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We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of
continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and
mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure
Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality.
Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic nega-
tivity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multi-
mode Gaussian states the contangle satisfies a monogamy inequality constraint �G. Adesso and F. Illuminati,
New J. Phys 8, 15 �2006��. The residual contangle, emerging from the monogamy inequality, is an entangle-
ment monotone under Gaussian local operations and classical communications and defines a measure of
genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary
pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This
analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maxi-
mum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus
name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-
variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of
decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states
are shown to be maximally robust against losses and thermal noise.
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I. INTRODUCTION

Multipartite entanglement is one of the most fundamental
and puzzling aspects of quantum mechanics and quantum-
information theory. Although some progress has been re-
cently gained in the understanding of the subject, many basic
problems are left to investigate in this fascinating area of
research. Multipartite entanglement poses a basic challenge
both for the obvious reason that it is ubiquitous to any prac-
tical realization of quantum communication protocols and
quantum computation algorithms, and because of its inher-
ent, far-reaching fundamental interest �1,2�.

The steps undertaken so far in the attempt to reach some
understanding of quantum entanglement in multipartite set-
tings can be roughly classified in two categories. On the one
hand, the qualitative characterization of multipartite en-
tanglement can be investigated exploring the possibility of
transforming a multipartite state into another under different
classes of local transformations and introducing distinct
equivalence classes of multipartite entangled states �2�. On
the other hand, a quantitative characterization of the en-
tanglement of states shared by many parties can be at-
tempted: this approach has lead to the discovery of so-called
monogamy inequalities, constraining the maximal entangle-
ment shared by different internal partitions of a multipartite

state �3,4�. Such inequalities are uprising as one of the pos-
sible fundamental guidelines on which proper measures of
multipartite entanglement should be built.

Recently, much effort has been devoted to the study of
entanglement in continuous-variable systems, focusing both
on quantum communication protocols and on fundamental
theoretical issues �5–8�. A rich and complex structure has
emerged, already in the restricted, but physically relevant,
context of Gaussian states. The generic study of Gaussian
states presents many interesting and appealing features, be-
cause it can be carried out exploiting the powerful formalism
based on covariance matrices and symplectic analysis. These
properties allow us to face and answer questions that are, in
general, much harder to discuss in discrete variable systems,
and they open up the possibility of shedding some light upon
general facets of multipartite entanglement, that might carry
over to systems of qubits and qudits.

For two-mode Gaussian states, the qualification and quan-
tification of the bipartite entanglement have been intensively
studied, and a rather complete and coherent understanding
begins to emerge �9,10�. However, in the case of three-mode
Gaussian states, the simplest nontrivial instance of multi-
party entangled Gaussian states that can be conceived, the
multipartite sharing structure of quantum correlations, pre-
sents several subtle structural aspects that need to be eluci-
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dated. Therefore, three-mode Gaussian states constitute an
elementary but very useful theoretical laboratory that is
needed toward the understanding of the patterns by which
quantum correlations distribute themselves among many
parties.

A fairly complete qualitative characterization of entangle-
ment in three-mode Gaussian states has been recently
achieved �11�. In the present paper, we study and present a
fully quantitative characterization of entanglement in three-
mode Gaussian states. We discuss the general properties of
bipartite entanglement in pure and mixed states as well as the
definition and determination of monogamy inequalities,
genuine tripartite entanglement, and the ensuing structure of
entanglement sharing. We single out a special class of pure,
symmetric, three-mode Gaussian states that are the
continuous-variable analogs and possess the same entangle-
ment properties of both the W and the Greenberger-Horne-
Zeilinger �GHZ� maximally entangled states of three qubits.
Finally, we discuss the decoherence of three-mode Gaussian
states and the decay of tripartite entanglement in the pres-
ence of noisy environments, and outline different possible
generalizations of our results to n-mode Gaussian states with
arbitrary n.

The paper is organized as follows. In Sec. II we provide a
self-contained introduction to the symplectic formalism for
covariance matrices, and review the structure of entangle-
ment in two-mode Gaussian states. In Sec. III we apply the
known facts on two-mode states and the symplectic formal-
ism to provide a systematic quantification of bipartite en-
tanglement in three-mode Gaussian states. In Sec. IV we
review the concept of the continuous-variable tangle and the
continuous-variable monogamy inequalities recently derived
�12,13�, and exploit these results to quantify the genuine tri-
partite entanglement in three-mode Gaussian states. In Sec.
V we analyze the distributed entanglement and the structure
of entanglement sharing in three-mode Gaussian states, and
identify some classes of symmetric, pure and mixed, three-
mode Gaussian states with special entanglement properties,
including the so-called “GHZ/W” states that maximize si-
multaneously the genuine tripartite entanglement and the bi-
partite entanglement of any two-mode reduction. In Sec. VI
we discuss the decoherence of three-mode Gaussian states
and the decay of tripartite entanglement due to the coupling
with the environment. Finally, in Sec. VII we give some
concluding remarks and sketch an outlook on some future
developments and extensions to more general states and in-
stances of continuous-variable systems.

II. PRELIMINARY FACTS AND DEFINITIONS
FOR GAUSSIAN STATES

In this section, we will introduce basic facts and notations
about Gaussian states of bosonic fields, reviewing some of
the existing separability criteria for two-mode and multi-
mode states and the computable measures of entanglement
available for bipartite systems. Such basic results will be
needed in extending the analysis to multipartite quantum cor-
relations in multimode Gaussian states.

A. Covariance matrices, symplectic eigenvalues,
and inseparability criteria

Let us consider a quantum system described by n pairs of
canonically conjugated operators, for instance, the quadra-
ture operators of a bosonic field, �x̂j , p̂j�, satisfying the
canonical commutation relations �x̂j , p̂k�=� jk. For the ease
of notation, let us define the vector of field operators

R̂= �x̂1 , p̂1 , . . . , x̂n , p̂n� and note that the commutation rela-

tions can be written as �R̂ , R̂�=2i�, where the symplectic
form � is defined as

� = �
1

n

�, � = � 0 1

− 1 0
� , �1�

where � denotes the direct sum. Any state of such a system
is represented by a Hermitian, positive, trace-class operator
�, the so-called density matrix. Gaussian states are defined
as states with Gaussian characteristic �and quasiprobability�
functions: a state � is Gaussian if and only if its character-
istic function

���� 	 Tr��D�� , �2�

where ��R2n is a real vector and D�=exp�iR̂T��� is Glaub-
er’s displacement operator, is a multivariate Gaussian in the
variable �. This definition implies that a Gaussian state � is
completely determined by the vector X of its first moments
of the field operators, whose entries are given by

Xj =Tr��R̂j�, and by the covariance matrix �CM� �, whose
entries � jk are given by

� jk = Tr���R̂jR̂k + R̂kR̂j��/2 − XjXk. �3�

Explicitly, the characteristic function ���� of a Gaussian state
with the first moments X and CM � is given by

���� = e−1/2�T�T���+iXT��. �4�

Gaussian states play a prominent role in practical realizations
of continuous-variable �CV� quantum-information protocols.
They can be created and manipulated with relative ease with
current technology �14�, and, thanks to their simple descrip-
tion in terms of covariance matrices, provide a powerful and
relevant theoretical framework for the investigation of fun-
damental issues.

All the unitary operations mapping Gaussian states into
Gaussian states are generated by polynomials of the first and
second order in the quadrature operators. First order opera-
tions are just displacement operators D�, which leave the CM
unchanged while shifting the first moments. Such unitary
operations, by which first moments can be arbitrarily ad-
justed, are manifestly local: this entails that first moments
can play no role in the entanglement characterization of CV
states and will be thus henceforth neglected, reducing the
description of the states under exam to the CM �. On the
other hand, unitary operations of the second order act, in

Heisenberg picture, linearly on the vector R̂ : R̂�SR̂, where
the matrix S satisfies ST�S=�. The set of such �real� matri-
ces form the real symplectic group Sp2n,R �15,16�. Therefore,
these unitary operations are called symplectic operations.
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Symplectic operations act on a CM � by congruence:
��ST�S.

Besides describing most unitary Gaussian operations cur-
rently feasible in the experimental practice �namely, beam
splitters, squeezers, and phase shifters�, the symplectic
framework is fundamental in the theoretical analysis of CMs:
for any physical CM � there exist a symplectic transforma-
tion S�Sp2n,R such that ST�S=�, where

� = �
j=1

n

diag�� j,� j� .

The quantities �� j�, uniquely determined for every CM �, are
referred to as the symplectic eigenvalues of �, while � is said
to be the Williamson normal form associated with � �17,18�.
It can be shown that, because of the canonical commutation
relations, the positivity of the density matrix � is equivalent
to the following uncertainty relation for the symplectic ei-
genvalues of the CM describing a Gaussian state:

� j � 1, for j = 1, . . . ,n . �5�

The purity Tr��2� of a Gaussian state � with CM � and
symplectic eigenvalues �� j� is simply given by

Tr��2� = 1/
Det � = �
j=1

n

�1/� j� . �6�

The purity quantifies the degree of mixedness of the Gauss-
ian state �, ranging from 1 for pure states to the limiting
value 0 for completely mixed states �due to the infinite di-
mension of the Hilbert space, no finite lower bound to the
two-norm of � exist�. Its conjugate SL=1−Tr��2� is referred
to as the linear entropy, ranging from 0 for pure states to the
limiting value 1 for maximally mixed states. Another proper
way of quantifying the mixedness of a state is provided by
the von Neumann entropy SV=−Tr�� ln ��. The von Neu-
mann entropy of a Gaussian state with CM � and symplectic
eigenvalues �� j� reads �19�

SV = �
j=1

n

f�� j� , �7�

with

f�x� =
x + 1

2
ln� x + 1

2
� −

x − 1

2
ln� x − 1

2
� . �8�

Let us now consider a �m+n�-mode bipartite Gaussian state,
i.e., a Gaussian state separated into a subsystem A of m
modes, owned by party A, and a subsystem B of n modes,
owned by party B. This state is associated with a
2�m+n�-dimensional CM �. Now, in general, for any bipar-
tite quantum state �, the positivity of the partially transposed
density matrix �̃, that is, the operator obtained from � by
transposing the variables of only one of the two subsystems,
is a necessary condition for the separability of the state. This
condition thus goes under the name of “positivity of partial
transposition �PPT� criterion” �20,21�. This fact is especially
useful when dealing with CV systems, as the action of partial
transposition on CMs can be stated mathematically in very

simple terms: the CM �̃ of the partially transposed state �̃
with respect to, say, subsystemA, is simply obtained by
switching the signs of the m momenta �pj� belonging to sub-
system A �22�:

�̃ = T�T, with T 	 �
1

m �1 0

0 − 1
� � 12n, �9�

where 12n stands for the 2n-dimensional identity matrix.
Even more remarkably, it has been proven that the PPT con-
dition is not only necessary, but as well sufficient for the
separability of �1+n�-mode Gaussian states �22,23� and of
�m+n�-mode bisymmetric Gaussian states �24�, thus provid-
ing a powerful theoretical tool in detecting quantum en-
tanglement in these relevant classes of states. Let us note that
the �1+n�-mode bipartitions encompass all the possible bi-
partitions occurring in three-mode states. In analogy with Eq.
�5�, the PPT criterion can be explicitly expressed as a condi-
tion on the symplectic eigenvalues ��̃ j� of the partially trans-
posed CM �̃:

�̃ j � 1, for all j = 1, . . . ,n . �10�

We finally mention that, in an alternative to the PPT crite-
rion, one can introduce an operational criterion based on a
nonlinear map, that is independent of, and strictly stronger
than the PPT condition �25�. In fact, this criterion is neces-
sary and sufficient for separability of all �m+n�-mode Gauss-
ian states of any m�n bipartitions.

For future convenience, let us define and write down the
CM �1,. . .,n of an n-mode Gaussian state in terms of two by
two submatrices as

�1,. . .,n =
�1 �12 ¯ �1n

�12
T

� � �
� � � �n−1n

�1n
T

¯ �n−1n
T �n

� . �11�

The symplectic eigenvalues �	 of a two-mode CM �12 are
invariant under symplectic operations acting on �12. Starting
from this observation, it has been shown that they can be
retrieved from the knowledge of the symplectic invariants
Det �12 and 
12=Det �1+Det �2+2 Det �12, according to
the following formula �19,26�:

2�	
2 = 
12 	 

12

2 − 4 Det �12. �12�

The uncertainty relation Eq. �5� imposes


12 − Det �12 � 1. �13�

Likewise, the symplectic eigenvalues �̃	 of the CM �̃12 of
the partially transposed state can be determined by partially
transposing such invariants and can thus be easily computed
as

2�̃	
2 = 
̃12 	 

̃12

2 − 4 Det �12, �14�

where 
̃12=Det �1+Det �2−2 Det �12.
Let us finally observe that the quantities
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1. . .n 	 �
j=1

n

Det � j + 2�
j�k

Det � jk

are symplectic invariants for any number n of modes �27�.
We now move on to review in some detail the possible

entanglement measures apt to quantify the entanglement of
two-mode Gaussian states, upon which multipartite counter-
parts will be constructed in the following.

B. Quantifying the entanglement
of two-mode Gaussian states

Thanks to the necessary and sufficient PPT criterion for
separability, a proper measure of entanglement for two-mode
Gaussian states is provided by the negativity N, first intro-
duced in Ref. �28�, later thoroughly discussed and extended
in Refs. �26,29� to CV systems. The negativity of a quantum
state � is defined as

N��� =
��̃�1 − 1

2
, �15�

where �̃ is the partially transposed density matrix and
�ô�1= Tr � ô� stands for the trace norm of the Hermitian op-
erator ô. This measure quantifies the extent to which �̃ fails
to be positive. Strictly related to N is the logarithmic nega-
tivity EN, defined as EN	 ln� �̃�1, which constitutes an upper
bound to the distillable entanglement of the quantum state �
and is related to the entanglement cost under PPT preserving
operations �30�. Both the negativity and the logarithmic
negativity have been proven to be monotone under LOCC
�local operations and classical communication� �26,29,31�, a
crucial property for a bona fide measure of the entanglement.
Moreover, the logarithmic negativity possesses the agreeable
property of being additive. For any two-mode Gaussian state
� it is easy to show that both the negativity and the logarith-
mic negativity are simple decreasing functions of the lowest
symplectic eigenvalue �̃− of the CM of the partially trans-
posed state �10,26�:

��̃�1 =
1

�̃−

Þ N��� = max�0,
1 − �̃−

2�̃−
� , �16�

EN��� = max�0,− ln �̃−� . �17�

These expressions directly quantify the amount by which the
necessary and sufficient PPT condition �10� for separability
is violated. The lowest symplectic eigenvalue �̃− of the par-
tially transposed state �̃ thus completely qualifies and quan-
tifies, in terms of negativities, the entanglement of a two-
mode Gaussian state �. For �̃−�1 the state is separable,
otherwise it is entangled; moreover, in the limit of vanishing
�̃−, the negativities, and thus the entanglement, diverge.

In the special instance of symmetric two-mode Gaussian
states �i.e., of states with Det �1=Det �2�, the entanglement
of formation �EoF� �32�, can be computed as well �33�. We
recall that the EoF EF of a quantum state � is defined as

EF��� = min
�pi,�i��

�
i

piE��i�� , �18�

where E��i�� denotes the von Neumann entropy SV of the
reduced density matrix of one party in the pure states E��i��,
namely the unique measure of bipartite entanglement for all
pure quantum states �entropy of entanglement�. The mini-
mum in Eq. �18� is taken over all the pure states realizations
of �:

� = �
i

pi�i�i� .

The asymptotic regularization of the entanglement of forma-
tion coincides with the entanglement cost EC���, defined as
the minimum number of singlets �maximally entangled anti-
symmetric two-qubit states� which is needed to prepare the
state � through LOCC �34�.

The optimal convex decomposition of Eq. �18� has been
determined exactly for symmetric two-mode Gaussian states,
and turns out to be Gaussian, that is, the absolute minimum
is realized within the set of pure two-mode Gaussian states,
yielding �33�

EF = max�0,h��̃−�� , �19�

with

h�x� =
�1 + x�2

4x
ln� �1 + x�2

4x
� −

�1 − x�2

4x
ln� �1 − x�2

4x
� .

�20�

Such a quantity is, again, a monotonically decreasing
function of �̃−. Therefore it provides a quantification of the
entanglement of symmetric states equivalent to the one pro-
vided by the negativities. This equivalence, regrettably, does
not hold for general, mixed nonsymmetric states. In this case
the EoF is not computable; nonetheless, it has been demon-
strated that different entanglement measures induce different
orderings of the states �35�. This means that, depending on
the measure of entanglement that one chooses, either the
PPT-inspired negativities or the entropy-based Gaussian
measures �see below�, a certain state can be more or less
entangled than another given state. Clearly, this is neither a
catastrophic nor an entirely unexpected result, but rather a
consequence of the fact that, in general, for mixed states,
different measures of entanglement may be associated with
different conceptual and operational definitions, and thus
may measure different aspects of the quantum correlations
present in a statistical mixture.

In fact, restricting to the Gaussian framework, a special
family of proper entanglement measures can be defined,
sharing the agreeable property of being analytically comput-
able in several instances of physical interest. The formalism
of Gaussian entanglement measures �Gaussian EMs�, first
introduced in Ref. �36�, has been further developed and ana-
lyzed in Ref. �35�. Such a formalism enables us to define
generic Gaussian EMs of bipartite entanglement by applying
the Gaussian convex roof, that is, the convex roof over pure
Gaussian decompositions only, to any bona fide measure of
the bipartite entanglement defined for pure Gaussian states.
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As already mentioned, the optimization problem Eq. �18� for
the computation of the EoF of nonsymmetric two-mode
Gaussian states has not yet been solved. However, the task
can be somehow simplified by restricting to decompositions
into pure Gaussian states only. The resulting measure, named
“Gaussian EoF” in Ref. �36�, is an upper bound to the true
EoF and coincides with it for symmetric two-mode Gaussian
states.

In general, we can define a Gaussian EM GE as follows.
For any pure Gaussian state �� with CM �P, one has

GE��P� 	 E���� , �21�

where E can be any proper measure of an entanglement of
pure states, defined as a monotonically increasing function of
the entropy of entanglement �i.e., the von Neumann entropy
of the reduced density matrix of one party�.

For any mixed Gaussian state � with CM �, one has �36�

GE��� 	 inf
�P��

GE��P� . �22�

If the function E is taken to be exactly the entropy of en-
tanglement, then the corresponding Gaussian EM defines the
Gaussian entanglement of formation �Gaussian EoF� �36�.
From an operational point of view, the Gaussian EoF is
strictly related to the capacity of bosonic Gaussian channels
�37�. Moreover, the Gaussian EoF is an entanglement mono-
tone under Gaussian LOCC, a property that is shared by all
Gaussian EMs �35,36�.

In general, the definition Eq. �22� involves an optimiza-
tion over all pure Gaussian states with CM �P smaller than
the CM � of the mixed state whose entanglement one wishes
to compute. This is a simpler optimization problem than that
appearing in the definition Eq. �18� of the true EoF, which, in
CV systems, would imply considering decompositions over
all, Gaussian and non-Gaussian pure states. Despite this sim-
plification, in general, the Gaussian EMs cannot be ex-
pressed in a simple closed form, even for two-mode Gauss-
ian states. However, the Gaussian EMs have been computed
analytically �35� for two relevant classes of, generally non-
symmetric, two-mode Gaussian states, namely the states of
extremal—maximal and minimal—negativity at fixed global
and local purities, referred to, respectively, as Gaussian
maximally entangled mixed states �GMEMS� and Gaussian
least entangled mixed states �GLEMS� �9,10�. In particular,
the explicit expression of the Gaussian EMs of the GLEMS
will be crucial in the following because, as we are about to
show, any two-mode reduction of a three-mode pure Gauss-
ian state is a GLEM.

III. THREE-MODE GAUSSIAN STATES

To begin with, let us set the notation and review the
known results about three-mode Gaussian states of CV sys-
tems. We will refer to the three modes under the exam as
modes 1, 2, and 3. The two by two submatrices that form the
CM �	�123 of a three-mode Gaussian state are defined
according to Eq. �11�, whereas the four by four CMs of the
reduced two-mode Gaussian states of modes i and j will be
denoted by �ij. Likewise, the local symplectic invariants 
ij

will be specified by the labels i and j of the modes they refer
to, while, to avoid any confusion, the three-mode �global�
symplectic invariant will be denoted by 
	
123. Let us re-
call the uncertainty relation Eq. �13� for two-mode Gaussian
states:


ij − Det �ij � 1. �23�

As we have seen in the previous section, a complete quali-
tative characterization of the entanglement of three-mode
Gaussian states is possible because the PPT criterion is nec-
essary and sufficient for their separability under any, partial
or global, bipartition. This has lead to an exhaustive classi-
fication of three-mode Gaussian states in five distinct classes
�11�. These classes take into account the fact that modes 1, 2,
and 3 allow for three distinct bipartitions:

Class 1. States not separable under all the three possible
bipartitions i� �jk� of the modes �fully inseparable states,
possessing genuine multipartite entanglement�.

Class 2. States separable under only one of the three pos-
sible bipartitions �one-mode biseparable states�.

Class 3. States separable under only two of the three pos-
sible bipartitions �two-mode biseparable states�.

Class 4. States separable under all the three possible bi-
partitions, but impossible to write as a convex sum of tripar-
tite products of pure one-mode states �three-mode bisepa-
rable states�.

Class 5. States that are separable under all the three pos-
sible bipartitions, and can be written as a convex sum of
tripartite products of pure one-mode states �fully separable
states�.

Notice that classes 4 and 5 cannot be distinguished by
partial transposition of any of the three modes �which is
positive for both classes�. States in class 4 stand, therefore,
as nontrivial examples of tripartite entangled states of CV
systems with positive partial transpose �11�. It is well known
that entangled states with positive partial transpose possess
bound entanglement, that is, entanglement that cannot be dis-
tilled by means of LOCC.

A. Pure states

We begin by focusing on pure three-mode Gaussian
states, for which one has

Det � = 1, 
 = 3. �24�

The purity constraint requires the local entropic measures of
any 1�2-mode bipartitions to be equal:

Det �ij = Det �k, �25�

with i, j, and k different from each other. This general, well-
known property of the bipartitions of pure states may be
easily proven resorting to the Schmidt decomposition.

A first consequence of Eqs. �24� and �25� is rather remark-
able. Combining such equations one easily obtains

�
12 − Det �12� + �
13 − Det �13� + �
23 − Det �23� = 3,

�26�

which, together with inequality �23�, implies
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ij = Det �ij + 1, " i, j:i � j . �27�

The last equation shows that any reduced two-mode state of
a pure three-mode Gaussian state saturates the partial uncer-
tainty relation Eq. �23�. The states endowed with such a par-
tial minimal uncertainty are states of minimal negativity for
given global and local purities, GLEMS �9,10�. We recall
that by two-mode mixed Gaussian states of partial minimum
Heisenberg uncertainty, one means states that have one of the
two symplectic eigenvalues equal to 1. States with both sym-
plectic eigenvalues equal to 1 are, of course, the pure Gauss-
ian states of absolute minimum Heisenberg uncertainty.
These definitions immediately extend to arbitrary multimode
Gaussian states. In this case, n-mode Gaussian states of
m-partial minimum uncertainty are those that have m out of
the n symplectic eigenvalues equal to 1, with m�n. Note
that such a result could have also been inferred by invoking
the reduction of �1+n�-mode pure Gaussian states as dis-
cussed in Ref. �38�, first introduced in Ref. �39�, to our
knowledge, and proven at the covariance matrix level in Ref.
�40�. This implies that, through local unitaries �under any
bipartition of the three modes�, the state can be brought to
the product of a two-mode squeezed state and of an uncor-
related vacuum. In turn, this implies that any of the three
reduced two-mode CMs �resulting from the discarding of
one mode� has one symplectic eigenvalue equal to 1 and is
thus a GLEM.

In fact, our simple proof, straightforwardly derived in
terms of symplectic invariants, provides some further insight
into the structure of CMs characterizing Gaussian states.
What matters to our aims is that the standard form CM of
Gaussian states is completely determined by their global and
local invariants. Therefore, because of Eq. �25�, the entangle-
ment between any pair of modes embedded in a three-mode
pure Gaussian state is fully determined by the local invari-
ants Det �l, for l=1,2 ,3, by whatever proper measure we
choose to quantify it �35�. Furthermore, the entanglement of
a �i �� jk bipartition of a pure three-mode state is determined
by the entropy of one of the reduced states that is, once
again, by the quantity Det �i. Thus, the three local symplec-
tic invariants Det �1, Det �2, and Det �3 fully determine the
entanglement of any bipartition of a pure three-mode Gauss-
ian state. We will show that they suffice to determine as well
the genuine tripartite entanglement encoded in the state.

For the ease of notation, in the following we will denote
by al the local single-mode symplectic eigenvalues associ-
ated to mode l with CM �l:

al 	 
Det �l. �28�

Equation �6� shows that the quantities al are simply related to
the purities of the reduced single-mode states, the local pu-
rities �l, by the relation

�l =
1

al
. �29�

Since the set �al� fully determines the entanglement of any of
the 1�2-mode and 1�1-mode bipartitions of the state, it is
important to determine the range of the allowed values for
such quantities. This will provide a complete quantitative

characterization of the entanglement of three-mode pure
Gaussian states. To this aim, let us focus on the reduced
two-mode CM �12 and let us bring it �by local unitaries� in
the standard form �22,41�, so that Eq. �11� is recast in the
form

�l = diag�al,al�, l = 1,2,

�12 = diag�c12,d12� , �30�

where c12 and d12 are the two-mode covariances, and, as we
will show below, can be evaluated independently in pure
three-mode Gaussian states. Note that no generality is lost in
assuming a standard form CM, because the entanglement
properties of any bipartition of the system are invariant under
local �single-mode� symplectic operations. Now, Eqs. �25�
and �24� may be recast as follows:

a3
2 = a1

2 + a2
2 + 2c12d12 − 1, �31�

a3
2 = �a1a2 − c12

2 ��a1a2 − d12
2 � , �32�

showing that we may eliminate one of the two covariances to
find the expression of the remaining one only in terms of the
three local inverses of the purities al �mixednesses�. Defining
the quantity � as

� 	 c12d12 =
1 + a3

2 − a1
2 − a2

2

2
, �33�

leads to the following condition on the covariance c12:

c12
4 −

1

a1a2
��� − 1�2 + a1

2a2
2 − a1

2 − a2
2�c12

2 + �2 = 0. �34�

Such a second order algebraic equation for c12
2 admits a posi-

tive solution if and only if its discriminant � is positive:

� � 0. �35�

After some algebra, one finds

� = �a1 + a2 + a3 + 1��a1 + a2 + a3 − 1��a1 + a2 − a3 + 1�

��a1 − a2 + a3 + 1��− a1 + a2 + a3 + 1��a1 + a2 − a3 − 1�

��a1 − a2 + a3 − 1��− a1 + a2 + a3 − 1� . �36�

Aside from the existence of a real covariance c12, the further
condition of positivity of �12 has to be fulfilled for a state to
be physical. This amounts to imposing the inequality
a1a2−c12

2 �0, which can be explicitly written, after solving
Eq. �34�, as

4�2a1
2a2

2 − ��� − 1�2 + a1
2a2

2 − a1
2 − a2

2�� � 
� .

This inequality is trivially satisfied when squared on both
sides; therefore it reduces to

2a1
2a2

2 − ��� − 1�2 + a1
2a2

2 − a1
2 − a2

2� � 0. �37�

Note that conditions �35� and �37�, although derived by
assuming a specific bipartition of the three modes, are inde-
pendent on the choice of the modes that enter in the consid-
ered bipartition, because they are invariant under all possible
permutations of the modes. Defining the parameters
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al� 	 al − 1, �38�

the Heisenberg uncertainty principle for single-mode states
reduces to

al� � 0, " l = 1,2,3. �39�

This fact allows us to greatly simplify the two previous con-
ditions, which can be combined into the following triangular
inequality:

�ai� − aj�� � ak� � ai� + aj�. �40�

Inequality �40� is a condition invariant under all possible
permutations of the mode indexes �i , j ,k�, and, together with
the positivity of each al�, fully characterizes the local sym-
plectic eigenvalues of the CM of three-mode pure Gaussian
states. It, therefore, provides a complete characterization of
the entanglement in such states. All standard forms of pure
three-mode Gaussian states and, in particular, remarkably, all
the possible values of the logarithmic negativity between any
pair of subsystems, can be determined by letting a1�, a2�, and
a3� vary in their range of allowed values, as summarized in
Fig. 1.

Let us remark that Eq. �40� qualifies itself as an entropic
inequality, as the quantities �aj�� are closely related to the
purities and to the von Neumann entropies of the single-
mode reduced states. In particular, the von Neumann entro-
pies SVj of the reduced states are given by SVj = f�aj�+1�
= f�aj�, where the increasing convex entropic function f�x�
has been defined in Eq. �8�. Now, inequality �40� is strikingly
analogous to the well-known triangle �Araki-Lieb� and sub-
additivity inequalities for the von Neumann entropy �holding
for general systems, see, e.g., �1��, which in our case read

�f�ai� − f�aj�� � f�ak� � f�ai� + f�aj� . �41�

However, as the different convexity properties of the func-
tions involved suggest, inequalities �40� and �41� are not
equivalent. Actually, as can be shown by exploiting the prop-
erties of the function f�x�, the inequalities �40� imply the
inequalities �41� for both the leftmost and the rightmost
parts. On the other hand, there exist values of the local sym-
plectic eigenvalues �aj� for which inequalities �41� are satis-

fied but �40� are violated. Therefore, the condition imposed
by Eq. �40� is stronger than the generally holding inequalities
for the von Neumann entropy applied to pure states.

Let us recall that the form of the CM of any Gaussian
state can be simplified through local �unitary� symplectic op-
erations �that, therefore, do not affect the entanglement or
mixedness properties of the state� belonging to Sp2,R

�n . Such
reductions of the CMs are called “standard forms.” For the
sake of clarity, let us write the explicit standard form CM of
a generic pure three-mode Gaussian state

�sf
p =

a1 0 e12
+ 0 e13

+ 0

0 a1 0 e12
− 0 e13

−

e12
+ 0 a2 0 e23

+ 0

0 e12
− 0 a2 0 e23

−

e13
+ 0 e23

+ 0 a3 0

0 e13
− 0 e23

− 0 a3

� , �42�

with

eij
± 	


��ai − aj�2 − �ak − 1�2���ai − aj�2 − �ak + 1�2� ± 
��ai + aj�2 − �ak − 1�2���ai + aj�2 − �ak + 1�2�

4
aiaj

. �43�

By direct comparison with Eq. �67� in Ref. �10�, it is imme-
diate to verify that each two-mode reduced CM �ij denotes a
standard form GLEMS with local purities �i=ai

−1 and
� j =aj

−1, and global purity �ij 	�k=ak
−1. From our study it

then turns out that, regarding the classification of Sec. III
�11�, pure three-mode Gaussian states may belong either to
class 5, in which case they reduce to the global three-mode

vacuum, or to class 2, reducing to the uncorrelated product
of a single-mode vacuum and of a two-mode squeezed state,
or to class 1 �fully inseparable state�. No two-mode or three-
mode biseparable pure three-mode Gaussian states are
allowed.

Let us finally stress that, although useful in actual calcu-
lations, the use of CMs in the standard form does not entail

FIG. 1. �Color online� Range of the entropic quantities
al�=�l

−1−1 for pure three-mode Gaussian states. The three param-
eters al�, with l=1,2 ,3, have to vary inside the pyramid represented
in plot �a� or, equivalently, for fixed values of one of them, say a1�,
inside the shaded slice represented in plot �b�, in order to determine
the CM of a physical state, Eq. �42�. The expression of the bound-
ary surfaces and/or curves comes from the saturation of the trian-
gular inequality �40� for all possible mode permutations. In particu-
lar, for the projected two-dimensional plot �b�, the equations of the
three boundaries are I. a3�=a1�−a2�; II. a3�=a1�+a2�; III. a3�=a2�−a1�.
All quantities plotted are dimensionless.
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any loss of generality, because all the results derived in the
present work do not depend on the choice of the specific
form of the CMs, but only on invariant quantities, such as the
global and local symplectic invariants.

B. Mixed states

The most general standard form �sf associated with the
CM of any �generally mixed� three-mode Gaussian state can
be written as

�sf =
a1 0 f1 0 f3 f5

0 a1 0 f2 0 f4

f1 0 a2 0 f6 f8

0 f2 0 a2 f9 f7

f3 0 f6 f9 a3 0

f5 f4 f8 f7 0 a3

� , �44�

where the 12 parameters �aj� �inverse of the local purities�
and �f j� �the covariances describing correlations between the
modes� are only constrained by the Heisenberg uncertainty
relations Eq. �5�. The possibility of this useful, general re-
duction can be easily proven along the same lines as the
two-mode standard form reduction �41�: by means of three
local symplectic operations one can bring the three blocks
�1, �2, and �3 in Williamson form, thus making them in-
sensitive to further local rotations �which are symplectic op-
erations�; exploiting such rotations on modes 1 and 2 one can
then diagonalize the block �12 as allowed by its singular
value decomposition; finally, one local rotation on mode 3 is
left, by which one can cancel one entry of the block �13.
Indeed, the resulting number of free parameters could have
been inferred by subtracting the number of parameters of an
element of Sp2,R � Sp2,R � Sp2,R �which is 9, as Sp2,R has
three independent generators� from the 21 entries of a ge-
neric 6�6 symmetric matrix.

C. Symmetric states

Among generic Gaussian states, those endowed with
some properties of symmetry under the mode exchange play
a special role for what concerns the structure of entangle-
ment. In particular, in a three-mode CV system, bisymmetric
states are Gaussian states invariant under the exchange of
two given modes �say 2 and 3� �24,42�. Their CM will be
thus of the form

�bis =  � � �

�T � �

�T �T �
� . �45�

Let mode 1 be entangled with the block of modes �23�. It has
been proven �24,42� that for such bisymmetric states the ap-
plication of a local unitary �symplectic in phase space� op-
eration on the block �23� concentrates the whole original
multimode entanglement into the reduced state of a single
pair of modes. Namely, in terms of the new modes �1,2� ,3��,
the CM is transformed in a two-mode entangled state of
modes 1 and 2�, tensor the uncorrelated single-mode state of

mode 3�, so that the original multimode entanglement can be
quantified resorting to the well-established theory of bipartite
entanglement in two-mode Gaussian states �8–10,14,43�.

The local symplectic transformation responsible for the
unitary localization of the multimode entanglement is typi-
cally realized by a simple beam splitter, if the CM is in
standard form, with the single-mode blocks in their William-
son diagonal form. More generally, it may be a combination
of beam splitters, phase shifters, and squeezers. This type of
entanglement localization is unitary and reversible, and thus
completely different from the usual localization or concen-
tration procedures that are based on measurements, as in the
case of the “localizable entanglement” previously introduced
for spin systems �44,45�. To reconstruct the original state, it
suffices to let the discarded mode 3� interfere once more
with mode 2� through the reversed beam splitter �that is, by
applying the inverse symplectic operation�. We remark that
the unitary localizability is a property that extends to all 1
�n Gaussian states �42�, and to all m�n bisymmetric
Gaussian states �24�, enabling two parties �owing two re-
spective blocks of multiple symmetric modes� to realize, by
purely local controls, a perfect and reversible entanglement
switch between two-mode and multimode quantum correla-
tions.

Three-mode Gaussian states which are invariant under the
exchange of any two modes are said to be fully symmetric.
They are trivially bisymmetric with respect to any 1�2 bi-
partition, meaning that each conceivable bipartite entangle-
ment is locally equivalent to two-mode entanglement. In the
Gaussian setting, these states are described by a CM �24,42�

�s =  � � �

�T � �

�T �T �
� , �46�

where the local mixedness a	
Det � is the same for all the
three modes. These states have been successfully produced
in a laboratory by quantum optical means �46,47�, and ex-
ploited to implement quantum teleportation networks
�48,49�. Used as shared resources, they can be optimized
with respect to local operations to realize CV teleportation
with maximal nonclassical fidelity �50�, quantum secret shar-
ing �51�, controlled dense coding �52�, and to solve CV Byz-
antine agreement �53�. Moreover, the structure of tripartite
entanglement in this kind of state presents peculiar sharing
properties �12�, that are quite different from the properties of
distributed entanglement among qubits and qudits �13�, as
will be discussed in detail in Sec. V C.

We finally mention that the unitary localizability of en-
tanglement does not apply only to states with special sym-
metries. For instance, for all pure three-mode Gaussian
states, the 1�2 entanglement can be unitarily localized in
any bipartition. This fact holds for generic pure Gaussian
states of 1�n bipartitions. �24,38,54�.

IV. GENUINE TRIPARTITE ENTANGLEMENT
AND ENTANGLEMENT SHARING

In this section we approach in a systematic way the ques-
tion of distributing quantum correlations among three parties
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globally prepared in a �pure or mixed� three-mode Gaussian
state, and we deal with the related problem of quantifying
genuine tripartite entanglement in such a state.

A. Entanglement sharing

The key ingredient of our analysis is the so-called sharing
or monogamy inequality, first introduced by Coffman,
Kundu, and Wootters �CKW� �3� for systems of three qubits,
and recently extended to systems of n qubits by Osborne and
Verstraete �4�. The CKW monogamy inequality for a three-
party system can be written as follows:

Ei��jk� − Ei�j − Ei�k � 0, �47�

where i, j, k denote the three elementary parties �modes in a
CV system�, and E refers to a proper measure of bipartite
entanglement �in particular, non-negative on inseparable
states and monotonic under LOCC�.

It is natural to expect that inequality �47� should hold for
states of CV systems as well, despite the fact that they are
defined on infinite-dimensional Hilbert spaces and can, in
principle, achieve infinite entanglement, in particular, the en-
tanglement of distillation can become infinite in certain
states of CV systems; these states can be defined and con-
structed rigorously using the techniques of field theory and
statistical mechanics for the description of systems of infi-
nitely many degrees of freedom �55�. In fact, one can show
that the linearity of quantum mechanics, through the so-
called no-cloning theorem �56–58�, prevents quantum corre-
lations from being freely shareable, at striking variance with
the behavior of classical correlations �13�. This entails that
quantum entanglement is “monogamous” �59�.

The crucial issue in constructing and proving the CV ver-
sion of the CKW monogamy inequality is to find a proper
measure of entanglement E, able to capture the trade-off be-
tween couplewise and tripartite correlations, quantitatively
formalized by inequality �47�. For qubit systems, such a
measure is known as the tangle �3�. For Gaussian states of
CV systems, this problem has been recently solved in Ref.
�12�, where the CV analog of the tangle has been defined and
exploited to obtain a proof of the monogamy inequality �47�
for all Gaussian states of three modes, and for all symmetric
Gaussian states of systems with an arbitrary number of
modes. Following the approach of Ref. �12�, we recall now
the notation leading to the definition of the continous-
variable tangle, and provide a detailed proof of the CKW
monogamy inequality obeyed by all three-mode Gaussian
states.

B. The continuous-variable tangle

The continuous-variable tangle E� is formally defined as
follows �12�. For a generic pure state �� of a �1+N�-mode
CV system, one has

E��� 	 ln2��̃�1, � = ���� . �48�

This is a proper measure of bipartite entanglement, being a
convex, increasing function of the logarithmic negativity EN,
equivalent to the entropy of entanglement on pure states. For

a pure Gaussian state �� with CM �p, it is easy to find that

E���p� = arcsinh2�
1 − �1
2

�1
� , �49�

where �1=1/
Det �1 is the local purity of the reduced state
of mode 1, described by a CM �1 �we are considering a most
general 1�n bipartition�. Definition �48� is naturally ex-
tended to generic mixed states � of �n+1�-mode CV systems
through the convex-roof formalism �60�. Namely,

E���� 	 inf
�pi,i�

�
i

piE��i� , �50�

where the infimum is taken over all convex decompositions
of � in terms of pure states ��i��. If the index i is continuous,
the sum in Eq. �50� is replaced by an integral, and the prob-
abilities �pi� by a probability distribution ���.

Next, it is important to recall that for two qubits the tangle
can be equivalently defined as the convex roof of the squared
negativity �61�, because the latter coincides with the concur-
rence for pure two-qubit states �62�. Then, Eq. �50� states
that the convex roof of the squared logarithmic negativity
defines the proper continuous-variable tangle, or, in short, the
contangle E���� �12�. One could have defined the contangle
using the convex-roof extension of the squared negativity as
well. The two definitions are, in fact, equivalent to the aim of
quantifying distributed entanglement, because the squared
negativity is a convex function of the squared logarithmic
negativity �3,13�. The nice feature of using specifically the
squared logarithmic negativity lies in the fact that from a
computational point of view the logarithm accounts in a
straightforward way for the infinite dimensionality of the un-
derlying Hilbert space �12�. We will prove in the following
that the contangle satisfies the CKW monogamy inequality
for all three-mode Gaussian states. Vice versa, one can easily
show that any continuous-variable tangle defined in terms of
the �not squared� negativity or of the entanglement of forma-
tion fails to satisfy the CKW monogamy inequality, in gen-
eral �12�. This situation is to some extent reminiscent of the
case of qubit systems, for which the CKW monogamy in-
equality holds using the tangle, defined as the convex roof of
the squared concurrence �3� or of the squared negativity �61�,
but fails if one chooses alternative definitions based on the
convex roof of other equivalent measures of bipartite en-
tanglement, such as the concurrence itself or the entangle-
ment of formation �3�.

From now on, we restrict our attention to Gaussian states.
Any multimode mixed Gaussian state with CM �, admits a
decomposition in terms of pure Gaussian states only. The
infimum of the average contangle, taken over all pure Gauss-
ian state decompositions, defines the Gaussian contangle G�

G���� 	 inf
���d�p�,�p�

� ��d�p�E���p� . �51�

It follows from the convex-roof construction that the Gauss-
ian contangle G���� is an upper bound to the true contangle
E���� �because the latter can be, in principle, minimized
over a non-Gaussian decomposition�:
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E���� � G���� , �52�

and it can be shown that G���� is a bipartite entanglement
monotone under Gaussian local operations and classical
communications �GLOCC� �35,36�. The Gaussian contangle
can be expressed in terms of CMs as

G���� = inf
�p��

E���p� , �53�

where the infimum runs over all pure Gaussian states with
CM �p��. Let us remark that, if �s denotes a mixed sym-
metric �1�1�-mode Gaussian state, then the decomposition
of �s in terms of an ensemble of pure Gaussian states is the
optimal one �33�, which means that the Gaussian contangle
coincides with the true contangle. Moreover, the optimal
pure-state CM �s

p minimizing G���s� in Eq. �53� is charac-

terized by having �̃−��̃s
p�= �̃−��s

˜ � �33,36�. The fact that the
smallest symplectic eigenvalue is the same for both partially
transposed CMs entails for symmetric two-mode Gaussian
states that

E���s� = G���s� = �max�0,− ln �̃−��s���2. �54�

Finally, of course, E�=G� as well in all pure Gaussian states
of 1�n bipartitions.

C. Monogamy inequality for all three-mode Gaussian states

We now provide the detailed proof, first derived, among
other results, in Ref. �12�, that all three-mode Gaussian states
satisfy the CKW monogamy inequality �47�, using the
�Gaussian� contangle to quantify bipartite entanglement. The
intermediate steps of the proof will be then useful for the
subsequent computation of the residual genuine tripartite en-
tanglement, as we will show in Sec. IV D.

We start by considering pure three-mode Gaussian states,
whose standard form CM �p is given by Eq. �42�. As dis-
cussed in Sec. III A, all the properties of entanglement in
pure three-mode Gaussian states are completely determined
by the three local purities. Reminding that the mixednesses
al	1/�l have to vary constrained by the triangle inequality
�40�, in order for �p to represent a physical state, one has

�aj − ak� + 1 � ai � aj + ak − 1. �55�

For the ease of notation let us rename the mode indices so
that �i , j ,k�	�1,2 ,3�. Without any loss of generality, we can
assume a1�1. In fact, if a1=1 the first mode is not corre-
lated with the other two and all the terms in inequality �47�
are trivially zero. Moreover, we can restrict the discussion to
the case of both the reduced two-mode states �12 and �13
being entangled. In fact, if, e.g., �13 denotes a separable
state, then E�

1�2�E�
1��23� because tracing out mode 3 is a

LOCC, and thus the sharing inequality is automatically sat-
isfied. We will now prove inequality �47�, in general, by
using the Gaussian contangle, as this will immediately imply
the inequality for the true contangle as well. In fact,
G�

1��23���p�=E�
1��23���p�, but G�

1�l����E�
1�l���,l=2,3.

Let us proceed by keeping a1 fixed. From Eq. �49�, it
follows that the entanglement between mode 1 and the re-
maining modes, E�

1��23�=arcsinh2
a1
2−1, is constant. We must

now prove that the maximum value of the sum of the 1 �2
and 1 �3 bipartite entanglements can never exceed E�

1��23�, at
fixed local mixedness a1. Namely,

max
s,d

Q � arcsinh2
a2 − 1, �56�

where a	a1 �from now on we drop the subscript “1”�, and
we have defined

Q 	 G�
1�2��p� + G�

1�3��p� . �57�

The maximum in Eq. �56� is taken with respect to the “center
of mass” and “relative” variables s and d that replace the
local mixednesses a2 and a3 according to

s =
a2 + a3

2
, �58�

d =
a2 − a3

2
. �59�

The two parameters s and d are constrained to vary in the
region

s �
a + 1

2
, �d� �

a2 − 1

4s
. �60�

Inequality �60� combines the triangle inequality �55� with the
condition of inseparability for the states of the reduced bi-
partitions �1 �2� and �1 �3� �35�.

We recall now, as stated in Sec. III A, that each �1l,
l=2,3, is a state of partial minimum uncertainty �GLEMS
�10��. For this class of states the Gaussian measures of en-
tanglement, including G�, can be computed explicitly �35�,
yielding

Q = arcsinh2�
m2�a,s,d� − 1� + arcsinh2�
m2�a,s,− d� − 1� ,

�61�

where m=m− if D�0, and m=m+ otherwise �one has
m+=m− for D=0�. Here

m− =
�k−�

�s − d�2 − 1
,

m+ =

2�2a2�1 + 2s2 + 2d2� − �4s2 − 1��4d2 − 1� − a4 − 
��

4�s − d�
,

D = 2�s − d� − 
2�k−
2 + 2k+ + �k−��k−

2 + 8k+�1/2�/k+,

k± = a2 ± �s + d�2, �62�

and the quantity

� = �a − 2d − 1��a − 2d + 1��a + 2d − 1��a + 2d + 1�

��a − 2s − 1��a − 2s + 1��a + 2s − 1��a + 2s + 1�

is the same as in Eq. �35�. Note �we omitted the explicit
dependence for brevity� that each quantity in Eq. �62� is a
function of �a ,s ,d�. Therefore, to evaluate the second term
in Eq. �61� each d in Eq. �62� must be replaced by −d.
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Studying the derivative of m	 with respect to s, it is ana-
lytically proven that, in the whole range of parameters
�a ,s ,d� defined by inequality �60�, both m− and m+ are
monotonically decreasing functions of s. The quantity Q is
then maximized over s for the limiting value

s = smin 	
a + 1

2
. �63�

This value of s corresponds to three-mode pure Gaussian
states in which the state of the reduced bipartition 2 �3 is
always separable, as one should expect because the bipartite
entanglement is maximally concentrated in the states of the
1 �2 and 1 �3 reduced bipartitions. With the position Eq. �63�,
the quantity D defined in Eq. �62� can be easily shown to be
always negative. Therefore, for both reduced CMs �12 and
�13, the Gaussian contangle is defined in terms of m−. The
latter, in turn, acquires the simple form

m−�a,smin,d� =
1 + 3a + 2d

3 + a − 2d
. �64�

Consequently, the quantity Q turns out to be an even and
convex function of d, and this fact entails that it is globally
maximized at the boundary

�d� = dmax 	
a − 1

2
. �65�

We finally have that

Qmax 	 Q�a,s = smin,d = ± dmax� = arcsinh2
a2 − 1,

�66�

which implies that in this case the sharing inequality �47� is
exactly saturated and the genuine tripartite entanglement is
consequently zero. In fact, this case yields states with
a2=a1 and a3=1 �if d=dmax�, or a3=a1 and a2=1
�if d=−dmax�, i.e., tensor products of a two-mode squeezed
state and a single-mode uncorrelated vacuum. Being Qmax

from Eq. �66� the global maximum of Q, inequality �56�
holds true and the monogamy inequality �47� is thus proven
for any pure three-mode Gaussian state, choosing either the
Gaussian contangle G� or the true contangle E� as measures
of bipartite entanglement �12�.

The proof immediately extends to all mixed three-mode
Gaussian states �, but only if the bipartite entanglement is
measured by G���� �63�. Let ���d�m

p � ,�m
p � be the ensemble

of pure Gaussian states minimizing the Gaussian convex roof
in Eq. �51�; then, we have

G�
i��jk���� =� ��d�m

p �G�
i��jk���m

p �

�� ��d�m
p ��G�

i�j��m
p � + G�

i�k��m
p ��

�G�
i�j��� + G�

i�k��� , �67�

where we exploited the fact that the Gaussian contangle is
convex by construction. This concludes the proof of the
CKW monogamy inequality �47� for all three-mode Gauss-
ian states.

We close this subsection by discussing whether the CKW
monogamy inequality can be generalized to all Gaussian
states of systems with an arbitrary number n+1 of modes.
Namely, we want to prove that

Ei��j1,. . .,jn� − �
l=1

n

Ei�jl � 0. �68�

Establishing this result, in general, is a highly nontrivial task,
but it can be readily proven for all symmetric multimode
Gaussian states �12�. In a fully symmetric n+1-mode Gauss-
ian state all the local purities are degenerate and reduce to a
single parameter aloc:

ai = aj1
= aj2

= ¯ = ajn
	 aloc. �69�

As in the three-mode case, due to the convexity of G�, it will
suffice to prove Eq. �68� for pure states, for which the Gauss-
ian contangle coincides with the true contangle in every bi-
partition. For any n and for aloc�1 �for aloc=1 we have a
product state�, one has that

E�
i��j1,. . .,jn� = ln2�aloc − 
aloc

2 − 1� �70�

is independent of n, while the total two-mode contangle

nE�
i�jl =

n

4
ln2

ˆ�aloc
2 �n + 1� − 1

− 
�aloc
2 − 1��aloc

2 �n + 1�2 − �n − 1�2��/n‰ �71�

is a monotonically decreasing function of the integer n at
fixed aloc. Because the sharing inequality trivially holds for
n=1, it is inductively proven for any n. This result, together
with extensive numerical evidence obtained for randomly
generated nonsymmetric four-mode Gaussian states, strongly
supports the conjecture that the CKW monogamy inequality
holds true for all multimode Gaussian states, using the
�Gaussian� contangle as a measure of bipartite entangle-
ment.�12� However, at present, a fully analytical proof of this
conjecture is still lacking.

D. Residual contangle, genuine tripartite entanglement,
and monotonicity

The sharing constraint leads naturally to the definition of
the residual contangle as a quantifier of genuine tripartite
entanglement �arravogliament� in three-mode Gaussian
states, much in the same way as in systems of three qubits
�3�. However, at a variance with the three-qubit case, here
the residual contangle is partition-dependent according to the
choice of the reference mode, with the exception of the fully
symmetric states. A bona fide quantification of tripartite en-
tanglement is then provided by the minimum residual con-
tangle �12�

E�
i�j�k 	 min

�i,j,k�
�E�

i��jk� − E�
i�j − E�

i�k� , �72�

where the symbol �i , j ,k� denotes all the permutations of the
three-mode indexes. This definition ensures that E�

i�j�k is in-
variant under all permutations of the modes and is thus a
genuine three-way property of any three-mode Gaussian
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state. We can adopt an analogous definition for the minimum
residual Gaussian contangle G�

res �see Fig. 2 for a pictorial
representation�:

G�
res 	 G�

i�j�k 	 min
�i,j,k�

�G�
i��jk� − G�

i�j − G�
i�k� . �73�

One can verify that

�G�
i��jk� − G�

i�k� − �G�
j��ik� − G�

j�k� � 0 �74�

if and only if ai�aj, and, therefore, the absolute minimum in
Eq. �72� is attained by the decomposition realized with re-
spect to the reference mode l of smallest local mixedness al,
i.e., for the single-mode reduced state with CM of smallest
determinant.

The residual �Gaussian� contangle must be nonincreasing
under �Gaussian� LOCC in order to be a proper measure of
tripartite entanglement. The monotonicity of the residual
tangle was proven for three-qubit pure states in Ref. �64�. In
the CV setting, it has been shown in Ref. �12� that for pure
three-mode Gaussian states the residual Gaussian contangle
Eq. �73� is an entanglement monotone under tripartite
GLOCC, and that it is nonincreasing even under probabilistic
operations, which is a stronger property than being only
monotone on average. Therefore the Gaussian contangle G�

res

defines �to the best of our knowledge� the first measure,
proper and computable, of genuine multipartite �specifically,
tripartite� entanglement in Gaussian states of CV systems. It
is worth noting that the minimum in Eq. �73�, that at first
sight might appear a redundant requirement, is physically
meaningful and mathematically necessary. In fact, if one
chooses to fix a reference partition, or to take, e.g., the maxi-
mum �and not the minimum� over all possible mode permu-
tations in Eq. �73�, the resulting “measure” is not monotone
under GLOCC and thus is definitely not a measure of tripar-
tite entanglement.

We now work out in detail an explicit application, by
describing the complete procedure to determine the genuine
tripartite entanglement in a pure three-mode Gaussian state
�p.

�i� Determine the local purities. The state is globally pure
�Det �p=1�; therefore, the only quantities needed for the
computation of the tripartite entanglement are the three local

mixednesses al, defined by Eq. �28�, of the single-mode re-
duced states �l, l=1,2 ,3 �see Eq. �11��. Note that the global
CM �p needs not to be in the standard form �42�, as the
single-mode determinants are local symplectic invariants
�19�. From an experimental point of view, the parameters al
can be extracted from the CM using the homodyne tomog-
raphic reconstruction of the state �65�; or they can be directly
measured with the aid of single photon detectors �66,67�.

�ii� Find the minimum. From Eq. �74�, the minimum in the
definition �73� of the residual Gaussian contangle G�

res is at-
tained in the partition where the bipartite entanglements are
decomposed choosing as reference mode l the one in the
single-mode reduced state of smallest local mixedness
al	amin.

�iii� Check range and compute. Given the mode with
smallest local mixedness amin �say, for instance, mode 1� and
the parameters s and d defined in Eqs. �58� and �59� if
amin=1 then mode 1 is uncorrelated from the others:
G�

res=0. If, instead, amin�1 then

G�
res��p� = arcsinh2�
amin

2 − 1� − Q�amin,s,d� , �75�

with Q	G�
1�2+G�

1�3 defined by Eqs. �61� and �62�. Note
that if d�−�amin

2 −1� /4s then G�
1�2=0. Instead, if

d� �amin
2 −1� /4s then G�

1�3=0. Otherwise, all terms in G�
res

Eq. �73� are nonvanishing.
The residual Gaussian contangle Eq. �73� in generic pure

three-mode Gaussian states is plotted in Fig. 3 as a function
of a2 and a3, at constant a1=2. For fixed a1, it is interesting
to note that G�

res is maximal for a2=a3, i.e., for bisymmetric
states. Note also how the residual Gaussian contangle of
these bisymmetric pure states has a cusp for a1=a2=a3. In
fact, from Eq. �74�, for a2=a3�a1 the minimum in Eq. �73�
is attained decomposing with respect to one of the two

FIG. 2. �Color online� Pictorial representation of Eq. �73�, de-
fining the residual Gaussian contangle G�

res of generic �nonsymmet-
ric� three-mode Gaussian states. G�

res quantifies the genuine tripar-
tite entanglement shared among mode 1 ���, mode 2 ���, and
mode 3 ���. The optimal decomposition that realizes the minimum
in Eq. �73� is always the one for which the CM of the reduced state
of the reference mode has the smallest determinant.

FIG. 3. �Color online� Three-dimensional plot of the residual
Gaussian contangle G�

res��p� in pure three-mode Gaussian states
�p, determined by the three local mixedness al, l=1,2 ,3. One of
the local mixedness is kept fixed �a1=2�. The remaining ones vary
constrained by the triangle inequality �55�, as depicted in 1�b�. The
explicit expression of G�

res is given by Eq. �27�. See text for further
details. All quantities plotted are dimensionless.
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modes 2 or 3 �the result is the same by symmetry�, while for
a2=a3�a1 mode 1 becomes the reference mode.

For generic mixed three-mode Gaussian states, a quite
cumbersome analytical expression for the 1 �2 and 1 �3
Gaussian contangles may be written �35,36�, involving the
roots of a fourth-order polynomial, but the optimization ap-
pearing in the computation of the 1 � �23� bipartite Gaussian
contangle �see Eq. �53�� has to be solved only numerically.
However, exploiting techniques such as the unitary localiza-
tion �24� described in Sec. III C, and results such as that of
Eq. �54�, closed expressions for the residual Gaussian con-
tangle can be found as well in relevant classes of mixed
three-mode Gaussian states endowed with some symmetry
constraints. Interesting examples of these states and the in-
vestigation of their physical properties will be discussed in
Sec. V.

As an additional remark, let us recall that, although the
entanglement of Gaussian states is always distillable with
respect to 1�N bipartitions �23�, they can exhibit bound
entanglement in 1�1�1 tripartitions �11�. In this case, the
residual contangle cannot detect tripartite PPT entangled
states. For example, the residual contangle in three-mode
biseparable Gaussian states �class 4 of Ref. �11�� is always
zero, because those bound entangled states are separable
with respect to all �1�2�-mode bipartitions. In this sense we
can correctly regard the residual contangle as an estimator of
distillable tripartite entanglement in fully inseparable three-
mode Gaussian states. However, we are reminded that this
entanglement can be distilled only resorting to non-Gaussian
LOCC �68�, since distilling Gaussian states with Gaussian
operations is impossible �69–71�.

V. SHARING STRUCTURE OF TRIPARTITE
ENTANGLEMENT

We are now in the position to analyze the sharing struc-
ture of CV entanglement in three-mode Gaussian states by
taking the residual Gaussian contangle as a measure of tri-
partite entanglement, in analogy with the study done for
three qubits �64� using the residual tangle �3�.

The first task we face is that of identifying the three-mode
analogs of the two inequivalent classes of fully inseparable
three-qubit states, the GHZ state �72�

�GHZ� =
1

2

��000� + �111�� , �76�

and the W state �64�

�W� =
1

3

��001� + �010� + �100�� . �77�

These states are both pure and fully symmetric, i.e., invariant
under the exchange of any two qubits. On the one hand, the
GHZ state possesses maximal tripartite entanglement, quan-
tified by the residual tangle �3,64�, with zero couplewise en-
tanglement in any reduced state of two qubits reductions.
Therefore, its entanglement is very fragile against the loss of
one or more subsystems. On the other hand, the W state
contains the maximal two-party entanglement in any reduced

state of two qubits �64� and is thus maximally robust against
decoherence, while its tripartite residual tangle vanishes.

A. CV GHZ/W states

To define the CV counterparts of the three-qubit states
�GHZ� and �W�, one must start from the fully symmetric
three-mode CM �s of Eq. �46�. Surprisingly enough, in sym-
metric three-mode Gaussian states, if one aims at maximiz-
ing, at given single-mode mixedness aloc	a, either the bi-
partite entanglement G�

i�j in any two-mode reduced state �i.e.,
aiming at the CV W-like state�, or the genuine tripartite en-
tanglement G�

res �i.e., aiming at the CV GHZ-like state�, one
finds the same, unique family of pure symmetric three-mode
squeezed states �s

p. These states, previously known as CV
“GHZ-type” states �48,73,74�, can be indeed defined for ge-
neric n-mode systems. They constitute an ideal test-ground
for the study of the scaling of multimode CV entanglement
with the number of modes. This analysis can be carried out
via nested applications of the procedure of unitary localiza-
tion �24,42�, reviewed in Sec. III C. For systems of three
modes, they are described by a CM �s

pof the form Eq. �46�,
with �=a12, �=diag�e+ ,e−� and �42�

e± =
a2 − 1 ± 
�a2 − 1��9a2 − 1�

4a
, �78�

ensuring the global purity of the state. For self-explaining
reasons, we choose to name these states “CV GHZ/W states”
�12�, and denote their CM by �s

GHZ/W. In the limit of infinite
squeezing �a→ � �, the CV GHZ/W state approaches the
proper �unnormalizable� continuous-variable GHZ state
�dx �x ,x ,x�, a simultaneous eigenstate of total momentum
p̂1+ p̂2+ p̂3 and of all relative positions x̂i− x̂j �i , j=1,2 ,3�,
with zero eigenvalues �75�.

The residual Gaussian contangle of GHZ/W states of fi-
nite squeezing takes the simple form �12�

G�
res��s

GHZ/W� = arcsinh2�
a2 − 1�

−
1

2
ln2�3a2 − 1 − 
9a4 − 10a2 + 1

2
� .

�79�

It is straightforward to see that G�
res��s

p� is nonvanishing as
soon as a�1. Therefore, the GHZ/W states belong to the
class of fully inseparable three-mode states �11,42,48,74,76�.
We finally recall that in a GHZ/W state the residual Gaussian
contangle G�

res Eq. �73� coincides with the true residual con-
tangle E�

res Eq. �72�. This property clearly holds because the
Gaussian pure-state decomposition is the optimal one in ev-
ery bipartition, due to the fact that the global three-mode
state is pure and the reduced two-mode states are symmetric.

B. T states

The peculiar nature of entanglement sharing in CV
GHZ/W states is further confirmed by the following obser-
vation. If one requires a maximization of the 1�2 bipartite
Gaussian contangle G�

i��jk� under the constraint of separability
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of all the reduced two-mode states, one finds a class of sym-
metric mixed states characterized by being three-mode
Gaussian states of partial minimum uncertainty. They are, in
fact, characterized by having their smallest symplectic eigen-
value equal to 1, and represent thus the three-mode generali-
zation of two-mode symmetric GLEMS �9,10,35�.

We will name these states T states, with T standing for
tripartite entanglement only. They are described by a CM �s

T

of the form Eq. �46�, with �=a12, �=diag�e+ ,e−� and

e+ =
a2 − 5 + 
9a2�a2 − 2� + 25

4a
,

e− =
5 − 9a2 + 
9a2�a2 − 2� + 25

12a
. �80�

The T states, like the GHZ/W states, are determined only by
the local mixedness a, are fully separable for a=1, and fully
inseparable for a�1. The residual Gaussian contangle Eq.
�73� can be analytically computed for these mixed states as a
function of a. First of all one notices that, due to the com-
plete symmetry of the state, each mode can be chosen indif-
ferently to be the reference one in Eq. �73�. Being the
1�1 entanglements all zero by construction, G�

res=G�
i��jk�.

The 1�2 bipartite Gaussian contangle can be, in turn, ob-
tained exploiting the unitary localization procedure �see Sec.
III C�. Let us choose mode 1 as the reference mode and
combine modes 2 and 3 at a 50:50 beam splitter, a local
unitary operation with respect to the bipartition 1 � �23� that

defines the transformed modes 2� and 3�. The CM �s
T� of the

state of modes 1,2�, and 3� is then written in the following
block form:

�s
T� =  �1 �12� 0

�12�
T �2� 0

0 0 �3�
� , �81�

where mode 3� is now disentangled from the others. Thus

G�
1��23���s

T� = G�
1�2���s

T�� . �82�

Moreover, the reduced CM �12� of modes 1 and 2� defines a
nonsymmetric GLEM �9,10� with

Det �1 = a2,

Det �2 = 1
6 �3a2 + 
9�a2 − 2�a2 + 25 − 1� ,

Det �12� = 1
2 �3a2 − 
9�a2 − 2�a2 + 25 + 3� ,

and it has been shown that the Gaussian contangle is com-
putable in two-mode GLEMS �35�. After some algebra, one
finds the complete expression of G�

res for T states:

G�
res��s

T� = arcsinh2
„�25R − 9a4 + 3Ra2 + 6a2 − 109

− �81a8 − 432a6 + 954a4 − 1704a2 + 2125

− �3a2 − 11��3a2 − 7��3a2 + 5�R�1/2
2�1/2

��18�3a2 − R + 3��−1/2
… , �83�

with R	
9a2�a2−2�+25.
What is remarkable about T states is that their tripartite

Gaussian contangle Eq. �83� is strictly smaller than the one
of the GHZ/W states Eq. �79� for any fixed value of the local
mixedness a, that is, for any fixed value of the only param-
eter �operationally related to the squeezing of each single
mode� that completely determines the CMs of both families
of states up to local unitary operations. This hierarchical be-
havior of the residual contangle in the two classes of states is
illustrated in Fig. 4. Note that this result cannot be an artifact
caused by restricting to pure Gaussian decompositions only
in the definition Eq. �73� of the residual Gaussian contangle.
In fact, for T states the relation G�

res��s
T��E�

res��s
T� holds due

to the symmetry of the reduced two-mode states, and to the
fact that the unitarily transformed state of modes 1 and 2� is
mixed and nonsymmetric. The crucial consequences of this
result for the structure of the entanglement trade-off in
Gaussian states will be discussed further in the next subsec-
tion.

C. Promiscuous continuous-variable
entanglement sharing

The above results, pictorially illustrated in Fig. 4, lead to
the conclusion that in symmetric three-mode Gaussian states,
when there is no bipartite entanglement in the two-mode
reduced states �like in T states�, the genuine tripartite en-
tanglement is not enhanced, but frustrated. More than that, if
there are maximal quantum correlations in a three-party re-
lation, like in GHZ/W states, then the two-mode reduced

FIG. 4. �Color online� Plot, as a function of the single-mode
mixedness a, of the tripartite residual Gaussian contangle G�

res Eq.
�79� in the CV GHZ/W states �dashed line�; in the T states Eq. �83�
�solid line�; and in 50 000 randomly generated mixed symmetric
three-mode Gaussian states of the form Eq. �46� �dots�. The
GHZ/W states, that maximize any bipartite entanglement, also
achieve maximal genuine tripartite quantum correlations, showing
that CV entanglement distributes in a promiscuous way in symmet-
ric Gaussian states. Note also how all random mixed states have a
non-negative residual Gaussian contangle. This confirms the results
presented in Ref. �12�, and discussed in detail and extended in Sec.
IV C, on the strict validity of the CKW monogamy inequality for
CV entanglement in three-mode Gaussian states. All quantities plot-
ted are dimensionless.
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states of any pair of modes are maximally entangled mixed
states.

These findings, unveiling a major difference between
discrete-variable �mainly qubits� and continuous-variable
systems, establish the promiscuous nature of CV entangle-
ment sharing in symmetric Gaussian states �12,13�. Being
associated with degrees of freedom with continuous spectra,
states of CV systems need not saturate the CKW inequality
to achieve maximum couplewise correlations. In fact, with-
out violating the monogamy constraint inequality �47�, pure
symmetric three-mode Gaussian states are maximally three-
way entangled and, at the same time, maximally robust
against the loss of one of the modes. This preselects GHZ/W
states also as optimal candidates for carrying quantum infor-
mation through a lossy channel, being, for their intrinsic en-
tanglement structure, less sensitive to decoherence effects, as
we will show in Sec. VI.

As an additional remark, let us mention that, quite natu-
rally, not all three-mode Gaussian states �in particular, non-
symmetric states� are expected to exhibit a promiscuous en-
tanglement sharing. Further investigations to clarify the
sharing structure of generic Gaussian states of CV systems,
and the origin of the promiscuity, are currently under way
�77�. As an anticipation, we can mention that promiscuity
tends to survive even in the presence of the mixedness of the
state, but is destroyed by the loss of complete symmetry. The
powerful consequences of the entanglement properties of
GHZ/W states for experimental implementations of CV
quantum-information protocols are currently under investiga-
tion �78�.

VI. DECOHERENCE OF THREE-MODE STATES
AND DECAY OF TRIPARTITE ENTANGLEMENT

Remarkably, Gaussian states allow for a straightforward,
analytical treatment of decoherence, accounting for the most
common situations encountered in the experimental practice
�like fibre propagations or cavity decays� and even for more
general, exotic’ settings �such as “squeezed” or common res-
ervoirs� �79�. This agreeable feature, together with the
possibility—extensively exploited in this paper—of exactly
computing several interesting benchmarks for such states,
make Gaussian states a useful theoretical reference for inves-
tigating the effect of decoherence on the information and
correlation content of quantum states. Let us mention that the
dissipative evolution of three-mode states has been consid-
ered in Ref. �80�, addressing SU�2,1� coherent states and
focusing essentially on separability thresholds and teleclon-
ing efficiencies. In this section, we will explicitly show how
the decoherence of three-mode Gaussian states may be ex-
actly studied for any finite temperature, focusing on the evo-
lution of the residual contangle as a measure of tripartite
correlations. The results here obtained will be recovered in a
future work �78�, and applied to the study of the effect of
decoherence on multiparty protocols of CV quantum com-
munication with the classes of states we are addressing, thus
completing the present analysis by investigating its precise
operational consequences. Concerning the general theory of
open quantum dynamics, it is impossible here to give a de-

tailed account of all the aspects of the standard theoretical
frameworks. For an excellent critical review, focusing on the
standard treatment of open quantum systems in relation to
quantum entanglement, see Ref. �81�. In this ample review
the authors discuss the importance of notions such as com-
plete positivity, a physically motivated algebraic constraint
on the quantum dynamics, in relation to quantum entangle-
ment, and analyze the entanglement power of heat baths ver-
sus their decohering properties.

For continuous-variable systems, in the most customary
and relevant instances the bath interacting with a set of n
modes can be modeled by n independent continua of oscil-
lators, coupled to the bath through a quadratic Hamiltonian
Hint in rotating wave approximation, reading

Hint = �
i=1

n � vi����ai
†bi��� + aibi

†����d� , �84�

where bi��� stands for the annihilation operator of the ith
continuum’s mode labeled by the frequency �, whereas
vi��� represents the coupling of such a mode to the mode i of
the system �assumed, for simplicity, to be real�. The state of
the bath is assumed to be stationary. Under the Born-Markov
approximation �82�, the Hamiltonian Hint leads, upon partial
tracing over the bath, to the following master equation for
the n modes of the system �in interaction picture� �83�:

�̇ = �
i=1

n
�i

2
�NiL�ai

†�� + �Ni + 1�L�ai��� , �85�

where the dot stands for the time derivative, the Lindblad
superoperators are defined as L�ô��	2ô�ô†− ô†ô�−�ô†ô,
the couplings are �i=2�vi

2��i�, whereas the coefficients Ni

are defined in terms of the correlation functions
�bi

†��i�bi��i��=Ni, where averages are computed over the
state of the bath and �i is the frequency of mode i. Note that
Ni is the number of thermal photons present in the reservoir
associated with mode i, related to the temperature Ti of the
reservoir by the Bose statistics at the null chemical potential:

Ni =
1

exp��i � /kTi� − 1
. �86�

In the derivation, we have also assumed �bi��i�bi��i��=0,
holding for a bath at thermal equilibrium. We will henceforth
refer to a “homogeneous” bath in the case Ni=N and �i=�
for all i.

Now, the master equation �85� admits a simple and physi-
cally transparent representation as a diffusion equation for
the time-dependent characteristic function of the system
��� , t� �83�

�̇��,t� = − �
i=1

n
�i

2
��xipi���xi

�pi
� + �xipi��T�i���xi

pi
�����,t� ,

�87�

where �	�x1 , p1 , . . . ,xn , pn� is a phase-space vector,
�i�=diag�2Ni+1,2Ni+1� and � is the 2�2 symplectic
form �defined in Eq. �1��. The right-hand side of the previous

MULTIPARTITE ENTANGLEMENT IN THREE-MODE¼ PHYSICAL REVIEW A 73, 032345 �2006�

032345-15



equation contains a deterministic drift term, which has the
effect of damping the first moments to zero on a time scale
of � /2 and a diffusion term with diffusion matrix
��	 � i=1

n �i�. The essential point here is that Eq. �87� pre-
serves the Gaussian character of the initial state, as can be
straightforwardly checked for any initial CM �0 by inserting
the Gaussian characteristic function ��� , t� �see Eq. �4��

���,t� = e−1/2�T�T��t���+iXT�t��

�where X are generic initial first moments, ��t�
	�t

2�0+ �1−�t
2��� and �t	 � ie

−�it/212� into the equation
and verifying that it is indeed a solution. Note that, for a
homogeneous bath, the diagonal matrices �t and �� �provid-
ing a full characterisation of the bath� are both proportional
to the identity. In order to keep track of the decay of corre-
lations of Gaussian states, we are interested in the evolution
of the initial CM �0 under the action of the bath which,
recalling our previous Gaussian solution, is just described by

��t� = �t
2�0 + �1 − �t

2���. �88�

This simple equation describes the dissipative evolution of
the CM of any initial state under the action of a thermal
environment and, at zero temperature, under the action of
“pure losses” �recovered in the instance Ni=0 for
i=1, . . . ,n�. It yields a basic, significant example of “Gauss-
ian channel”, i.e., of a map mapping Gaussian states into
Gaussian states under generally nonunitary evolutions. Ex-
ploiting Eq. �88� and our previous findings, we can now
study the exact evolution of the tripartite entanglement of
Gaussian states under the decoherent action of losses and
thermal noise. For simplicity, we will mainly consider homo-
geneous baths.

As a first general remark let us note that, in the case of a
zero temperature bath �N=0�, in which decoherence is en-
tirely due to losses, the bipartite entanglement between any
different partitions decays in time but persists for an infinite
time. This is a general property of Gaussian entanglement
�79� under any many mode bipartition. The same fact is also
true for the genuine tripartite entanglement, quantified by the
residual contangle. If N�0, a finite time does exist for which
tripartite quantum correlations disappear. In general, the two-
mode entanglement between any given mode and any other
of the remaining two modes vanishes before than the three-
mode bipartite entanglement between such a mode and the
other two �not surprisingly, as the former quantity is, at the
beginning, bounded by the latter because of the CKW mo-
nogamy inequality �47��.

The main issue addressed in this analysis has consisted in
inspecting the robustness of different forms of genuine tri-
partite entanglement, previously introduced in the paper.
Note that an analogous question has been addressed in the
qubit scenario, by comparing the action of decoherence on
the residual tangle of the inequivalent sets of GHZ and W
states: W states, which are by definition more robust under
subsystem erasure, proved more robust under decoherence as
well �84�. In our instance, the symmetric GHZ/W states con-
stitute a promising candidate for the role of most robust
Gaussian tripartite entangled states, as somehow expected.

Evidence supporting this conjecture is shown in Fig. 5,
where the evolution in different baths of the tripartite en-
tanglement of GHZ/W states is compared to that of symmet-
ric T states �at same initial entanglement�. No fully symmet-
ric states with tripartite entanglement more robust than
GHZ/W states were found by further numerical inspection.
Quite remarkably, the promiscuous sharing of quantum cor-
relations, proper to GHZ/W states, appears to better preserve
genuine multipartite entanglement against the action of de-
coherence.

Note also that, for a homogeneous bath and for all fully
symmetric and bisymmetric three-mode states, the decoher-
ence of the global bipartite entanglement of the state is the
same as that of the corresponding equivalent two-mode
states �obtained through unitary localization�. Indeed, for any
bisymmetric state which can be localized by an orthogonal
transformation �like a beam splitter�, the unitary localization
and the action of the decoherent map of Eq. �88� commute,
because ���1 is obviously preserved under orthogonal
transformations �note that the bisymmetry of the state is
maintained through the channel, due to the symmetry of the
latter�. In such cases, the decoherence of the bipartite en-
tanglement of the original three-mode state �with genuine
tripartite correlations� is exactly equivalent to that of the cor-
responding initial two-mode state obtained by unitary local-
ization. This equivalence breaks down, even for GHZ/W
states which can be localized through a �orthogonal� beam-
splitter transformation, for nonhomogeneous baths, i.e., if the
thermal photon numbers Ni related to different modes are
different �which is the case for different temperatures Ti or
for different frequencies �i, according to Eq. �86�� or if the
couplings �i are different. In this instance let us remark that
unitary localization could provide a way to cope with deco-
herence, limiting its hindering effect on entanglement. In
fact, let us suppose that a given amount of genuine tripartite
entanglement is stored in a symmetric �unitarily localizable�
three-mode state and is meant to be exploited, at some �later�
time, to implement tripartite protocols. During the period
going from its creation to its actual use such an entanglement

FIG. 5. �Color online� Evolution of the residual Gaussian con-
tangle G�

res for GHZ/W states with local mixedness a=2 �solid
curves� and T states with local mixedness a=2.8014 �dashed
curves�. Such states have an equal initial residual contangle. The
uppermost curves refer to a homogeneous bath with N=0 �pure
losses�, while the lowermost curves refer to a homogeneous bath
with N=1. As apparent, thermal photons are responsible for the
vanishing of entanglement at finite times.
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decays under the action of decoherence. Suppose the three
modes involved in the process do not decay with the same
rate �different �i� or under the same amount of thermal pho-
tons �different Ni�, then the obvious, optimal way to shield
tripartite entanglement is concentrating it, by unitary local-
ization, in the two least decoherent modes. The entanglement
can then be redistributed among the three modes by a rever-
sal unitary operation, just before employing the state. Of
course, the concentration and distribution of entanglement
require a high degree of nonlocal control on two of the three
modes, which would not always be allowed in realistic op-
erating conditions.

The bipartite entanglement of GHZ/W states �under
�1+2�-mode bipartitions� decays slightly faster �in homoge-
neous baths with an equal number of photons� than that of an
initial pure two-mode squeezed state �also known as “twin-
beam” state� with the same initial entanglement. In this re-
spect, multimode entanglement is more fragile than two
mode, as the Hilbert space exposed to decoherence which
contains it is larger. Note that this claim does not refute the
one of Ref. �80�, where SU�2,1� coherent states were found
to be as robust as corresponding two-mode states, but only
for the same total number of thermal photons in the multi-
mode channels.

VII. CONCLUDING REMARKS AND OUTLOOK

Gaussian states distinctively stand out in the infinite vari-
ety of quantum states of continuous-variable systems, both
for the analytic description they allow in terms of covariance
matrices and symplectic operations, and for the high stan-
dards currently reached in their experimental production,
manipulation, and implementation for CV quantum informa-
tion processing. Still, some recent results demonstrate that
basically the current state of the art in the theoretical under-
standing and experimental control of CV entanglement is
strongly pushing towards the boundaries of the “ideal” realm
of Gaussian states and Gaussian operations. For instance,
Gaussian entanglement cannot be distilled by Gaussian op-
erations alone �69–71�, and moreover Gaussian states are
“extremal”, in the sense that they are the least entangled
among all states of CV systems with a given CM �85�. On
the other hand, however, some important pieces of knowl-
edge in the theory of entanglement of Gaussian states are
still lacking. The most important asymptotic measures of en-
tanglement endowed with a physical meaning, the entangle-
ment cost and the entanglement of distillation cannot be
computed, and the entanglement of formation is computable
only in the special case of two-mode, symmetric Gaussian
states �33�. Moreover, when moving to consider multipartite
entanglement, many of the basic questions are still unan-
swered, such as in the case of multipartite entanglement in
states of many qubits.

In this work we took a step ahead in the characterization
of multipartite entanglement in Gaussian states. We focused
on the prototypical structure of a CV system with more than
two parties, that is a three-mode system prepared in a Gauss-
ian state. We completed the elegant qualificative classifica-
tion of separability in three-mode Gaussian states provided

in Ref. �11� with an exhaustive, quantitative characterization
of the various forms of quantum correlations that can arise
among the three parties. We then exploited some recent re-
sults on entanglement sharing in multimode Gaussian states
�12� that prove that CV entanglement in these states is indeed
monogamous in the sense of the Coffman-Kundu-Wootters
monogamy inequality �3�. We next defined a measure of
genuine tripartite entanglement, the residual continuous-
variable tangle, that turns out to be an entanglement mono-
tone under tripartite Gaussian LOCC �12�.

We started our analysis by giving a complete character-
ization of pure and mixed three-mode Gaussian states, and
deriving the standard forms of the covariance matrices that
are similar to those known for two-mode states �41�. In par-
ticular, a generic pure three-mode Gaussian states is com-
pletely specified, in standard form, by three parameters,
which are the purities �determinants of the CMs� of the re-
duced states for each mode. We determined analytically the
general expression of the genuine tripartite entanglement in
pure three-mode Gaussian states, and studied its properties in
comparison with the bipartite entanglement across different
partitions. We investigated the sharing structure underlying
the distribution of quantum correlations among three modes
in arbitrary Gaussian states, much on the same lines as those
followed in the case of states of three qubits �64�.

Remarkably, we found a completely unique feature,
namely that there exists a special class of states, the pure,
symmetric, three-mode squeezed states, which simulta-
neously maximize the genuine tripartite entanglement and
the bipartite entanglement in the reduced states of any pair of
modes. This property, which has no counterpart in finite-
dimensional systems, can be understood as the promiscuous
sharing of CV entanglement. The states exhibiting this pecu-
liar sharing structure, named CV “GHZ/W” states for self-
explaining reasons, are automatically preselected as optimal
carriers of quantum information over lossy channels, and we
have proved that they indeed are. In fact, we concluded our
work with a detailed analysis of the effects of decoherence
on three-mode Gaussian states and the decay of tripartite
entanglement. This study yielded that the GHZ/W states are
the most robust three-party entangled Gaussian states against
decoherence.

We believe that the collection of results presented here,
although remarkable on its own, is however only the tip of
an iceberg. Three-mode Gaussian states, the perfect test-
ground for the understanding of some generic traits of mul-
tipartite entanglement in CV systems, need to be analyzed in
a deeper future perspective. This primarily includes the char-
acterization of those classes of tripartite entangled states with
peculiar properties, with a particular care towards their state
engineering in quantum optical settings. This analysis is cur-
rently under way �77�. The �closely related� usefulness of
such states for existing and maybe different protocols of CV
quantum communication, able to take advantage from the
promiscuous sharing, is also being investigated �78�.

From a broader theoretical standpoint, further research
stemming from the present work should probably be directed
along two main directions. The first one concerns proving a
general monogamy inequality in all multimode states of CV
systems, in analogy to what has been recently established for
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arbitrary states of multiqubit systems �4�. Such a proof
would then lead to a multimode generalization of the residual
contangle. The second, long-term direction is the investiga-
tion of the qualitative and quantitative aspects of entangle-
ment in generic non-Gaussian states of CV systems. In this
context, singling out exotic states with enhanced promiscu-
ous sharing of quantum correlations and with a monogamy
of entanglement stretched to its limits, appears as an exciting
perspective, and might open very promising perspectives for

the manipulation, transfer, and control of quantum informa-
tion with continuous variables.
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