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The composite rotation approach has been used to develop a range of robust quantum logic gates, including
single qubit gates and two qubit gates, which are resistant to systematic errors in their implementation. Single
qubit gates based on the BB1 family of composite rotations have been experimentally demonstrated in a variety
of systems, but little study has been made of their application in extended computations, and there has been no
experimental study of the corresponding robust two qubit gates to date. Here we describe an application of
robust gates to nuclear magnetic resonance studies of approximate quantum counting. We find that the BB1
family of robust gates is indeed useful, but that the related NB1, PB1, B4, and P4 families of tailored logic
gates are less useful than initially expected.
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I. INTRODUCTION

Quantum information processing �1� has made substantial
progress in recent years, but formidable problems remain in
the implementation of a general purpose quantum computer.
The development of quantum error correction �2–4� was a
key step, as it allows quantum computers to function in the
presence of random errors. More recently the method of
composite rotations �also called composite pulses�, devel-
oped for nuclear magnetic resonance �NMR� experiments
�5–8�, has been used to design quantum logic gates which
are robust against systematic errors in the control fields used
to implement them �9,10�.

Composite pulses are closely related to the more general
field of optimal quantum control, which has been widely
studied and finds applications in many fields. In the context
of conventional NMR experiments there has been much
study of the design of time-optimal pulse sequences �11�,
which enable unitary transformations to be performed while
minimizing losses from decoherence. For applications in
NMR quantum computing there has been particular interest
in the use of strongly modulated composite pulses �12–14�,
which are designed to perform particular selective operations
in the presence of a complex multispin Hamiltonian, and
which can also be designed to be robust against systematic
errors in control fields. Although often discussed separately
there are clear similarities between these approaches �15�.
Similar methods have also been developed in ion trap imple-
mentations of quantum computing �16�.

Henceforth we only consider a particularly simple group
of composite gates, based on the composite pulses originally
developed for conventional NMR experiments. These pulses
differ from the more general approaches mentioned above in
two significant ways. First they provide a simple analytic set
of solutions, which allow simple rotations to be converted
directly into composite rotations, rather than a recipe for
finding a numeric solution for a particular problem. Second,
the implementation of these composite gates is particularly

simple. For example, in NMR systems they only require con-
trol of the phase and duration of a small number of rf pulses
at a single fixed frequency and power, while strongly modu-
lated composite pulses also require the frequency and power
to be varied. For this reason, these pulses are easy to imple-
ment experimentally.

Single qubit gates developed using this approach have
been demonstrated experimentally in a range of systems, in-
cluding NMR �9,10�, electron spin resonance �ESR� �17,18�,
and the quantronium superconducting quantum interference
device �19�, but there has not yet been much study of their
use in an extended quantum algorithm. A related family of
robust two qubit gates has also been described �20,21�, but
these particular gates have not so far been studied experi-
mentally. Here we described the application of single and
two qubit logic gates based on the BB1, NB1, and PB1 fami-
lies of composite pulses to an implementation of approxi-
mate quantum counting using NMR studies of a hetero-
nuclear spin system.

II. BB1, NB1, AND PB1 FAMILIES

Composite pulses are designed to perform quantum op-
erations in the presence of systematic errors. Note that it is
not necessary to know the size of the error involved, but it is
necessary to know its general form. They have been exten-
sively developed in conventional NMR studies �7�, princi-
pally to correct pulse length errors, that is errors in the
strength of the field used to induce a rotation, and off-
resonance errors, that is imperfections arising when an os-
cillating field is not quite in resonance with the transition it is
supposed to drive. Most of these composite pulses are not
suitable for use in quantum information processing, but a
small group of them, sometimes called fully compensating
pulses, are well suited. These pulses work on any initial
state, and can in principle be used to replace naive gates
without any further modifications.

Perhaps the most useful family of fully compensating
pulses developed to date is the BB1 family of pulses which
are robust against pulse length errors. The ideal unitary trans-
formation for a �� pulse is*Electronic address: jonathan.jones@qubit.org
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U��,�� = exp�− i��Ix cos � + Iy sin ��� �1�

but in a real physical system the actual operation will not
have this perfect form. In the presence of pulse length errors
the real operation has the form

V��,�� = exp�− i�1 + f���Ix cos � + Iy sin ��� , �2�

where f is the fractional error in the pulse length or field
power. Defining the propagator fidelity as

F = �Tr�VU†��/Tr�UU†� �3�

gives the result

F = cos� f�

2
� � 1 −

f2�2

8
�4�

for a simple �� pulse. The BB1 family of robust pulses is
obtained by replacing the simple pulse �� by the composite
pulse sequence

��/2������+��2���+3�����+���/2��, �5�

where �=arccos�−� /4��. This composite pulse has a fidelity
of

F � 1 − f6 �32�4�2 + 14�2�4 − �6�
9216

�6�

showing that for small errors the BB1 pulse is far less error
prone than a simple pulse.

The NB1 family of pulses is obtained in a similar way; in
this case the simple pulse is replaced by

��/2������+��2���−�����+���/2�� �7�

which has the same structure as BB1, differing only in the
phases. This sequence is more error-prone than a simple ��

pulse, and so cannot be used to suppress errors. It does,
however, have the interesting property that when �f ��1 the
resulting composite pulse is a good approximation to the
identity operation. Thus is the case of very low pulse powers
�f �−1� an NB1 pulse “does nothing”: in effect, evolution
under weak fields is suppressed.

The PB1 family of pulses offers a compromise between
these two extremes. The simple pulse is replaced by

��/2���2���+���4���−���2���+����/2��, �8�

where ��=arccos�−� /8��. These pulses are both robust to
small errors and able to suppress weak fields, suggesting that
PB1 is the best general purpose family of pulses, although
the BB1 and NB1 families perform their respective tasks
more effectively.

Since these families were described, a range of similar
pulses have been discovered, most notably the arbitrary pre-
cision pulses of Brown and co-workers �22,23�. In their no-
tation BB1 is called B2 and PB1 is called P2; these are the
first members of a series of families of pulses with ever
greater error tolerance. These sequences swiftly become ex-
tremely long, and here we consider only the next two mem-
bers, B4 and P4. The B4 composite pulse takes the form

��/2�������+��2���+3�����+��4− 2��+�

��− 4���−��− 2���+������+��2���+3�����+��4��/2��,

�9�

where �=arccos�−� /24�� and the superscript 4 indicates
that the section enclosed by square brackets is repeated four
times. The central three pulses have negative rotation angles;
these can be partially canceled with surrounding pulses, and
the remaining rotations can be implemented as positive rota-
tions around axes with phase angles offset by �. The P4
composite pulse is similar, taking the form

��/2����2���+���4���−���2���+���
4�− 4���+���− 8���−��

��− 4���+����2���+���4���−���2���+���
4��/2��, �10�

where ��=arccos�−� /48��. Note that the forms for these
pulses originally published by Brown et al. �22� are slightly
incorrect �23�.

Under ideal conditions B4 and P4 perform slightly better
than their simpler counterparts, but the gain is slight and
more detailed simulations �24� indicate that these pulses are
highly sensitive to the presence of off-resonance and phase
errors. This is confirmed by our experience, described below,
that the performance of B4 and P4 is in practice quite poor.
Thus the original three families offer perhaps the best com-
bination of simplicity and effectiveness, and we concentrate
on them in most of what follows. It might seem that, as
previously suggested, PB1 is the best general purpose family
of pulses, but this turns out not to be the case.

III. QUANTUM COUNTING EXPERIMENT

Most studies of these particular robust quantum logic
gates to date have been either theoretical or have involved
only simple demonstrations of single logic gates. Although
these are of some interest, it is also important to investigate
more complex situations, such as quantum algorithms con-
taining large numbers of logic gates. Quantum counting pro-
vides an ideal testing ground as it permits large numbers of
logic gates to be implemented in a simple physical system.

Quantum counting is closely related to Grover’s quantum
search �25–27�. Consider a function f�x� which maps n-bit
strings to a single output bit, such that f�x�=0 or 1. In gen-
eral there are N=2n possible input values, with k values for
which f�x�=1. Grover’s quantum search allows one of these
k items to be located, while quantum counting �28,29� allows
the value of k to be estimated. The counting algorithm esti-
mates an eigenvalue of the Grover iterate G=HU0H−1Uf̄,
which forms the basis of the searching algorithm, where H is
the n-bit Hadamard transform, U0 maps �000¯0	 to
−�000¯0	 and leaves the remaining basis states alone, and
Uf̄ maps �x	 to �−1� f�x�+1�x	. For further details see Ref. �29�.

A quantum circuit which implements this algorithm on a
two qubit NMR quantum computer is shown in Fig. 1. As
usual, pairs of Hadamard gates have been replaced by NMR
pseudo-Hadamard gates and their inverse �29,30�. This cir-
cuit can be used to count the number of solutions to
f�x�=1 over a one-bit search space, but similar circuits exist
for larger search spaces.
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IV. SINGLE QUBIT GATES

To investigate the effects of systematic errors on single
qubit gates we implemented this circuit in an NMR experi-
ment using a solution of 13C labeled sodium formate in D2O
�31�. The formate anion HCO2

− provides an isolated two
spin system, comprising a 1H and a 13C nucleus, with a large
coupling between the nuclei. This coupling arises from the
scalar coupling interaction, and in a heteronuclear spin sys-
tem takes the weak-coupling form, usually written as �J2IzSz
in NMR product operator notation �5�. �This coupling is
sometimes said to have the Ising form, although this name
more properly refers to extended networks of such cou-
plings.� In a heteronuclear spin system the RF transmitters
can be place in perfect resonance with each qubit, and so
off-resonance effects can be essentially ignored. The major
remaining source of systematic error is pulse length errors
arising from inhomogeneity of the rf fields.

We begin by demonstrating the effect of using robust
quantum logic gates to implement a pseudo-Hadamard gate
�a 90y

° rotation� on the 1H qubit which begins in an equilib-
rium state. In addition to the pulse length errors which arise
naturally from inhomogeneity, additional errors can be
introduced by deliberately mis-setting the pulse length. The
effect of doing this is shown in Fig. 2. Each subfigure con-
tains a set of spectra corresponding to pulse length errors in
the range ±100%, while the six subfigures correspond to na-
ive pulses and the five families of composite pulses de-
scribed previously.

As expected the naive pulse gives a signal whose intensity
is a cosine function of the fractional error. The BB1 family is
much more robust to pulse length errors, while the NB1 fam-
ily is more sensitive to errors than the naive pulse, and gives
much smaller excitations than the naive pulse for errors close
to ±100%. The PB1 family shows the expected compromise
behavior, with a broad central maximum for small errors, and
broad minima around errors of ±100%. Note that the perfor-
mance is better for errors around −100%, which is the ex-
perimentally important case of very weak fields, than for the
theoretically equivalent but experimentally unimportant case
of errors close to +100%; this reflects the intrinsic inhomo-
geneity of the rf field. The performance of the B4 composite
pulse is broadly similar to that of the much simpler BB1
sequence, while the performance of P4 is clearly rather poor.

This shows that the robust logic gates can have the de-
sired effects when used to implement a single logic gate,
with BB1 and PB1 offering the best performance, but it is
also important to investigate how they work in more com-
plex situations. This was done by implementing the quantum
counting circuit with the results shown in Fig. 3. Only naive
and BB1 single qubit gates were used. The improvement
obtained by using BB1 single qubit gates is clear, with much
of the signal loss that would naively be ascribed to decoher-
ence clearly arising from pulse length errors. BB1 single
qubit gates are therefore used throughout the remainder of
this paper.

V. TWO QUBIT GATES

A very similar approach can also be used to tackle sys-
tematic errors in coupling gates, which provide the basic two
qubit gate for NMR quantum computation �30�. Evolution
under a scalar coupling can be thought of as a rotation about
the 2IzSz axis, and errors in the coupling constant J corre-
spond to errors in a rotation angle about this axis. Such er-

FIG. 1. A quantum circuit for implementing quantum counting
on a two qubit NMR quantum computer; the central sequence of
gates, surrounded by brackets, is applied r times. A similar circuit
can be constructed for a larger search space by replacing the �lower�
target bit by a register and replacing gates applied to the target by
multibit versions. Gates marked h implement the NMR pseudo-
Hadamard operation, while those marked h−1 implement the inverse
operation.

FIG. 2. The effects of pulse length errors on a single qubit
pseudo-Hadamard gate �a 90y

° rotation�. The figures show the effect
of applying this gate to a spin in the thermal equilibrium state,
which is equivalent to a pseudopure state �0	, followed by observa-
tion of the NMR spectrum, effectively measuring the off-diagonal
components of the single-spin density matrix. For further details see
the main text.

FIG. 3. An implementation of approximate quantum counting
with naive and BB1 single qubit gates. The use of BB1 single qubit
gates greatly reduces the apparent decoherence rate, indicating that
much of the signal loss actually arises from pulse length errors, and
that BB1 is effective in correcting for this in a complex sequence.
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rors can be overcome �20,21� by rotating about a sequence of
axes tilted from 2IzSz towards another axis, such as 2IzSx.
Defining

�� 
 exp�− i��2IzSz cos � + 2IzSx sin ��� �11�

allows the naive sequence �0 to be replaced by Eq. �5� as
before. The tilted evolutions can be achieved by sandwiching
free evolution under the coupling Hamiltonian between ��y
pulses applied to spin S. For the case that �=� /2 �which
forms the basis of the controlled-NOT gate� the final sequence
takes the form shown in Fig. 4.

The results of using these robust two qubit gates could be
investigated in much the same way as the single qubit gates
shown above, but it is more interesting to consider another
phenomenon, that is the ability of the NB1 and PB1 gates to
suppress evolution under small scalar couplings. This was
studied by implementing quantum counting on the more
complex spin system provided by alanine which is 13C la-
beled at position 2. Like the formate anion, this contains a
CH spin system, comprising the labeled 13C and the directly
bonded 1H nucleus, but unlike formate this spin system is
not completely isolated, as both nuclei have small couplings
to the 1H nuclei in the methyl group. This additional cou-
pling interaction could be removed by deuterating the methyl
group, or by applying decoupling fields, but here we seek to
suppress the coupling using robust logic gates.

We begin by studying evolution under the CH coupling,
and concentrate on evolution times of n /2J, where n is a
positive integer. This was done by applying a pseudo-
Hadamard gate to the 13C nucleus and then allowing the spin
system to evolve under a coupling gate �either naive or com-
posite� for an effective time n /2J. The results are shown in
Fig. 5. The naive gate appears to perform well for small
evolution times, as the evolution under the small J coupling
can be largely ignored: this coupling is clearly visible in the
spectra where each component of the doublet is split into a
1:3:3:1 multiplet, but all four components appear to have
very similar phases. For longer evolution times, however, the
detrimental effect of this additional coupling becomes clear,
as the components appear with quite different phases, indi-
cating significant evolution under the coupling.

In an attempt to overcome this we implemented NB1 cou-
pling gates, which should suppress evolution under this small
coupling. It is immediately obvious from Fig. 5 that this
approach does not work, as the multiplets are far more dis-
torted than those seen using the naive sequence. In retrospect

this is unsurprising: NB1 is designed to suppress a small
coupling on the assumption that this is the only coupling
present. If the small coupling occurs in addition to another
much larger coupling then there is no reason to believe that
NB1 will suppress it.

Examination of the results from BB1 and PB1 coupling
gates makes this point even more clearly. BB1 gives much
cleaner spectra than the naive coupling gate, with the results
of PB1 being similar but significantly poorer. Once again the
explanation is clear in retrospect: although we know that the
splittings visible in the spectrum arise from the combination
of a large coupling and a small coupling, the pulse sequence
is blind to this origin. The same pattern could in principle
arise from a mixture of different molecules with a range of
coupling constants. The BB1 robust gate is designed to give
very similar behavior over this range of coupling sizes, and
so all the different components of the multiplet appear in
phase. The action of PB1 is similar: the quality of the spectra
seen arises not from the ability of this sequence to suppress
small couplings, but from its ability to tolerate a range of
couplings. Over the range of couplings seen in this system
the behavior of PB1 and BB1 should be very similar, and the
relatively poor results observed from PB1 are probably a
consequence of the fact that the PB1 sequence take almost
twice as long as BB1, leading to increased problems from
decoherence.

VI. SIMPLIFYING SPIN SYSTEMS

The results above show that our original idea that NB1
based composite two qubit gates could be used to suppress
small couplings, in effect simplifying complex spin systems,
is incorrect. However, BB1 based two qubit gates do result in
the desired suppression, with PB1 sequences giving similar
but slightly poorer results, suggesting that it might be pos-
sible to use these to simplify spin systems instead.

Following this idea we attempted to implement quantum
counting in our labeled alanine spin system, using BB1 to
suppress the small couplings between the 13C qubit and the

FIG. 4. Pulse sequence for a BB1 robust coupling gate to
implement a controlled-NOT gate in a two spin �IS� system. Boxes
correspond to single qubit rotations with rotation angles of
�=arccos�−1/8��97.2° applied along the ±y axes as indicated;
time periods correspond to free evolution under the scalar coupling,
�J2IzSz, for multiples of the time t=1/4J. The naive coupling gate
corresponds to free evolution for a time 2t.

FIG. 5. Implementation of an coupling gate in the presence of
extraneous couplings. For details see the main text. The ten 13C
spectra in each subfigure correspond to increasing periods of evo-
lution under the coupling, and the desired pattern is a simple alter-
nation in signal intensity between +1 and −1; deviations in the
naive implementation arise from evolution under the extraneous
couplings to the methyl protons. It might be expected that evolution
under this small coupling would be effectively suppressed by the
NB1 sequence, but this performs very poorly, and the best results
are seen from the BB1 sequence.
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methyl protons while using the large coupling between the
13C and the directly bonded 1H qubit to implement logic
gates. These attempts were not successful �data not shown�,
and once again it is clear in retrospect why this idea will not
work. Although the small couplings between the 13C and the
methyl protons in the labeled alanine spin system can indeed
be suppressed by BB1, there are also small couplings be-
tween the 1H qubit and the methyl protons which will not be
suppressed. These homonuclear couplings could, of course,
be removed by frequency selective pulses, or by decoupling,
but either approach would act to directly simplify the spin
system, rendering the BB1 approach unnecessary.

VII. CONCLUSIONS

Our results confirm that simple composite pulses can in-
deed be used to suppress systematic errors on single qubit
gates used in implementations of complex quantum algo-
rithms. The BB1 approach is likely to prove the most useful,
while PB1 may find applications in some special areas. The
BB1 sequence can also be used to implement robust two
qubit gates, although in this case the extra time required for
the longer pulse sequence may cause difficulties. The more

complex B4 and P4 sequences, although theoretically supe-
rior, do not perform well in practice.

Two qubit gates based on NB1 and PB1 could in principle
be used to suppress the effects of small couplings, but this is
not effective when the small couplings occur in addition to
larger couplings which are used to implement gates. In this
case the small couplings can be treated as small errors in the
large coupling, and BB1 provides the best suppression of
their effects. It might appear that this approach could be used
to neglect small couplings in complex spin systems, effec-
tively simplifying the spin system through composite pulses,
but this approach will rarely if ever be effective, as corre-
sponding homonuclear couplings cannot be suppressed by
these simple composite pulse methods. More complex ap-
proaches, such as strongly modulated composite pulses,
could be more effective, but such pulses need to be designed
on a case by case basis.
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