of the 5p3/2F�=3 level,
� /2�=5.89 MHz�, by using a saturated absorption spectros-
copy in an additional vapor cell. The repumping laser diode
is a Hitachi model that is locked to the rubidium line
5s1/2F=1→5p3/2F�=2 via a similar method. Both lasers are
superimposed and used to create the MOT.

With a quadripolar magnetic gradient of 14 G/cm and a
few milliwatts per laser beam, cold clouds of �107 atoms,
with a �0.5 mm radius and 30 �K temperature, are usually
created.

The photoassociation �PA� light is provided by a widely
tunable titanium-sapphire laser �Coherent MBR 110� system
with a typical output power of 900 mW and a linewidth of
about 100 kHz. We use about 500 mW for the experiment.
The PA laser beam is arranged in order to get a waist of
1 mm, slightly larger than the MOT size. The PA spectrum is
obtained by scanning the PA laser wavelength and by simul-
taneously recording the cloud fluorescence, the fluorescence
signal being proportional to the 5p1/2F=2 atom number in
the trap. The fluorescence is collected onto a photodiode and
the resulting signal is amplified to reach the volt range. The
trap fluctuations are averaged numerically via the data acqui-
sition �using a National Instrument card� of the amplified
signal.

Simultaneously to the PA laser scanning, the laser wave-
length is measured with a commercial wavemeter �Burleigh
WA 1100� with an accuracy of 500 MHz ��0.01 cm−1�. The
laser wavelength is recorded on a computer via a GPIB con-
nection. A C++ program controls the different cards and
stores the data in the computer with a repetition rate �4 Hz.

To explore the molecular states near the 5p1/2 limit, the
PA wavelength is chosen to be red-detuned of the D1 line at
795 nm. The PA laser is scanned automatically over 1 cm−1

�1 cm−1 during 600 s typically�. Manual tunings are required
to cover a wide range.

A typical photoassociation spectrum is shown in Fig. 2.
The energy scale is presented relatively to the atomic transi-
tion 87Rb�5s1/2 ,F=2�→ 87Rb�5p1/2 ,F�=2�, whose energy is
12578.876 cm−1 �25�. The PA spectrum exhibits vibrational
progressions corresponding to the 1g, 0u

+, and 0g
− attractive

molecular states. The states are identified by their energy
spacing and width. In the range −12.5 cm−1 to −1.5 cm−1,
we have identified without any ambiguity 12 resonances be-
longing to the 0g

− series. The found energy positions are re-
ported in Table I. Results of 1g and 0u

+ states will be pre-
sented in detail in a future paper.

III. ANALYSIS OF THE DATA

Considering the energy range of the experimental study,
which is typically −12.5 cm−1 to −1.5 cm−1 below the disso-
ciation limit, the LeRoy-Bernstein formula is valid and can
be applied in a first approximation. We propose then to
couple this analysis to a Lu-Fano plot of the data. Such a
plot, which is a differential method, allows us to evidence the
difference in the LeRoy-Bernstein law and leads us to apply
an improved LeRoy-Bernstein formula.

A. The LeRoy-Bernstein formula

The LeRoy-Bernstein formula �4� has been obtained in
the case of an asymptotic molecular potential V�R�=D
−cn /Rn, with n�3, with R the internuclear distance, D the
dissociation limit, and cn the multipole expansion coefficient.
The starting point is the application of the Bohr-Sommerfeld
rule for a bound vibrational molecular level v with the en-
ergy E,

FIG. 2. Trap loss photoassociation spectrum recorded in the
�−11.5 cm−1, −5 cm−1� below the dissociation limit: the crosses,
squares, and arrows indicate the 0u

+, 0g
−, and 1g level positions,

respectively.

TABLE I. 87Rb�5s1/2+5p1/2�0g
− levels: experimental energy po-

sitions measured relative to the atomic transition 87Rb�5s1/2 ,F=2�
→ 87Rb�5p1/2 ,F�=2� at 12578.876 cm−1. The v values have been
numerically determined by Dulieu �26�.

v Energy position �cm−1�

187 −12.173; −12.167; −12.167

188 −10.713; −10.713; −10.717; −10.716

189 −9.390; −9.397; −9.376; −9.375; −9.3750; −9.374

190 −8.147; −8.157; −8.156

191 −7.034

192 −6.019; −6.020

193 −5.098; −5.088

194 −4.292; −4.289; −4.280; −4.284; −4.272

195 −3.562; −3.564; −3.569; −3.563; −3.563

196 −2.909; −2.910; −2.925; −2.925; −2.925

197 −2.376; −2.359; −2.376; −2.368; −2.364; −2.379

198 −1.861; −1.879; −1.875; −1.873
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�2�

�
�

R−

R+ �E − V�R�dR = �v + 1
2��

with � the reduced mass, and R− and R+ the inner and
outer classical turning points of the vibrational motion
solving the equation V�R�=E. Due to the form �sometimes
complicated� of the real potential V�R�, the integral
�= ��2� /����R−

R+�E−V�R�dR depends strongly on E and
V�R�. Nevertheless, the differentiation of �,

d�

dE
=

dv
dE

=
�2�

h
�

R−

R+ dR
�E − V�R�

,

which represents the level density, is dominated by its value
in the range defined by V�R�	E.

The first LeRoy-Bernstein approximation is the use of the
asymptotic potential form V�R�=D−cn /Rn, in the calculation
of d� /dE. The second approximation is the extension of the
integral for short values of R, allowing the limit R−=0. By
introducing the energy difference �=D−E, the density of
levels is therefore

d�

d�
= −

�2�

h
�

0

R+ dR
�− � + cn/Rn

.

Considering that R+
n =cn /� and introducing the variable x

=R /R+, one gets

d�

d	
= −

�2�

h

cn
1/n

��n+2�/2n�
0

1 xn/2dx
�1 − xn

= −
�2�

h

cn
1/n

��n+2�/2n

��

n

��1/2 + 1/n�
��1 + 1/n�

.

The integration of the level density gives �for n�2� the
well-known LeRoy-Bernstein law

vD − v = Hn
−1��n−2�/2n,

Hn
−1 =

�2�

��

cn
1/n

��n − 2�
��1/2 + 1/n�
��1 + 1/n�

,

where vD is an integration constant whose integer part mea-
sures the level number of the molecular potential and Hn is a
constant involving the molecular coefficient cn. The noninte-
ger part 
D=vD−E�vD� gives �with a � factor� the phase
difference between the last vibrational level defined with
v=E�vD� and the dissociative state at �=0. The LeRoy-
Bernstein formula is not valid for levels located very close to
the dissociation limit. The criterion is usually defined relative
to the v number, and the accuracy is given by �1/�2v2.

B. Asymptotic „5s1/2+5p1/2…0g
− potential curve

In order to apply the LeRoy-Bernstein formula, the mul-
tipolar expansion of the �5s1/2+5p1/2�0g

− molecular curve is
analyzed. For the Hund case �c�, the development of the
potential, in the nonrelativistic case, is given by

V�R� = − A −
4

3

C3
2

AR6 −
2C6

� + C6
�

3R6 −
2C8

� + C8
�

3R8 ,

where A is an energy constant connected to the 5p level fine
structure by 3

2A=E�5p3/2�−E�5p1/2�, and Cn coefficients are
related to the atomic wave function. For instance, in the case
of a rubidium atom, C3 is given by C3= 
5s�r�5p�2 /3.

For large values of R, the variation of the molecular po-
tential is dominated by the term − 4

3 �C3
2 /AR6�. In order to

evaluate the terms in the development of the potential, we
give in Tables II–IV the Cn values given in the literature or
deduced from other coefficients. For the C3 value, consider-
ing the first five values of Table II, we get the weighting
mean value C3=8.949�10� a.u.

For all the next calculations, we take the following values:
A=158.398 936 62 cm−17.217 186 589 210−4 a.u. �de-
duced from Refs. �28,25��, C6

�=8.05103 a.u., C6
�=12.91

103 a.u., C8
�=1.06106 a.u., and C8

�=3.45106 a.u. We

TABLE II. C3 coefficients for 87Rb deduced from referenced
data �an asterisk denotes using the nonrelativistic relation C3

= �3� /4���� /2��3�.

Data References Year C3 �a.u.�

��5p3/2�=26.24�4� ns �27,28� 1996 8.934�14�*

��5p3/2�=26.20�9� ns �29,28� 1998 8.948�31�*

��5p1/2�=27.70�4� ns �27,25� 1996 8.952�13�*

��5p1/2�=27.64�4� ns �29,25� 1998 8.971�13�*

M2=8.688�25�105 cm−1 Å3 �30� 2002 8.905�26�
M2=8.799 cm−1 Å3 �30� 2002 9.0185

M3/2=5.956 a.u. �31� 1999 8.868

M1/2=4.221 a.u. �31� 1999 8.908

C3=9.202 a.u. �32� 1995 9.202

TABLE III. C6 coefficients for a rubidium atom.

Data References Year C6 �a.u.�

C6
�=3.88�5�107 cm−1 Å6 �30� 2002 C6

�=8.05�10�103

C6
�=8.047103 a.u. �32� 1995 C6

�=8.047103

C6
�=6.22�12�107 cm−1 Å6 �30� 2002 C3

�=12.91�25�103

C6
�=12.05103 a.u. �32� 1995 C6

�=12.05103

TABLE IV. C8 coefficients for a rubidium atom.

Data References Year C8 �a.u.�

C8
�=1.43�10�109 cm−1 Å8 �30� 2002 C8

�=1.06�7�106

C8
�=1.132106 a.u. �32� 1995 C8

�=1.132106

C8
�=4.66�50�109 cm−1 Å8 �30� 2002 C8

�=3.45�37�106

C8
�=2.805106 a.u. �32� 1995 C8

�=2.805106
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deduce 4
3C3

2 /A=1.4795105 a.u.; �2C6
�+C6

�� /3=0.0997
105 a.u., and �2C8

�+C8
�� /3=1.86106 a.u. With the nota-

tion defined in the previous section, V�R�=D−c6 /R6

−c8 /R8, one gets c6=1.5792105 a.u. and c8= +1.86
106 a.u. These values indicate than the 1/R8 term is 100
times smaller than the 1/R6 ones as soon as R�34 a.u. It
corresponds to an energy � ranging from 0 to�10−4 a.u.
�22 cm−1�. As a consequence, for the experimental range
studied here, the LeRoy-Bernstein approach can be applied.

C. Lu-Fano graph

Let us now introduce the effective quantum number de-
fined by v*=Hn

−1��n−2�/2n, which naturally appears in the
LeRoy-Bernstein formula. Its noninteger part, defined by

=v*−E�v*�, is therefore a constant value and is equal to 
D.

This remark allows us to regard this quantity 
 as the
usual quantum defect that is currently used in any Rydberg
state spectroscopy. In such studies, the quantum defect, de-
duced via a Rydberg law �v*=�R /�, with R the Rydberg
constant�, is plotted versus the energy �, in a so-called Lu-
Fano graph �33�. Any deviation of 
 to a constant value is the
signature of a perturbation to the Rydberg law. The perturba-
tions are generally due to core effects, or to some coupling
with neighboring series.

For molecular physics, Lu-Fano graphs have recently
been used to present and analyze calculations for Rb2 and
Cs2 0u

+ molecular states �34,35�. They illustrate coupling be-
tween two series, converging either to the s+ p1/2 limit or the
s+ p3/2 limit with a coupling considered as a constant or de-
pendent on the internuclear distance. For cesium, these mod-
els were then compared with experimental data �36�. In this
paper, the Lu-Fano graph is applied to a 0u

+ series, which is
not coupled to another one. The approach in this case allows
us to assess the relevance of the LeRoy-Bernstein formula.

Data recorded for the �5s1/2+5p1/2�0g
− series, given in

Table I, have been analyzed with this appraoch. The energy
difference � is deduced from the data by applying �=D−E.
Due to the hyperfine coupling in the 5p1/2 atomic levels,
the dissociation energy D could not be exactly defined.
It has been chosen to be the atomic resonance 5s1/2F=2
→5p1/2F�=2, whose energy is 12578.876 cm−1. This arbi-
trary choice introduces a systematic error, ��s, on the �
value. ��s is less than the hyperfine structure of the
5p1/2 level: ��s�0.028 cm−1. Then, the effective quantum
number is deduced by applying v*= �� /H6

3�1/3 with H6
3

=1.00410−3� cm−1. The error on v* includes the experimental
energy error, �E=0.01 cm−1, and the H6

3 error, �H6
3.

Taking into account the data on C3, C6
�, C6

� given in Tables
II–IV, one estimates �H6

3 /H6
3=0.2%, and �v* /v* is

evaluated by

�v*

v* =
1

3
��E

�
+

�H6
3

H6
3 � .

The numerical value is therefore �v* /v*= �0.01/�
+0.002� /3 for � given in wave-number units. Adding the
systematic error, the maximum error is therefore ��v* /v*�M

= �0.038/�+0.002� /3. At last, the quantum defect 
 is ex-

tracted and plotted versus the energy. The plot is shown in
Fig. 3. Because the quantum defect is defined modulus 1, it
might be convenient to add or substract one unit from the
value to clearly show a variation law. The plot in Fig. 3
clearly exhibits a linear dependance of 
 versus �, which
does not agree with the 
=
D previously expected value.

D. Improved LeRoy-Bernstein formula

It is fruitful to analyze the importance of the two main
approximations in the LeRoy-Bernstein theory: �i� the use of
the asymptotic potential V�R�=D−cn /Rn, �ii� the extension
of the integral for short values of R, allowing R−=0. This
analysis is done in Comparat’s paper �23�, including details
of the calculation and orders of magnitude for the cesium
case. Here, we point out the result established in �23� in Sec.
II D, formula �13�, by using a Taylor expansion. Within this
approach, the improved LeRoy-Bernstein formula is shown
to be

vD − v = Hn
−1��n−2�/2n + ��

with � a parameter that globally includes core effects and
correction due to the difference between the real potential
and the considered asymptotic form.

This improved LeRoy-Bernstein formula is easily
connected to the data analysis via v*=vD−v−��. Consider-
ing the order of magnitude of �, the term �� is a small
deviation to the LeRoy-Bernstein formula. Therefore, the
quantum defect will vary as 
=
D−��, i.e., linearly versus
the energy. A linear fit of the plot in Fig. 3�a� gives �
=0.0336�6� �cm−1�−1 and 
D=0.375�4�.

These values can be compared to those we deduced from
already published data �13�. Taking into account the energy
positions of �5s1/2+5p1/2�0g

−J=2 levels, we plot the quantum

FIG. 3. Quantum defect versus the energy and the linear fit: �a�
for data of Table I, �b� for data given in �13�.
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defects �Fig. 3�b�� and deduce the fitting parameters
�=0.0349�10��cm−1�−1 and 
D=0.393�8�, which are compat-
ible with the previous ones.

In order to make a connection between the two param-
eters �� ,
D� and the characteristics of the molecular poten-
tial, i.e., the short-range description including the core effects
and the location of the minimum, we propose to analyze the
problem with two models: �i� a crude model including an
infinite barrier at R=Rc�, a constant potential in the region
�Rc� ,Rc�, and a variation as −c6 /R6 for R�Rc; �ii� a harmonic
potential for R�Rc with a minimum localized at R=Re and a
variation as −c6 /R6 for R�Rc. For both models we apply the
Bohr-Sommerfeld quantization to deduce the analytical ex-
pression of both parameters �� ,vD�. Then, a comparison with
the �� ,vD� experimental parameters allows us to deduce val-
ues for Rc�, Rc, and Re.

1. Model (i)

The molecular potential is assumed to be a constant po-
tential V�R�=Ve in the region �Rc� ,Rc� with an infinite barrier
at R=Rc�, and V=D−cn /Rn for R�Rc. The integral � is then
expressed by

� =
�2�

�� ��
Rc�

Rc �E − VedR + �
Rc

R+ �E − D + cn/RndR� .

With the energy difference �=D−E, assumed to be small
compared to U=D−Ve, and for Rc�� /cn�1/n�1, the integral
� can be expressed as

� =
�2�

��
�U�Rc − Rc���1 −

�

2U
� − Hn

−1��n−2�/2n

+
�2�

��
� �cn

Rc
�n−2�/2

2

�n − 2�
+

Rc
�n+2�/2

�cn

�

�n + 2�� .

As �=v+ 3
4 , and the improved LeRoy-Bernstein formula be-

ing vD−v=Hn
−1��n−2�/2n+��, one gets �= 3

4 +vD−Hn
−1	�n−2�/2n

−��, and therefore

vD = −
3

4
+

�2�

��
� 2�cn

�n − 2�Rc
�n−2�/2 + �U�Rc − Rc��� ,

� =
�2�

��
�−

Rc
�n+2�/2

�n + 2��cn

+
1

2�U
�Rc − Rc��� .

Assuming a continuity of the potential at R=Rc, i.e.,
U=cn /Rc

n, the expressions of vD and � are the following:

vD = −
3

4
+

�2�

��

�cn

Rc
�n−2�/2� 2

�n − 2�
+ 1 − Rc�/Rc� ,

� =
�2�

��

Rc
�n+2�/2

�cn
�−

1

�n + 2�
+

1

2
�1 − Rc�/Rc�� .

In the case of the 0g
− molecular curve, with a total number

of levels evaluated �26� to 212, one deduces vD=212.375.
Considering �=0.0336�cm−1�−1, and n=6, the solution of

vD = −
3

4
+

�2�

��

�c6

Rc
2 �3

2
− Rc�/Rc� = 212.375,

� =
�2�

��

Rc
4

2�c6
�3

4
− Rc�/Rc� = 0.0336 �cm−1�−1

gives Rc=17.91 a.u. and Rc�=0.9 a.u.

2. Model (ii)

The molecular potential is assumed to be a harmonic
potential V�R�=Ve+B�R−Re�2 in the region R�Rc and
V=D−cn /Rn for R�Rc. The integral � is then expressed by

� =
�2�

�� ��
Rc�

Rc �E − Ve − B�R − Re�2dR

+ �
Rc

R+ �E − D + cn/RndR� .

With the quantities defined by �=D−E, U=D−Ve, and
L=��U−	� /B, and for Rc�� /cn�1/n�1, the integral � can be
expressed as

� =
�2�

��

U − 	

2�B
��

2
+

�Rc − Re�
L

�1 −
�Rc − Re�2

L2

+ arc sin� �Rc − Re�
L

�� − Hn
−1��n−2�/2n

+
�2�

��
� �cn

Rc
�n−2�/2

2

�n − 2�
+

Rc
�n+2�/2

�cn

�

�n + 2�� .

In the case of �=D−E, assumed to be small compared to U,
a Taylor expansion leads to

vD = −
1

2
+

�2�

��

�cn

Rc
�n−2�/2

2

�n − 2�
+

�2�

2��

U
�B
��

2
+�B

U
�Rc

− Re��1 −
B�Rc − Re�2

U
+ arc sin��B

U
�Rc − Re���

� = −
�2�

��

Rc
�n+2�/2

�cn

1

�n + 2�
+

�2�

2��

1
�B
��

2
+ arc sin��B

U
�Rc

− Re��� .

A continuity of the potential and its derivative at R=Rc allow
us to express vD and � as functions of Rc and Re. In the case
of n=6, with Re /Rc=� one gets

vD = −
1

2
+

�2�

2��

�c6

Rc
2 �1 + �4 − 3���1 − �

3
��

2
+

�3�1 − ��
4 − 3�

+ arc sin�3�1 − ��
4 − 3�

��
� =

�2�

2��

Rc
4

�c6
�−

1

4
+�1 − �

3
��

2
+ arc sin�3�1 − ��

4 − 3�
��
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Solving vD=212.375 and �=0.0336�cm−1�−1 gives
Rc=17.7a.u. and Re=12.5a.u. These values, although de-
duced with simple models, are quite in agreement with the
numerical potential curves. This method allows us to charac-
terize the potential in the inner zone with only a few spec-
troscopic data in the long-range region.

IV. CONCLUSION

The experimental spectroscopy of 0g
− molecular states

converging to the �5s1/2+5p1/2� limit has been experienced
and analyzed in an asymptotic region, where the molecular
potential has a very simple form. Therefore, the LeRoy-
Bernstein formula is applicable. We show that the Lu-Fano
method can be coupled to the LeRoy-Bernstein formula, to
extract the energy variation of the quantum defect. For the 0g

−

molecular states, we observe a linear variation of the quan-
tum defect versus the energy, which is in agreement with an
improved LeRoy-Bernstein formula. Using this approach
�Lu-Fano graph and improved LeRoy-Bernstein formula�,
with a fitting procedure, we deduce the limit of the quantum
defect at the zero-energy limit and the slope of the energy
variation. The quantum defect at the zero-energy limit �mul-

tiplied by �� is the phase shift of the wave function at the
dissociation limit. Furthermore, we show that both
parameters—the quantum defect at the zero-energy limit and
the slope of the energy variation—are connected to the mo-
lecular potential characteristics for short-range distances.
With two simple models, we extract from the fitting param-
eters the localization of the barrier, the potential minimum,
and the limit of validity of the asymptotic form.

The proposed method, applied here in a quite simple case,
because the molecular curve is not coupled to other curves,
can be generalized. In the case of the analysis of Rydberg
atom spectroscopy, this method has been fruitful and should
be taken up for the molecular domain. For example, it should
be very effective in estimating the coupling between molecu-
lar potentials.
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