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Alice is a charismatic quantum cryptographer who believes her parties are unmissable; Bob is a �relatively�
glamorous string theorist who believes he is an indispensable guest. To prevent possibly traumatic collisions of
self-perception and reality, their social code requires that decisions about invitation or acceptance be made via
a cryptographically secure variable-bias coin toss �VBCT�. This generates a shared random bit by the toss of
a coin whose bias is secretly chosen, within a stipulated range, by one of the parties; the other party learns only
the random bit. Thus one party can secretly influence the outcome, while both can save face by blaming any
negative decisions on bad luck. We describe here some cryptographic VBCT protocols whose security is
guaranteed by quantum theory and the impossibility of superluminal signaling, setting our results in the context
of a general discussion of secure two-party computation. We also briefly discuss other cryptographic applica-
tions of VBCT.
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I. INTRODUCTION

A. Background

The discoveries of quantum cryptography �1� and prov-
ably secure quantum key distribution �2–6� motivated a gen-
eral search for protocols which implement interesting cryp-
tographic tasks in a way that can be guaranteed secure by
quantum theory �for example, �7–17��, by the impossibility
of superluminal signaling �18–20�, or both. The full crypto-
graphic power of these physical principles is presently un-
known: ideally, one would like to generate either a provably
secure protocol or a no-go theorem for every interesting task.

There are at least three significant types of cryptographic
security which apply to protocols based on physics:

�1� Unconditional security, where the impossibility of
useful cheating �i.e., learning private information or influ-
encing the outcome of the protocol beyond what is permitted
by an honest input� is guaranteed by the laws of physics.

�2� Cheat-evident security, where at least one party can
usefully cheat, but the laws of physics guarantee that any
cheating will eventually be detected with certainty.

�3� Cheat-sensitive security �14–16�, where at least one
party can usefully cheat, but the laws of physics guarantee
that any such cheating will be detected with nonzero
probability.

In this paper, we focus mainly on unconditional security,
but also consider an interesting cheat-evident protocol.

We follow the standard convention that a protocol is se-
cure provided that it protects honest parties from cheats.
Thus, for the two-party protocols considered here, we do not
require that a protocol offers any protection if both parties
cheat. Instead, we simply guarantee to each party that if they
follow the protocol as prescribed, they will be protected. To
be more precise, the parties are guaranteed protection against

useful cheating. It is not necessary in mistrustful cryptogra-
phy to prevent every possible kind of deviation from a pro-
tocol. What is required is some form of guarantee that any
deviations which go undetected give no advantage to the
party who deviates: i.e., that the deviating party gains no
unauthorized information about the other party’s inputs and
no illegitimate influence over the protocol’s outcome. For
example, in a relativistic coin tossing protocol in which the
parties are supposed to independently supply random bits a
and b and the coin toss outcome is c=a � b, there is no way
to guarantee to A that B’s bit b was genuinely randomly
chosen �or vice versa�. However, this does not matter: as
long as at least one party is honest, the outcome c is random.
Thus, though an honest party has no guarantee that they will
detect all deviations from the protocol by the other party,
they do have a guarantee that, if the protocol produces a coin
toss outcome, it will be fair.

Most work on quantum cryptography to date has consid-
ered nonrelativistic protocols, in which the parties’ locations
are completely unconstrained and their communications may
effectively be assumed instantaneous. However, for at least
two important tasks, strong coin tossing and bit commitment,
we know that protocols which rely on the impossibility of
superluminal signaling are more powerful than their nonrel-
ativistic counterparts. Strong coin tossing—in which two
mistrustful parties want to create a shared random bit whose
randomness is guaranteed—is trivial to implement using
relativistic signaling constraints �see, e.g., Ref. �21��, but
cannot be securely implemented using nonrelativistic proto-
cols �8,22�. Nonrelativistic quantum bit commitment has also
been shown to be impossible �23–25�. On the other hand,
there exist relativistic protocols �18,19� which are �unlike
any nonrelativistic protocol� provably secure against classi-
cal attacks �19�, and also provably immune to Mayers-Lo-
Chau attacks �19�: it is conjectured that they are also secure
against general quantum attacks.

Relativistic protocols require each party to be able to send
and receive communications from at least two separated lo-
cations. The separation between an individual party’s com-
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munication devices must be considerably greater than the
separation between their device and the other party’s nearest
device. For instance, if Alice uses locations A1 and A2 and
Bob uses locations B1 and B2, the distance d�A1 ,A2� must be
considerably greater than d�A1 ,B1� and d�A2 ,B2�.

Using quantum communications and storing and manipu-
lating quantum states in order to implement a cryptographic
protocol is clearly an inconvenience: quantum technology
seems likely to be more costly and less robust than its clas-
sical counterpart for the foreseeable future. The constraints
imposed by relativistic protocols may also in some circum-
stances be a significant inconvenience. For example, if two
parties occupy small secure sites which are widely separated,
and trust nothing outside their secure sites, they cannot run a
relativistic protocol securely without relocating or extending
their sites. Of course, in both cases, the compensating advan-
tage is a guarantee of unconditional security which cannot be
obtained by other means. It is also worth stressing that rela-
tivistic protocols do not require either party to trust that the
other is located where they claim to be: each party can guar-
antee security by knowing their own locations and by record-
ing the times at which they send and receive signals. Nor
does relativistic cryptography necessarily require large-scale
separation: in principle, two parties could implement a rela-
tivistic protocol by placing two credit card sized secure de-
vices next to one another.

B. Secure computation

The main focus of this paper is to consider protocols for
the task of variable-bias coin tossing �VBCT� between two
parties. Roughly speaking—we give precise definitions
below—a secure VBCT protocol generates a shared random
bit as though by a biased coin, whose bias is secretly chosen
by one of the parties to take some value within a prescribed
range. This is the simplest case of the more general task of
carrying out a variable-bias n-faced die roll, in which one of
n possible outcomes is randomly generated as though by a
biased die, whose bias �i.e., list of outcome probabilities� is
secretly chosen by one of the parties to take some value
within a prescribed convex set. Variable-bias coin tossing
and die rolling are themselves special cases of secure two-
party computations. To understand their significance, it is
helpful to locate them within a general classification of se-
cure computation tasks.

A general secure classical computation involves N parties,
labeled by i in the range 1� i�N, who each have some input
xi and wish to compute some �possibly nondeterministic�
functions of their inputs, with the ith party receiving as out-
put f i�x1 , . . . ,xN�. We call this a classical computation be-
cause the inputs and outputs are classical, although we allow
such computations to be implemented by protocols which
involve the processing of quantum states. All of the compu-
tations we consider in this paper are classical in this sense
�although most of the protocols we discuss involve quantum
information processing�, so we will henceforth refer simply
to computations, with the term “classical” taken as under-
stood. A perfectly secure computation guarantees, for each i,
each subset J� �1, . . . ,N�, and each set of possible inputs xi

and �xj� j�J that if the parties J do indeed input �xj� j�J and
then collaborate, they can gain no more information about
the input xi than what is implied by �xj� j�J and
�f j�x1 , . . . ,xN�� j�J.

We restrict attention here to two types of two-party com-
putation: two-sided computations in which the outputs pre-
scribed for each party are identical, and one-sided computa-
tions in which one party gets no output. We use the term
single function computations to cover both of these types,
since, in both cases, only one function need be evaluated. We
can classify single function computations by the number of
inputs, by whether they are deterministic or random, and by
whether one or two parties receive the output.

We are interested in protocols whose unconditional secu-
rity is guaranteed by the laws of physics. In particular, as is
standard in these discussions, we do not allow any security
arguments based on technological or computational bounds:
each party allows for the possibility that the other may have
arbitrarily good technology and arbitrarily powerful quantum
computers. Nor do we allow any reliance on mutually trusted
third parties or devices. We also make the standard assump-
tions that Alice and Bob are the only participants in the
protocol—i.e., there is no interference by third parties—and
that they have noiseless communication channels.

The known results for secure computations are summa-
rized below.

1. Zero-input computations

Secure protocols for zero-input deterministic computa-
tions or zero-input random one-sided computations can be
trivially constructed, since the relevant computations can be
carried out by one or both parties separately. The most gen-
eral type of zero-input two-sided random secure computation
is a biased n-faced secure die roll. This can be implemented
with unconditional security by generalizing the well-known
relativistic protocol for a secure coin toss �see, e.g., Ref.
�21��.

2. One-input computations

Secure protocols for deterministic one-input computations
are trivial; the party making the input can always choose it to
generate any desired output on the other side and so might as
well compute the function on their own and send the output
directly to the other party.

The nondeterministic case is of interest. For one-sided
computations, where the output goes to the party that did not
make the input, the most general function is a one-sided
variable-bias n-faced die roll. The input simply defines a
probability distribution over the outputs. In essence, one
party chooses one from a collection of biased n-faced dice to
roll �the members of the collection are known to both par-
ties�. The output of the roll goes to one party only, who has
no other information about which die was chosen.

It is known that some computations of this type are im-
possible. A special case of these computations defines a ver-
sion of oblivious transfer �OT�, in which Alice inputs a bit,
Bob inputs nothing, Bob receives Alice’s bit with probability
half, and otherwise receives the outcome fail. Rudolph �26�
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has shown that no nonrelativistic quantum protocol can se-
curely implement this task, and his argument trivially gener-
alizes to the relativistic case.

We call the two-sided case of a nondeterministic one-
input function a variable-bias n-faced die roll. This—and
particularly the two-faced case, a variable-bias coin toss—is
the subject of the present paper. We will give a protocol that
implements the task with unconditional security for a limited
range of biases, another which implements any range of bi-
ases but achieves only cheat-evident security, and two further
protocols that allow any range of biases and which we con-
jecture are unconditionally secure.

3. Two-input computations

Lo �12� considered the task of finding a secure nonrela-
tivistic quantum protocol for a two-input, deterministic, one-
sided function. He showed that if the protocol allows Alice to
input i, Bob to input j, and Bob to receive f�i , j�, while
giving Alice no information on j, then Bob can also obtain
f�i , j�� for all j�. For any cryptographically nontrivial com-
putation, there must be at least one i for which knowing
f�i , j�� for all j� gives Bob more information than knowing
f�i , j� for just one value of j. As this violates the definition of
security for a secure classical computation, it is impossible to
implement any cryptographically nontrivial computation se-
curely. Lo’s proof as stated applies to nonrelativistic proto-
cols and extends trivially to relativistic protocols. We hence
conclude that all secure two-input deterministic one-sided
cryptographically nontrivial computations are impossible.

Lo also noted that some secure two-input deterministic,
two-sided nonrelativistic quantum computations are impos-
sible, because they imply the ability to do nontrivial secure
two-input, deterministic one-sided computations. This argu-
ment also extends trivially to relativistic protocols.

As far as we are aware, neither existence nor no-go results
are presently known for secure two-input nondeterministic
computations.

Table I summarizes these results.

II. VARIABLE-BIAS COIN TOSSING

A. Introduction

We now specialize to the task of VBCT, the simplest case
of a one-input, random, two-sided computation. We seek pro-
tocols whose security is guaranteed based on the laws of
physics. We distinguish relativistic protocols, which rely on
the impossibility of superluminal signaling, from nonrelativ-
istic protocols, which do not. We also distinguish quantum
protocols, which require quantum information to be gener-
ated and exchanged, from classical protocols, which can be
implemented using classical information alone.

The aim of a VBCT protocol is to provide two mistrustful
parties with the outcome of a biased coin toss. We label the
possible outcomes by 0 and 1 and define the bias to be the
probability p0 of outcome 0. The protocol should allow one
party, by convention Bob, to fix the bias to take any value
within a pre-agreed range, pmin� p0� pmax. Roughly
speaking—modulo epsilonics and technicalities which we
discuss below—the protocol should guarantee to both parties
that the biased coin toss outcome is genuinely random, in the
sense that Bob’s only way of influencing the outcome prob-
abilities is through choosing the bias, while Alice has no way
of influencing the outcome probabilities at all. It should also
guarantee to Bob that Alice can obtain no information about
his bias choice beyond what she can infer from the coin toss
outcome alone.

To illustrate the uses of VBCT, consider a situation in
which Bob may or may not wish to accept Alice’s invitation
to a party, in a future world in which social protocol decrees
that his decision1 is determined by a variable-bias coin toss
in which he chooses the bias within a prescribed range, let us
say pmin= 1

11 � p0� pmax= 10
11. Alice, who is both self-

confident and a Bayesian, believes prior to the coin toss that
the probability of Bob not wishing to accept is 10−n, for some

1Naturally, a similar protocol, in which Alice chooses the bias,
governs the decision about whether or not an invitation is issued.

TABLE I. Functions computable securely in two-party computations using �potentially� both quantum and
relativistic protocols. � indicates that all functions of this type are possible, � indicates that all functions of
this type are impossible, �* indicates that the conjectures made later in this paper imply that all functions of
this type are possible, ��� indicates that some functions of this type are impossible, and ? indicates no known
result.

Type of Computation Securely implementable Comment

Zero-input Deterministic � Trivial

Random one-sided � Trivial

Random two-sided � Biased n-faced die roll

One-input Deterministic � Trivial

Random one-sided ��� One-sided variable-bias n-faced die roll

Random two-sided �* Variable-bias n-faced die roll

Two-input Deterministic one-sided � cf. Lo

Deterministic two-sided ��� cf. Lo

Random one-sided ?

Random two-sided ?
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fairly large value of n. If Bob does indeed wish to accept, he
can choose p0= 10

11 , ensuring a high probability of acceptance.
If he does not, he can choose p0= 1

11, ensuring a low prob-
ability of acceptance. If the invitation is declined, this social
protocol allows both parties to express regret, ascribing the
outcome to bad luck rather than to Bob’s wishes. Alice’s
posterior probability estimate of Bob’s not wishing to attend
is approximately 10−n+1, i.e., still close to zero.

For another illustration of the uses of VBCT, suppose that
Bob has a large secret binary data set of size N. For example,
this might be a binary encoding of a high resolution satellite
image. He is willing to sell Alice a noisy image of the data
set with a specified level of random noise. Alice is willing to
purchase if there is some way of guaranteeing, at least to
within tolerable bounds, that the noise is at the specified
level and that it was genuinely randomly generated. In par-
ticular, she would like some guarantee that constrains Bob so
that he cannot selectively choose the noise so as to obscure a
significantly sized component of the data set which he �but
not necessarily she� knows to be especially interesting. Let
us suppose also that the full data set will eventually become
public, so that Alice will be able to check the noisy image
against it, and that she will be able to enforce suitably large
penalties against Bob if the noisy and true versions turn out
not to be appropriately related. They may proceed by agree-
ing parameters pmin and pmax=1− pmin, and then running a
variable-bias coin toss for each bit in the image, with Bob
choosing p0= pmin if the bit is 1 and p0= pmax if the bit is 0.
Following this protocol honestly provides Alice with the re-
quired randomly generated noisy image. On the other hand,
if Bob deviates significantly from these choices for more
than O��N� of the bits, Alice will almost certainly be able to
unmask his cheating once she acquires the full data set.

B. Definitions

A VBCT protocol is defined by a prescribed series of
classical or quantum communications between two parties,
Alice and Bob. If the protocol is relativistic, it may also
require that the parties each occupy two or more appropri-
ately located sites and may stipulate which sites each
communication should be made from and to. The protocol’s
definition includes bias parameters pmin and pmax, with
pmin� pmax, and may also include one or more security pa-
rameters N1 , . . . ,Nr. It accepts a one bit input from one party,
Bob, and must result in both parties receiving the same out-
put, one of the three possibilities 0, 1 or “abort”. The output
“abort” can arise only if at least one of the parties refuses to
complete the protocol honestly.

We follow the convention that Bob can fix p to be pmin or
pmax by choosing inputs 1 or 0 respectively �so that an input
of bit value b maximizes the probability of output b�. He can
thus fix p anywhere in the range pmin� p� pmax by choosing
the input randomly with an appropriate weighting. Since any
VBCT protocol gives Bob this freedom, we do not require a
perfectly secure protocol to exclude other strategies which
have the same result: i.e., a perfectly secure protocol may
allow any strategy of Bob’s which causes p0 to lie in the
given range, so long as no other security condition is

violated.2 This motivates the following security definitions.
We say the protocol is secure if the following conditions

hold when at least one party honestly follows the protocol.
Let p0 be the probability of the output being 0, and p1 be the
probability of the output being 1. Then, regardless of the
strategy that a dishonest party may follow during the proto-
col, we have p0� p+��N1 , . . . ,Nr� and p1� �1− p�
+��N1 , . . . ,Nr�, where pmin� p� pmax and the protocol al-
lows Bob to determine p to take any value in this range.
Alice has probability less than ��N1 , . . . ,Nr� of obtaining
more than I+��N1 , . . . ,Nr� bits of information about the
value of p determined by Bob’s input, where I is the infor-
mation implied by the coin toss outcome. In addition, if Bob
honestly follows the protocol and legitimately aborts before
the coin toss outcome is known,3 then Alice has probability
less than ��N1 , . . . ,Nr� of obtaining more than ��N1 , . . . ,Nr�
bits of information about Bob’s input.

�We should comment here on a technical detail that will
be relevant to some of the protocols we later consider. It
turns out, in some of our protocols, to be possible and useful
for Bob to make supplementary security tests even after both
parties have received information which would determine the
coin toss outcome. The protocols are secure whether or not
these supplementary tests are made, in the sense that the
security criteria hold as the security parameters tend to infin-
ity. However, the supplementary tests increase the level of
security for any fixed finite value of the security parameters.

We need slightly modified definitions to cover this case,
since the output of the protocol is defined to be “abort” if
Bob aborts after carrying out supplementary security tests. If
Bob honestly follows a protocol with supplementary tests,
and legitimately aborts after the coin toss outcome is deter-
mined, then we require that Alice should have probability
less than ��N1 , . . . ,Nr� of obtaining more than ��N1 , . . . ,Nr�
extra bits of information—i.e., beyond what is implied by the
coin toss outcome—about Bob’s input.

Note that introducing supplementary security tests may
allow Alice to follow the protocol honestly until she obtains
the coin toss outcome, and then deliberately fail the supple-
mentary tests in order to cause the protocol to abort. How-
ever, this gives her no useful extra scope for cheating. In any
type of VBCT protocol, she can always follow the protocol
honestly and then refuse to abide by the outcome: for ex-
ample, she can decide not to invite Bob to her party, even if
the variable-bias coin toss suggests that she should. This un-
avoidable possibility has the same effect as her causing the
protocol to abort after the coin toss outcome is determined.�

In all the above cases, we require ��N1 , . . . ,Nr�→0,
��N1 , . . . ,Nr�→0 and ��N1 , . . . ,Nr�→0 as the Ni→�. We
say the protocol is perfectly secure for some fixed values
N1 , . . . ,Nr if the above conditions hold with ��N1 , . . . ,Nr�
=��N1 , . . . ,Nr�=��N1 , . . . ,Nr�=0.

Suppose now that one party is honest and the other party
fixes their strategy �which may be probabilistic and may de-

2Similar statements hold, with appropriate epsilonics, for secure
protocols �see below�.

3We take this to be the point at which both parties have enough
information �possibly distributed between their remote agents� to
determine the outcome.
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pend on data received during the protocol� before the proto-
col commences, and suppose that the probability of the pro-
tocol aborting, given this strategy, is less than ��. Since the
only possible outcomes are 0, 1 and “abort”, it follows from
the above conditions that, if Bob inputs 1, we have pmin
−��N1 , . . . ,Nr�−��� p0� pmin+��N1 , . . . ,Nr� and �1− pmin�
−��N1 , . . . ,Nr�−��� p1� �1− pmin�+��N1 , . . . ,Nr�. Similarly,
if Bob inputs 0, we have pmax−��N1 , . . . ,Nr�−��� p0

� pmax+��N1 , . . . ,Nr� and �1− pmax�−��N1 , . . . ,Nr�−��� p1

� �1− pmax�+��N1 , . . . ,Nr�. In other words, unless a dishon-
est party is willing to accept a significant risk of the protocol
aborting, they cannot cause the outcome probabilities for 0
or 1 to be significantly outside the allowed range. Moreover,
no aborting strategy can increase the probability of 0 or 1
beyond the allowed maximum.

For an unconditionally secure VBCT protocol, the above
conditions hold assuming only that the laws of physics are
correct. In a cheat-evidently secure protocol, if any of the
above conditions fail, then the non-cheating party is guaran-
teed to detect this, again assuming only the validity of the
laws of physics.

III. SOME CRYPTOGRAPHIC BACKGROUND

The VBCT protocols we discuss below require both par-
ties to set up separated sites from which they can send and
receive communications, and rely on the impossibility of
sending signals faster than light between these sites. Most of
them also require quantum information to be transmitted and
manipulated. In other words, the protocols are �in most
cases� both quantum and relativistic.

Some of the protocols we consider use bit commitment as
a subprotocol. Specifically, they use the relativistic bit com-
mitment protocol RBC2 described in Ref. �19�. This protocol
has been proven secure against all classical attacks. It has
also been proven immune to the Mayers-Lo-Chau attack
which renders nonrelativistic quantum bit commitment pro-
tocols insecure �19�. It is conjectured to be secure against
general quantum attacks.

For completeness, we include here brief reviews of the
simplest scenario for relativistic cryptography and of the no-
tion of bit commitment, as previously set out in Ref. �19�.

A. Review of relativistic cryptography

We assume that physics takes place in flat Minkowski
space-time, with the Minkowski causal structure. This is not
exactly correct, of course—general relativity and experiment
tell us that space-time is curved—but it is true to a good
enough approximation for any protocol implemented on or
near Earth. In principle, our protocol’s timing constraints
should take into account the error in the approximation.
Other than this, the known corrections to the local causal
structure arising from general relativity do not affect our se-
curity analyses.

Like all physics-based cryptographic protocols, the secu-
rity of the relativistic protocols we consider ultimately relies
on the �approximate� validity of the underlying physical
model. In principle, they would be vulnerable to a malicious

adversary with the power to distort space-time significantly
�yet surreptitiously!� in the region of the protocol. For ex-
ample, a protocol using separated sites in London and Syd-
ney would be vulnerable if one party reconfigured the
local space-time geometry so that the two cities became geo-
desically separated by, say, �10−3 light sec instead of
�4�10−2 light sec. For obvious reasons, we do not take this
possibility—or other scenarios involving exotic and specula-
tive general relativistic phenomena �18�—seriously at
present.

We use units in which the speed of light is unity and
choose inertial coordinates, so that the minimum possible
time for a light signal to go from one point in space to
another is equal to their spatial separation. We consider a
cryptographic scenario in which coordinates are agreed by
Alice and Bob, who also agree on two points4 x�1 and x�2.
Alice and Bob are required to erect laboratories, including
sending and receiving stations, within an agreed distance �
of the points, where D= 	x�1−x�2	��. These laboratories need
not be restricted in size or shape, except that they must not
overlap.

We refer to the laboratories in the vicinity of xi as Ai and
Bi, for i=1 or 2. To avoid unnecessarily proliferating nota-
tion, we use the same labels for the agents �sentient or oth-
erwise� assumed to be occupying these laboratories. The
agents A1 and A2 may be separate individuals or devices, but
we assume that they are collaborating with complete mutual
trust and with completely prearranged agreements on how to
proceed, to the extent that, for cryptanalytic purposes, we
can identify them together simply as a single entity, Alice
�A�; similarly B1 and B2 are identified as Bob �B�.

Note that, in many situations where any sort of cryptog-
raphy �not necessarily quantum or relativistic� is employed,
this sort of identification is in any case natural and indeed
necessary. Governments, companies and other organizations
are represented by many agents at distributed locations.
When two such organizations, A and B, exchange data via a
cryptographic protocol, each organization typically has to as-
sume that several of its own agents are trustworthy. The aim
of the protocol is then to ensure that, provided this assump-
tion is correct, neither organization obtains unauthorized in-
formation from the other.

It is perhaps also worth stressing that requiring A and B to
trust their own agents or devices is entirely different from
introducing a third party trusted by both A and B. While the
first assumption �which we make� is natural and often nec-
essary, the second �which, to reiterate, we do not allow�
would be illegitimate in the context of the present discussion.
�Many mistrustful cryptographic tasks, including all those
we consider here, can be trivially implemented if A and B
can both rely on the same trusted third party.�

As usual in defining a cryptographic scenario for a proto-
col between mistrustful parties, we suppose Alice and Bob
each trust absolutely the security and integrity of their own
laboratories, in the sense that they are confident that all their

4This discussion generalizes in an obvious way to cover protocols,
such as the protocol VBCT1 considered below, which require Alice
and Bob to control three or more separate sites.
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sending, receiving and analyzing devices function properly
and also that nothing within their laboratories can be ob-
served by outsiders. They also have confidence in the loca-
tions of their own laboratories in the agreed coordinate sys-
tem, and in clocks set up within their laboratories. However,
neither of them trusts any third party or channel or device
outside their own laboratory.

To ensure in advance that their clocks are synchronized
and that their communication channels transmit at suffi-
ciently near light speed, the parties may check that test sig-
nals sent out from each of Bob’s laboratories receive a re-
sponse within time 4� from Alice’s neighboring laboratory,
and vice versa. However, the parties need not disclose the
precise locations of their laboratories in order to implement
the protocol. Nor need Alice or Bob take it on trust that the
other has set up laboratories in the stipulated regions. �A
protocol which required such trust would, of course, be fa-
tally flawed.� Each party can verify that the other is not sig-
nificantly deviating from the protocol by checking the times
at which signals from the other party arrive. These arrival
times, together with the times of their own transmissions, can
be used to guarantee that particular specified pairs of signals,
going from Alice to Bob and from Bob to Alice, were gen-
erated independently. This guarantee is all that is required for
security.

Given a laboratory configuration as above, one can set out
precise timing constraints for all communications in a proto-
col in order to ensure the independence of all pairs of signals
which are required to be generated independently. We may
use the time coordinate in the agreed frame to order the
signals in the protocol. �Without such a convention there
would be some ambiguity, since the time ordering is frame
dependent.�

We also assume that A1 and A2 either have, or can se-
curely generate, an indefinite string of random bits. This
string is independently generated and identically distributed,
with probability distribution defined by the protocol, and is
denoted x
�xi�. Similarly, B1 and B2 share a random string
y
�yi�. These random strings will be used to make all ran-
dom choices as required by the protocol: as A1 and A2, for
instance, both possess the same string x, they know the out-
come of any random choices made during the protocol by the
other. We also assume the existence of secure authenticated
pairwise channels between the Ai and between the Bi. We do
not assume that these channels are necessarily unjammable:
we need only stipulate that, if an honest party fails to receive
the signals as required during any of the protocols we dis-
cuss, they abort the protocol.

B. Brief review of bit commitment

Roughly speaking—precise definitions can be found in,
for example, Ref. �19�—bit commitment is the cryptographic
version of a safe and key. In the commitment phase of a bit
commitment protocol, Alice supplies Bob with data that
commit her to the value of a bit, without allowing Bob to
infer that value. This corresponds to locking the bit in the
safe and handing it to Bob. In the unveiling phase, which
takes place some time after commitment, if and when Alice

wishes, she supplies Bob with further data �the key in our
analogy� in order to reveal the value of the bit to which she
committed.

Recently, it was shown �19� that there exist relativistic bit
commitment protocols which are provably unconditionally
secure against classical attack, in the sense that the laws of
classical physics �including special relativity� imply that nei-
ther party can cheat, regardless of the technology or comput-
ing power available to them. Mayers, Lo and Chau had ear-
lier shown �23,24� that nonrelativistic quantum bit
commitment protocols are necessarily insecure, by construct-
ing an explicit attack that allows the committer to cheat
against any protocol which is secure against the receiver.
However, it was shown in Ref. �19� that the relativistic bit
commitment protocols described there are immune to
Mayers-Lo-Chau type attacks. It is conjectured that they are
in fact unconditionally secure, i.e., that they are immune to
general quantum attacks.

IV. VBCT PROTOCOLS

A. Protocol VBCT1

We consider first a simple relativistic quantum protocol,
which implements VBCT with unconditional security, for a
limited range of biases. The protocol requires each party to
have agents located at three appropriately separated sites.

�1� B1, B2 and B3 agree on a random number n chosen
from a Poisson distribution with large mean �or other suit-
able distribution�.

�2� A1 sends a sequence of qubits �		i�� to B1, where each
		i�� �	
0� , 	
1�� is chosen independently with probability
half each, using the random string x. The states 	
0� and 	
1�
are agreed between Alice and Bob prior to the protocol, and
the qubits are sent at regular intervals according to a previ-
ously agreed schedule, so that all the agents involved can
coordinate their transmissions.

�3� B1 receives each qubit and stores it.
�4� A2 tells B2 the sequence of states �		i�� sent, choosing

the timings so that A1’s quantum communication of the qubit
		i� is spacelike separated from A2’s classical communica-
tion of its identity. B2 relays these communications to B1.

�5� On receipt, B1 measures his stored states to check that
they are correctly described by A2. If any error occurs, he
aborts.

�6� B3 announces to A3 that the nth state will be used for
the coin toss. This announcement is made at a point space-
like separated from the nth rounds of communication be-
tween A1 and B1 and A2 and B2. A3 reports the value of n to
A1 and A2.

�7� B1 performs the measurement on 		n� that optimally
distinguishes 	
0� from 	
1�, and then reveals to A1 that this
is the state that will be used, along with a bit b. If his mea-
surement is indicative of the state being 	
b��, then Bob
should select b=b� if he wants outcome 0, or else select

b= b̄�. Let Alice’s random choice for the nth state be 	
a�:
recall that A2 reported the value of a to B2 in step �4�.

�8� Some time later, A1 receives from A3 the value of n
sent by B3, confirming that B1 was committed to guess the
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nth state, and B1 receives from B2 the value of a sent by A2.
The outcome of the coin toss is c=a � b.

It will be seen that this protocol is a variant of the familiar
relativistic protocol for ordinary coin tossing. As in that pro-
tocol, Alice and Bob simultaneously exchange random bits.
However, Alice’s bit is here encoded in nonorthogonal qu-
bits, which means that Bob can obtain some information
about its value. Bob uses this information to affect the bias of
the coin toss.

We use the bit w to represent Bob’s wishes, with w=0
representing Bob trying to produce the outcome 0 by guess-
ing correctly, and w=1 representing him trying to produce
the outcome 1 by guessing wrongly. Security requires that

p�w	a,b,c� � p�w	c� . �1�

Perfect security requires equality in the above equation.

1. Bob’s strategy

The choice of n need not be fixed by Bob at the start of
the protocol: for example, it could be decided during the
protocol by using an entangled state shared by the Bi. How-
ever, we may assume B3 sends a classical choice of n to A3
�A3 will measure any quantum state he sends immediately in
the computational basis, and hence we may assume, for the
purposes of security analysis, that B3 carries out this mea-
surement�. B3’s announcement of n is causally disconnected
from the sending of the nth state to B1 and of its identity to
B2. Therefore, no matter how it is selected, it does not de-
pend on the value of the nth state. While it could be gener-
ated in such a way as to depend on some information about
the sequence of states previously received, these states are
uncorrelated with the nth state if Alice follows the protocol.
Such a strategy thus confers no advantage, and we may as-
sume, for the purposes of security analysis, that the choice of
n is generated by an algorithm independent of the previous
sequence of states. We may also assume that n is generated
in such a way that B1 and B2 can obtain the value of n
announced by B3 with certainty: if not, their task is only
made harder. In summary, for the purposes of security analy-
sis, we may assume that B3 announces a classical value of n,
preagreed with B1 and B2 at the beginning of the protocol.

B1 is then committed to making a guess of the value of the
nth state: if he fails to do so, then Alice knows Bob has
cheated. B1’s best strategy is thus to perform some measure-
ment on the nth state and use the outcome to make his guess.
We define 	
0�=cos �� /2�	0�+sin �� /2�	1� and 	
1�
=cos �� /2�	0�−sin �� /2�	1�, where 0���� /2. Let the pro-
jections defining the optimal measurement be P0 and P1. We
say that the outcome corresponding to P0 is “outcome 0”,
and similarly for the outcome corresponding to P1. Without
loss of generality, we can take outcome 0 to correspond to
the most likely state Alice sent being 	
0� and similarly out-
come 1 to correspond to 	
1�. Bob’s probability of guessing
correctly is then given by

pB =
1

2
��
0	P0	
0� + �
1	P1	
1�� . �2�

This is maximized for P0 and P1 corresponding to measure-
ments in the 	� basis, where 	± �= 1

�2
�	0�± 	1��. The maxi-

mum value is

pB
max =

1

2
�1 + sin �� . �3�

It is easy to see that the security criterion �1� is always
satisfied. The minimum probability of Bob guessing cor-
rectly is always 1− pB

max, which he can attain by following the

same strategy but associating outcome b� with a guess of b̄�.
The possible range of biases are those between pmin= 1

2 �1
+sin �� and pmax= 1

2 �1−sin ��. The protocol thus implements
VBCT for all values of pmin and pmax with pmin+ pmax=1 �and
no others�.

2. Security against Alice

Security against Alice is ensured by the fact that B1 tests
A2’s statements about the identity of the states sent to B1.

We seek to show that if Alice attempts to alter the prob-
ability of B1 measuring 0 or 1 with his measurement in step
�7�, then in the limit of large n, either the probability of her
being detected tends to 1, or her probability of successfully
altering the probability tends to zero. Note that it may be
useful for Alice to alter the probabilities in either direction: if
she increases the probability that B1 guesses correctly, she
learns more information about Bob’s bias than she should; if
she decreases it, she limits Bob’s ability to affect the bias.

We need to show that if, on the ith round, B1 receives
state �i, for which the probability of outcome 0 differs from
those dictated by the protocol, then the probability of B1 not
detecting Alice cheating on this state is strictly less than 1.

B1’s projections are onto �	��, 	��� for the nth state. Al-
ice’s cheating strategy must ensure that for some subset of
the states she sends to B1, there is a different probability of
his measurement giving outcome 0. Suppose that �i satisfies

�+ 	�i	 + � = pmax + �1 �4�

=pmin + �2, �5�

where �1 ,�2�0. Then, if B1 was to instead test Alice’s hon-
esty, the state which maximizes the probability of Alice pass-
ing the test, among those satisfying �4�, is

�pmax + �1�1/2	 + � + �1 − pmax − �1�1/2	− � , �6�

and she should declare this state to be whichever of 		0� or
		1� maximizes the probability of passing Bob’s test. We
have

��pmax�pmax + �1��1/2 + ��1 − pmax��1 − pmax − �1��1/2�2

� 1 − �1
2, �7�

and a similar equation with pmin replacing pmax and �2 replac-
ing �1. Hence the probability of passing Bob’s test is at most
1−�2, where �=min�	�1	 , 	�2	�. In order to affect B1’s mea-
surement probabilities with significant chance of success,
there must be a significant fraction of states satisfying �4�. If
a fraction � of states satisfy �4� with min�	�1	 , 	�2	��� for
some fixed ��0, then this cheating strategy succeeds with
probability at most ��1−�2��n. Hence, for any �, �, the prob-
ability of this technique being successful for Alice can be
made arbitrarily close to 0 if Bob chooses the mean of the
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Poisson distribution used in step �1� �and hence the expected
value of n� to be sufficiently large.

Note that, as this argument applies state by state to the �i,
it covers every possible strategy of Alice’s: in particular, the
argument holds whether or not the sequence of qubits she
sends is entangled.

We hence conclude that the protocol is asymptotically se-
cure against Alice.

B. Protocol VBCT2

We now present a relativistic quantum VBCT protocol
which allows any range of biases, but achieves only cheat-
evident security rather than unconditional security.

�1� B1 creates N states, each being either 	
0�=�0	00�
+�0	11� or 	
1�=�1	00�+�1	11�, with ��0 ,�1 ,�0 ,�1��R+,
�0

2��1
2, and �i

2+�i
2=1. The states are chosen with probabil-

ity half each. In the unlikely event that all the states are the
same, B1 rejects this batch and starts again. B1 uses the
shared random string y to make his random choices, so that
B1 and B2 both know the identity of the ith state. B1 sends
the second qubit of each state to A1. The values of �0, �0, �1
and �1 are known to both Alice and Bob. We define the bias
of the state 	
i� to be �i

2, and write pmin=�1
2 and pmax=�0

2.
�2� Alice decides whether to test Bob’s honesty �z=1�, or

to trust him �z=0�. She selects z=0 with probability 2−M. A1

and A2 simultaneously inform B1 and B2 of z, A2’s commu-
nication being spacelike separated from the creation of the
states by B1 in step �1�.

�3� �a� If z=1, B1 sends all of his qubits and their identi-
ties to A1, while B2 sends the identities to A2. A1 can
then verify that they are as claimed and if so, the
protocol returns to step �1�. If not, she aborts the
protocol.
�b� If z=0, B1 randomly chooses a state to use for the
coin toss from among those with the bias he wants. B2
simultaneously informs A2 of B1’s choice.

�4� A1 and B1 measure their halves of the chosen state in
the �	0�, 	1�� basis, and this defines the outcome of the coin
toss.

��5� As an optional supplementary post coin toss security
test, B1 may ask A1 to send all her remaining qubits back to
him, except for her half of the state selected for the coin toss.
He can then perform projective measurements on these states
to check that they correspond to those originally sent.�

An intuitive argument for security of this protocol is as
follows. On the one hand, as M→�, the protocol is secure
against Bob since, in this limit, he always has to convince
Alice that he supplied the right states which he can only do if
he has been honest. But also, in the limit N→�, we expect
the protocol to be secure against Alice, since, in this limit,
she cannot gain any more information about the bias Bob
selected than can be gained by performing the honest mea-
surement.

The protocol can only provide cheat-evident security
rather than unconditional security, since there are useful
cheating strategies open to Alice, albeit ones which
will certainly be detected. One such strategy is for A1 to
claim that z=0 on some state, while A2 claims that z=1. This

allows Alice to determine Bob’s desired bias, since B1 will
tell A1 the state to use, and B2 will tell A2 its identity. How-
ever, this cheating attack will be exposed once B1 and B2
communicate.

�Technically, Alice has another possible attack: she can
follow the protocol honestly until she learns the outcome,
and then intentionally try to fail Bob’s tests in step �5� by
altering her halves of the remaining states in some way. By
so doing, she can cause the protocol to abort after the coin
toss outcome is determined. However, as discussed in Sec. II,
this gives her no advantage.�

1. Security against Alice

Assume Bob does not deviate from the protocol. A2 must
announce the value of z without any information about the
current batch of states sent to A1 by B1. Alice, therefore,
cannot affect the bias: once a given batch is accepted, she
cannot affect B1’s measurement probabilities on any state he
chooses for the coin toss. While Alice’s choices of z need not
be classical bits determined before the protocol and shared
by the Ai, we may assume, for the purposes of security analy-
sis, that they are, by the same argument used in analyzing
Bob’s choice of n in VBCT1.

Once Bob has announced the state he wishes to use for
the coin toss, though, Alice can perform any measurement on
the states in her possession in order to gain information
about Bob’s chosen bias. It would be sufficient to show that
any such attack that provides significant information is al-
most certain to be detected by Bob’s tests in step �3��b�; if so,
the existence of such attacks would not compromise the
cheat-evident security of the protocol. In fact, a stronger re-
sult holds: Alice cannot gain significant information by such
attacks. From her perspective, if Bob selects a 	
0� state for
the coin toss, the �un-normalized� mixed state of the remain-
ing �N−1� qubits is

�̃0 
 
m=0

N−2


i1,. . .,iN−1��0,1�

j=1
N−1ij=�N−1−m�

�i1
� �i2

� ¯ �iN−1
, �8�

while if Bob selects a 	
1� state for the coin toss, the �un-
normalized� mixed state of the remaining �N−1� qubits is

�̃1 
 
m=1

N−1


i1,. . .,iN−1��0,1�

j=1
N−1ij=�N−1−m�

�i1
� �i2

� ¯ �iN−1
, �9�

where

�i = trB�	
i��
i	� for i = 0,1.

We will use �0 and �1 to denote the normalized versions of
�̃0 and �̃1, respectively.

We have

D��0 � �0,�1 � �1� � D��0 � �0,�1 � �0�

+ D��1 � �0,�1 � �1� , �10�

where D�� ,��= 1
2 tr	�−�	 is the trace distance between � and
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�. As N→�, we have D��0 ,�1�→0 and so D��0 � �0 ,�1

� �1�→D��0 ,�1�. Since the maximum probability of distin-
guishing two states is a function only of the trace distance
�27�, the maximum probability of distinguishing �0 � �0
from �1 � �1 tends, as N→�, to the maximum probability of
distinguishing �0 from �1. The measurement that attains this
maximum is that dictated by the protocol. We hence con-
clude that, in the limit of large N, the excess information
Alice can gain on Bob’s chosen bias by using any cheating
strategy tends to zero.

2. Security against Bob

We now consider Bob’s cheating possibilities, assuming
that Alice does not deviate from the protocol. To cheat, Bob
must achieve a bias outside the range permitted. Let us sup-
pose he wants to ensure that the outcome probability of 0
satisfies p0� pmax+�, for some ��0 �the case p1�1− pmin
+� can be treated similarly�, and let us suppose this can be
achieved with probability ���0.

For this to be the case, there must be some cheating strat-
egy �possibly including measurements� which, with probabil-
ity ��, allows B2 to identify a choice of i from the relevant
batch of N qubits such that the state �i of A1’s ith qubit then
satisfies

�0	�i	0� � pmax + � . �11�

If A1’s ith qubit does indeed have this property, and she
chooses to test Bob’s honesty on the relevant batch, the prob-
ability of the ith qubit passing the test is at most 1−�2. To
see this, note that if �11� holds, the probability of passing the
test is maximized if the ith state is

�pmax + ��1/2	00� + �1 − pmax − ��1/2	11� , �12�

and B1 declares that the ith state is 	
0�. The probability is
then

��pmax�pmax + ���1/2 + ��1 − pmax��1 − pmax − ���1/2�2 � 1 − �2.

�13�

However, the probability of A1’s measurement outcomes
is independent of B2’s actions. Hence this bound applies
whether or not B2 actually implements a cheating strategy on
the relevant batch. Thus there must be a probability of at
least ���2 of at least one member of the batch failing A1’s
tests. Hence, for any given � ,���0, the probability that one
of the �2M batches for which z=1 fails A1’s tests can be
made arbitrarily close to 1 by taking M sufficiently large.

C. Protocol VBCT3

The protocol VBCT2 can be improved by using bit com-
mitment subprotocols to keep Bob’s choice of state secret
until he is able to compare the values of z announced by
A1 and A2. This eliminates the cheat-evident attack discussed
in Sec. IV B, and defines a protocol which we con-
jecture is unconditionally secure. We use the relativistic bit
commitment protocol RBC2 that is defined and reviewed in
Ref. �19�.

�1� B1 creates N states, each being either 	
0�=�0	00�
+�0	11� or 	
1�=�1	00�+�1	11�, with ��0 ,�1 ,�0 ,�1��R+,
and �i

2+�i
2=1. The states are chosen with probability half

each. B1 and B2 both know the identity of the ith state, since
B1 uses the shared random string y to make his random
choices. B1 sends the second qubit of each state to A1. The
values of �0, �0, �1 and �1 are known to both Alice and Bob.

�2� Alice decides whether to test Bob’s honesty, which
she codes by choosing the bit value z=1, or to trust him,
coded by z=0. She selects z=0 with probability 2−M. A1 and
A2 simultaneously inform B1 and B2 of the choice of z.

�3� B1 and B2 broadcast the value of z they received to
one another.

�4� If B1 received z=1 from A1, he sends the first qubit of
each state to A1, along with a classical bit identifying the
state as 	
0� or 	
1�. If B2 received z=1 from A2, he sends A2
a classical bit identifying the state as 	
0� or 	
1�. These
communications are sent quickly enough that Alice is guar-
anteed that each of the Bi sent their transmission before
knowing the value of z sent to the other. A2 broadcasts the
classical data to A1 who tests that the quantum states are
those claimed in the classical communications by carrying
out the appropriate projective measurements. If not, she
aborts. If so, the protocol restarts at step �1�: B1 creates a new
set of N states and proceeds as above.

�5� If z=0, A2 waits for time D /2 in the stationary refer-
ence frame of B2 before starting a series of relativistic bit
commitment subprotocols of type RBC2 by sending the ap-
propriate communication �a list of suitably chosen random
integers� to B2. B2 verifies the delay interval was indeed
D /2, to within some tolerance.

�6� B2 continues the RBC2 subprotocols by sending A2
communications which commit Bob to the value of i that
defines the state to use for the coin toss.

�7� B1 and B2 then wait a further time D /2, by which
point they have received the signals sent in step �3�. They
then check that the z values they received from the Ai are the
same. If not, they abort the protocol.

�8� B1 and B2 send communications to A1 and A2 which
unveil the value of i to which they were committed, and
hence reveal the state chosen for the coin toss. If the unveil-
ing is invalid, Alice aborts.

�9� A1 and B1 measure their halves of the ith state in the
�	0�,	1�� basis to define the outcome of the coin toss.

��10� As an optional supplementary post coin toss security
test, B1 asks A1 to return her qubits from all states other than
the ith. He then tests that the returned states are those origi-
nally sent, by carrying out appropriate projective measure-
ments. If the tests fail, he aborts the protocol.�

1. Security against Alice

In this modification of protocol VBCT2, there is no longer
any advantage to Alice in cheating by arranging that one of
the Ai sends z=0 and the other z=1. Such an attack will be
detected with certainty, as is the case with protocol VBCT2.
Moreover, since Bob’s chosen value of i is encrypted by a bit
commitment, which is only unveiled once the Bi have
checked that the values of z they received are identical, Alice
gains no information about Bob’s chosen bias from the at-
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tack. The bit commitment subprotocol RBC2 is uncondition-
ally secure against Alice �19�, since the communications she
receives are, from her perspective, uniformly distributed ran-
dom strings.

�As in the case of VBCT2, technically speaking, Alice has
another possible attack: she can follow the protocol honestly
up to step �10� and then, once she learns Bob’s chosen state,
intentionally try to fail Bob’s tests by altering her halves of
the remaining states in some way. By so doing, she can cause
the protocol to abort after the coin toss outcome is known.
Again, though, this gives her no advantage.�

The protocol, therefore, presents Alice with no useful
cheating attack.

2. Security against Bob

Intuitively, one might expect the proof that VBCT2 is
secure against Bob to carry over to a proof that VBCT3 is
similarly secure, for the following reasons. First, the only
difference between the two protocols is that Bob makes a
commitment to the value of i rather than announcing it im-
mediately. Second, when the bit commitment protocol RBC2
is used, as here, just for a single round of communications, it
is provably unconditionally secure against general �classical
or quantum� attacks by Bob.

To make this argument rigorous, one would need to show
that RBC2 and the other elements of VBCT3 are securely
composable in an appropriate sense: i.e., that Bob has no
collective quantum attack which allows him to generate and
manipulate collectively the data used in the various steps of
VBCT3 in such a way as to cheat. We conjecture that this is
indeed the case, but have no proof.

D. Protocol VBCT4

Classical communications and information processing are
generally less costly than their quantum counterparts, so
much so that, in some circumstances, it is reasonable to treat
classical resources as essentially cost free compared to quan-
tum resources. It is thus interesting to note the existence of a
classical relativistic protocol for VBCT, which is uncondi-
tionally secure against classical attacks, and which we con-
jecture is unconditionally secure against quantum attacks.
The protocol requires Alice and Bob each to have two ap-
propriately located agents, A1, A2 and B1, B2.

�1� Bob generates a 2M �N matrix of bits such that each
row contains either �0

2N zero entries or �1
2N zero entries,

these being positioned randomly throughout the row. The
rows are arranged in pairs, so that, for m from 0 to �M −1�,
either the 2mth row contains �0

2N entries and the �2m+1�th
contains �1

2N, or vice versa. This choice is made randomly,
equiprobably and independently for each pair. The matrix is
known to both B1 and B2 but kept secret from Alice.

�2� Bob then commits each element of the matrix sepa-
rately to Alice using the classically secure relativistic bit
commitment subprotocol RBC2 �19�, initiated by communi-
cations between A2 and B2.

�3� A1 then picks M −1 pairs at random. She asks B1 to
unveil Bob’s commitment for all of the bits in these pairs of
rows.

�4� The RBC2 commitments for the remaining bits are
sustained while A1 and A2 communicate to verify that each
unveiling corresponds to a valid commitment to either 0 or 1.
Alice also checks that each unveiled pair contains one row
with �0

2N zeros and one with �1
2N zeros. If Bob fails either

set of tests, Alice aborts.
�5� If Bob passes all of Alice’s tests, B1 picks the remain-

ing row corresponding to the bias he desires, and A2 simul-
taneously picks a random column. They inform A1 and B2
respectively, thus identifying a single matrix element belong-
ing to the intersection.

�6� Bob then unveils this bit, which is used as the out-
come of the coin toss. The remaining commitments are never
unveiled.

Security

The above protocol shows that, classically, bit commit-
ment can be used as a subprotocol to achieve VBCT. The
proof that RBC2 is unconditionally secure against classical
attacks �19� can be extended to show that protocol VBCT4 is
similarly secure. RBC2 is conjectured, but not proven, to be
secure against general quantum attacks. We conjecture, but
have no proof, that the same is true of protocol VBCT4.

V. SUMMARY

We have defined the task of variable-bias coin tossing
�VBCT�, illustrated its use with a couple of applications, and
presented four VBCT protocols. The first, VBCT1, allows
VBCT for a limited range of biases and is unconditionally
secure against general quantum attacks. The second protocol,
VBCT2, is defined for any range of biases and guarantees
cheat-evident security against general quantum attacks. The
third, VBCT3, extends the second by using a relativistic bit
commitment subprotocol, and we conjecture that it is uncon-
ditionally secure against general quantum attacks.

The fourth protocol, VBCT4, is classical and is based on
multiple uses of a classical relativistic bit commitment
scheme which is proven secure against classical attacks. It
can be shown to be unconditionally secure against classical
attacks. The relevant relativistic bit commitment scheme is
conjectured secure against quantum attacks, and we conjec-
ture that this is also true of protocol VBCT4.

Variable-bias coin tossing is a simple example of a ran-
dom one-input two-sided secure computation. The most gen-
eral such computation is what we have termed a variable-
bias n-faced die roll. In this case, there is a finite range of n
outputs, with each of Bob’s inputs leading to a different
probability distribution over these outputs. In other words,
Bob is effectively allowed to choose one of a fixed set of
biased n-faced dice to generate the output, while Alice is
guaranteed that Bob’s chosen die is restricted to the agreed
set.

The protocols VBCT2, VBCT3 and VBCT4 can easily be
generalized to protocols defining variable-bias n-faced die
rolls. Thus, to adapt protocols VBCT2 and VBCT3 to
variable-bias die rolling, we require Bob to choose a series of
states from the set �	
i�= j=0

n−1�i
j	j j��i=1

r , where r is the num-
ber of dice in the allowed set and where ��i

j�2 defines the
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probability of outcome j for the ith dice �we take ��i
j� to be

real and positive�. The protocols then proceed similarly to
those given above, defining protocols which we conjecture to
be cheat-evidently secure and unconditionally secure respec-
tively.

To adapt protocol VBCT4, we require that the matrix
rows contain appropriate proportions of entries correspond-
ing to the various possible die roll outcomes. We conjecture
that this protocol is unconditionally secure.

As we noted earlier, variable-bias n-sided die rolling is
the most general one-input random two-sided two-party

single function computation. Our conjectures, if proven,
would thus imply that all such computations can be imple-
mented with unconditional security.
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