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Quantum-state tomography—the practice of estimating a quantum state by performing measurements on
it—is useful in a variety of contexts. We introduce “gentle tomography” as a version of tomography that
preserves the measured quantum data. As an application of gentle tomography, we describe a polynomial-time
method for universal source coding.
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I. INTRODUCTION

Suppose that we have a sequence of quantum states, each
drawn from an ensemble with known density matrix �. Schu-
macher compression then allows the sequence to be effi-
ciently encoded so that S���=−tr � log � qubits are required
to encode each state in the limit that the length of the se-
quence goes to infinity �1� �in this paper log and exp are base
2�. This resembles classical source coding, in which a source
can be compressed to a rate asymptotically approaching its
Shannon entropy. However, classical compression can be
performed by algorithms that are universal �do not depend
on a description of the source� and efficient �have a running
time polynomial in the length of the input�. In contrast, most
existing quantum compression algorithms either rely on
knowing the basis in which � is diagonal �1� or have no
known polynomial time implementations �2,3�.

This paper presents an efficient, universal, quantum data
compression algorithm; that is, knowing only the dimension
d and the number of copies n, it can compress an unknown
idenpendent and identically distributed �i.d.d.� quantum
source ��n in poly�n ,d� time to a rate converging to its von
Neumann entropy S��� and with error approaching zero as n
increases. Another efficient universal quantum data compres-
sion algorithm was presented in �4�, but our algorithm has
the advantages of simplicity and a better rate-disturbance
trade-off.

Our algorithm consists of two parts: a weak measurement
of ��n that estimates � accurately without causing very much
damage to the state, followed by compressing ��n based on
this estimate. Conceptually, this resembles classical methods
of compression which determine the empirical distribution of
their input in their first pass over the data and perform the
compression in the second pass. The only new difficulties we
will encounter in the quantum case involve performing state
tomography on � without causing very much damage and
compressing � based on an imperfect estimate.

II. GENTLE TOMOGRAPHY

The problem of weakly measuring states of the form ��n

was introduced in �5� and further developed in �3,6�. While it
is impossible to measure a single state � without causing
disturbance, we expect ordinary classical logic to apply to
��n when n is large, so that it is possible to measure even
noncommuting observables precisely with little disturbance.
For example, in nuclear magnetic resonance, the total x mag-
netization of n=O�1020� nuclear spins is continuously mea-
sured without causing decoherence by a probe consisting of a
coil of wire around the sample. This is possible because the
measurement does not precisely determine the number of
nuclear spins pointing in the x direction, but only gives a
crude estimate of the quantity. In this section, we will intro-
duce a procedure for state tomography on ��n and then show
how to modify it so that its disturbance vanishes for large n
while at the same time it yields an asymptotically accurate
estimate of �.

Let ��k�k=1
d2−1 be an orthonormal �tr � j�k=� jk� basis of

traceless Hermitian d�d matrices, and write the density ma-
trix � as �= I /d+�k�tr ��k��k. Estimating � reduces to esti-
mating the d2−1 quantities tr ��k. If we now diagonalize �k
as �k=�i=1

d �i�vi	
vi�, then tr ��k=�i�i
vi���vi	, so state to-
mography reduces to estimating d�d2−1� quantites of the
form 
�����	 and then performing a classical computation.

If we did not mind damaging the state, then one method
of estimating �ª 
�����	 would be to apply the projective
measurement ���	
�� , I− ��	
��� to each copy of �. The num-
ber of occurrences of ��	
�� would be binomially distributed
with mean n� and variance n��1−���n /4, so we could
reliably estimate � to an accuracy of O�n−1/2�. Of course, this
measurement would drastically damage some states, such as
�1/�2����	+ ���	�.

Instead of measuring each state individually, we can also
express this measurement as a collective operation on all n
states simultaneously. It is given by the operators

Mk = �
x��0,1�n

�x�=k

�
i=1

n

xi��	
�� + �1 − xi��1 − ��	
��� , �1�

where k ranges from 0 to n and �x� denotes the number of 1’s
in the n-bit string x. Clearly, measuring �Mk� yields the same
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statistics as measuring each state individually and counting
the ��	
�� outcomes. The measurement can also be con-
structed efficiently: we unitarily count the number of oc-
curences of ��	 in the n states in an ancilla register and then
measure the ancilla �see Fig. 1�.

Unfortunately, even the collective measurement in Eq. �1�
causes substantial damage to the state. For example, if the
measurement �Mk� is repeated, then the distribution of k will
have a variance of O�n� the first time and 0 on subsequent
measurements.

In �6� this problem was solved by initalizing the ancilla in
Fig. 1 to the state �ke

−k2/2	2
�k	 instead of �0	. The measure-

ment of k then has variance 	2+O�n� and it can be shown
�7� that the damage to ��n is O(n / �	2+n�). Reference �3�
proposed a method which causes more damage to the state,
but is easier to analyze for our purposes.

To implement the gentle measurement of �3�, we will di-
vide up the range from 0 to n into m bins, with boundaries
0=b0�b1¯ �bm=n+1. Define the function BIN�k�
ªmin�j :k
bj� to be the index of the bin containing k. Then
we will modify the collective measurement of Eq. �1� to
measure only BIN�k� instead of determining k exactly. The
new measurement �Mj�� is given in terms of the Mk of Eq. �1�
by

Mj� = �
bj−1�k
bj

Mk, �2�

where j ranges from 1 to m.
If the average bin size �n+1� /m is much larger than the

O��n� width of ��n, then we expect to project onto a mea-
surement outcome that contains almost all of the support of
��n, thereby causing little disturbance. Since we want to
avoid having a bin boundary within O��n� of the state, for
any choice of �, we will choose the bj uniformly at random
from between 0 and n.

The choice of m now defines a trade-off between distur-
bance caused to ��n and information gained about �. Choos-
ing a smaller m means that each bin is larger, so that a mea-
surement outcome lets us infer less about �, but we have a
smaller probability of damaging ��n by projecting onto only
part of its support.

Proposition 1. The measurement �Mj�� described above
can be implemented in O�n� gates. If we choose m=ns for
0
s
1/2, then the measurement will fail with probability
O�ns−1/2 log n�. Upon success, the measurement outcome is
within O�n1−s log n� of n� and the disturbance �in the sense

of entanglement fidelity� is less than exp�−O�log2 n��
�O�n−p� for any constant p.

Proof of proposition 1. We begin by describing how to
implement �Mj��. First we count the number of times ��	
occurs in ��n and store the result k� �0, . . . ,n� in an ancilla
register. Then we coherently calculate BIN�k�, mapping
�k	�0	 to �k	�BIN�k�	. Then we reverse our calculation of k,
leaving only the register �BIN�k�	. If we measure this register
and call the outcome j, we end up implementing the projec-
tive measurement Mj�. This is demonstrated in Fig. 2.

We define three possible causes of failure: �i� some bi will
be too close to n� �within n1/2 log n�, �ii� there will not be
any bi on either side of n� within n1−s log n, and �iii� mea-
suring Mj� will yield a bin that does not contain n�. Failure
event �i� is the union of m different events ��bj −n��

n1/2 log n�, each with probability Pj � �2n1/2 log n� /n, so
by the union bound the total probability of �i� is �� jPj
�m�2n−1/2 log n�=2ns−1/2 log n. Next, the probability that no
bi is in �n�−n1−s log n ,n�� is ��1−n−s log n�m�e−log n

=n−1 and likewise for the interval �n� ,n�+n1−s log n�, so the
probability of �ii� is �2/n. Finally, suppose there is no bin
within n1/2 log n of n� �i.e., �i� has not occurred�. Thus, the
probability of outcome Mj� after performing the measurement
in Eq. �2� is at least as high as the probability that
�k−n��
n1/2 log n after performing the measurement in
Eq. �1�. Since k is the sum of n independent 0-1 random
variables with expectation �, we can use a Chernoff
bound �8� to show that the probability of �iii� is less than
exp�−O�log2 n��. Thus, the possibility of failure is dominated
by the probability of �i�, which is O�ns−1/2 log n�.

We say that the gentle measurement is successful if none
of �i�, �ii�, or �iii� occurs. In this case, we can take as our
estimate for � an arbitrary value within the bin we have
measured and by �ii� will err by no more than 2n−s log n.
Finally, let Mj� be the measurement outcome we obtain, let
��	AB be a purification of �A

�n, and define �ªMj� � IB. Then

the post-measurement state is ���	=���	 /�
�����	 and
the entanglement fidelity is Fe= 
� ���	= 
�����	 /�
�����	
=�
�����	. From �iii� we have 
�����	1−� where
�=exp�−O�log2 n��, so Fe�1−�=1−exp�−O�log2 n��.1 �

To perform gentle tomography we simply divide the n
states into d�d2−1� blocks of length l= �n /d�d2−1�� and gen-
tly measure each block. If ��vi

�k�	�i=1
d is the basis for �k, then

1A similar result was proved in lemma 9 of �9�.

FIG. 1. Circuit for performing the measurement in Eq. �1�. The
controlled-�+1� operations map ��	�x	 to ��	�x+1	 for any value x
of the target and leave other states unchanged.

FIG. 2. Circuit for performing the gentle measurement in Eq.
�2�. The controlled-�+1� and controlled-�−1� operations act on the
target only when the control is in the state ��	. The gate BIN clas-
sically computes which bin contains the top register and stores it in
the bottom register.
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we can index the blocks by i=1, . . . ,d and k=1, . . . ,d2−1
and measure �vi

�k�	 on block �i ,k�.
Proposition 2 (gentle tomography). For any 0
s
1/2

and fixed Hilbert space dimension, applying the procedure
described above to ��n requires poly�n� time and fails with
probability O�ns−1/2 log n�. Upon success, the disturbance is
less than O�n−2� and the estimate �̃ satisfies ��− �̃�1

�O�n−s log n�.
Proof. We say that tomography succeeds when each

of the d�d2−1� measurements succeeds individually. Since
the dimension d is a constant, we can use proposition 1
to bound the failure probability by O�d3�3/2−s�ns−1/2 log n�
O�ns−1/2 log n� and the state disturbance by O�d9n−2�
O�n−2�.

We still need to describe how to form an accurate estimate
�̃. Assume that each gentle measurement has succeeded.
Then the d�d2−1� gentle measurements output, not state es-
timates, but bins �b1 ,b2 , ��	�, guaranteeing only that
b1�n
�����	�b2. We will try to find a state �̃ that is con-
sistent with each bin. Since � is consistent with each bin, we
know that some such �̃ exists. It satisfies constraints corre-
sponding to a semidefinite program: �̃0, tr �̃=1, and
b1� 
���̃��	�b2 for each bin �b1 ,b2 , ��	�. Thus, if all of the
gentle measurements succeed, we can find a valid �̃ using
standard methods for solving semidefinite programs �10� in
time poly�d , log n�.2

Given such a �̃, the condition on bins implies that
for each gentle measurement �
����− �̃���	�
�, where
�=O�n−s log n�. Then, if �k=�i�i�vi	
vi�, �tr��− �̃��k�
= ��i�i
vi���− �̃��vi	����i��i���d�. Thus, by the Cauchy-
Schwartz inequality,

�� − �̃�1 � d�� − �̃�2 = d��
k

�tr�� − �̃��k�2 � d5/2� . �

This extends our trade-off curve for gentle measurements
to full gentle state tomography.

III. UNIVERSAL COMPRESSION

Now look more closely at the quantum coding. Schuma-
cher compression works by identifying the eigenvalues and
eigenvectors of �, then coherently performing classical
Shannon compression on sequences of those eigenvectors
with probabilities given by the corresponding eigenvalues.
However, we are forced to operate with only an estimate
�̃��, so we will need to use a data compression scheme that
deals well with small inaccuracies in the state estimate.

This case has been analyzed in �4�, which found that
compressing � in the basis ��i	� with any classical algorithm
gives an asymptotic rate of R=−�i
i���i	log
i���i	. This is
because compressing � faithfully reduces to compressing
the diagonal entries of � in an arbitrary basis ��i	�. Due
to the non-negativity of the relative entropy �S�� ���
=tr ��log �−log ��0�, we have R�−tr � log �=S���

+S�� ��� for any density matrix � that can be diagonalized as
�=�ipi�i	
i�. Thus, for any density matrix �, we can encode
� by diagonalizing it in the basis of � and then using a
classical reversible algorithm. This will achieve a rate
R�S���+S�� ���.

Unfortunately, there is no simple bound for S�� � �̃� in
terms of ��− �̃�1; in fact, the relative entropy can be infinite if
the support of � is not contained within the support of �̃. This
problem corresponds to the situation when our state estimate
has led the encoder to believe that certain vectors will never
appear, so that when it encounters them in �, it has made no
provision to deal with them. The solution to this is simple:
assume that any input vector has a small, but nonzero,
chance of occurring. This means that instead of encoding
according to �̃, we will use �̃�ª �1−���̃+�I /d as our state
estimate, for some small ��0.

Suppose that after performing gentle tomography,
��̃−��1
�. Then, if we choose � ,�=O�n−s log n�, we can
bound the rate by

R � − tr� log �̃� � S��̃�� + O�n−s log2 n� � S���

+ O�n−s log2 n�

The second inequality follows from the operator inequality
�̃��I /d �implying �−log �̃���� log�d /��=O�log n�� and
the bound tr AB� �A�1�B�� applied to tr��̃�−��log �̃�. The
last inequality is due to Fannes’ inequality�12�. We have ne-
glected the inefficiency of the classical coding, since we can
choose it to be O�n−s� and it will incur only exponentially
small damage for s


1
2 .

To analyze the errors, note that since we usually cannot
tell when tomography has failed, we ought to consider fail-
ure to be another form of disturbance. Thus, the O�ns−1/2�
probability of failure dominates the state disturbance and the
errors from classical coding. This is consistent with the ob-
servation in �3� that universal compression schemes have yet
to achieve better than a polynomially vanishing error.

Since our compression algorithm outputs a variable num-
ber of qubits, damage to the encoded state is not the only
possible form of error. Upon failure, our algorithm risks
producing a string length well above the n�S���+n−slog2 n�
qubits we expect; in fact, the only absolute bound we can
establish is n log d qubits. Fortunately, the probability that
��n is compressed to nR qubits for R�S��� decreases as
O(exp�−nK�) for some constant K depending only on � and
R. Following �3�, we define this overflow exponent as

K = lim
n→�

− 1

n
log�probability that ��n yields  nR qubits� .

�3�

The codes described in �3� achieve the optimal value of K:
inf�:H���R S�� ���. In contrast, our algorithm3 achieves

2If one of the gentle measurements fails, this semidefinite program
may fail or it may report a totally erroneous answer.

3It is possible to gently measure tr ��k directly, instead of infer-
ring it from d gentle measurements of �k’s eigenvectors. Using this
for gentle tomography results in a compression scheme with an
overflow exponent d times higher, though still not optimal.
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K = inf
�:H���R

1

d�d2 − 1� �
k=1

d2−1

S„Mk��� � Mk���… , �4�

where Mk denotes the operation of measuring in the eigen-
basis of �k �i.e., Mk���=�i�vi

�k�	
vi
�k����vi

�k�	
vi
�k���.

To review, our encoding procedure is the following.
�i� Perform gentle tomography on ��n using ns bins,

yielding an estimate �̃.
�ii� Construct a modified estimate �̃�= �1−���̃+�I /d for

�=O�n−s�.
�iii� Coherently encode ��n with an efficient classical al-

gorithm �such as arithmetic coding �11�� using the basis of �̃�

as the computational basis.
�iv� Attach an approximate classical description of �̃� with

O�d2�n� bits of precision and a �log�n log d��-bit register in-
dicating the length of the compressed data.

The decoding procedure is simply to extract the descrip-
tion of �̃� and use it as the basis for a classical decoding
algorithm.

IV. CONCLUSION

We have described a polynomial time algorithm for com-
pressing ��n into nS���+O�n−slog2 n� qubits with error rate
O�ns−1/2 log n�. This matches the error rate and inefficiency
of the proof of �3�, though not their overflow exponent. The
procedure of �4�, on the other hand, can only achieve a com-

pression rate of S���+O�n−s� by incurring an error rate of

O�n−1/2+s�1+d2�� �possibly up to logarithmic factors� and an
overflow exponent of zero. For example, compressing
qubits with constant error is only possible at a rate of
S���+O�n−1/10�.

There are a number of directions left for future research.
Besides finding asymptotically optimal compression and
gentle tomography trade-off curves for the i.i.d. case, it
would be interesting to find a method for ergodic sources
analogous to Lempel-Ziv-Walsh coding that adaptively cre-
ated a quantum dictionary and compressed quantum informa-
tion on the fly. Alternatively, it may be that single-pass quan-
tum compression with sublinear quantum memory cannot
achieve an asymptotically vanishing error.

The method we have described in our paper could be
easily made more efficient in a number of ways. However,
we hope it will serve as a simple demonstration of how even
unknown quantum states are amenable to classical tech-
niques in the limit of many identical copies.
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