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We propose an approach to realize an n-qubit controlled-U gate with superconducting quantum interference
devices �SQUIDs� in cavity QED. In this approach, the two lowest levels of a SQUID represent the two logical
states of a qubit while a higher-energy intermediate level serves the gate manipulation. Our method operates
essentially by creating a single photon through one of the control SQUIDs and then performing an arbitrary
unitary transformation on the target SQUID with the assistance of the cavity photon. In addition, we show that
the method can be applied to implement an n-qubit controlled-U gate with atomic qubits in cavity QED.
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I. INTRODUCTION

Superconducting devices such as Cooper pair boxes, Jo-
sephson junctions, and superconducting quantum interfer-
ence devices �SQUIDs� have attracted much attention in the
quantum information community. Because they are relatively
easy to scale up and have been demonstrated to have rela-
tively long decoherence times �1–7�, they have been consid-
ered as promising candidates for physical implementation of
quantum computing. It is known that the building blocks of
quantum computers are single-qubit logic gates and two-
qubit logic gates �8�. In the past few years, for SQUID sys-
tems, many methods for realizing a single-qubit arbitrary ro-
tation gate and a two-qubit controlled-NOT �or controlled-
phase shift� gate have been presented �9–16�.

Multiqubit controlled gates play an important role in con-
structing quantum computational networks and realizing
quantum error correction protocols and implementing quan-
tum algorithms. Recently, much attention is paid to physical
realization of multiqubit controlled gates �17–19�. It is
known that when using the conventional gate-decomposition
protocols to construct a multiqubit controlled gate �20–22�,
the procedure usually becomes complicated as the number of
qubits increases. Therefore, it is important to find a more
efficient way to implement multiqubit controlled gates.

In this paper we focus on how to realize an n-qubit
controlled-U gate with n SQUIDs �1,2 , . . . ,n� based on cav-
ity QED. Recently, it has been predicted that the strong cou-
pling limit of cavity QED, which is difficult to achieve with
atoms in a microwave cavity, can readily be realized with
superconducting charge qubits �23,24�, superconducting flux
qubits �25�, or semiconducting quantum dots �26�. And more
recently, the strong coupling cavity QED has been experi-
mentally demonstrated with superconducting charge qubits
and flux qubits �27,28�, and semiconductor quantum dots
embedded in a microcavity �29–31�. The controlled gate con-
sidered in this paper is shown in Fig. 1, which is defined as
follows: �a� it contains n−1 control qubits and one target
qubit, �b� it leaves the state of the target qubit unchanged if
not all the control qubits are in the state �1�. �c� However,
when all control qubits are in the state �1�, an arbitrary uni-
tary transformation U is performed on the target qubit.

To implement the general multiqubit controlled gate de-
scribed above, three levels �0�, �1�, and �2� of each SQUID
will be employed �Fig. 2�. For each SQUID, the two lowest
levels �0� and �1� represent two logical states of a qubit while
the higher-energy level �2� is used to facilitate coherent con-
trol and manipulation of quantum states of the qubit. The
method presented here operates essentially by �a� creating a
single photon through one of the control SQUIDs, �b� per-
forming a general U on the target SQUID with the aid of the
cavity photon as follows �32�:

U = ei�Rz���Ry���Rz��� , �1�

and �c� finally performing operations to have the cavity mode
return to its original vacuum state. In Eq. �1�, � ,� ,�, and �
are arbitrary real numbers, Ry and Rz represent rotations
along y and z axes on a Bloch sphere, which are described by
matrices

FIG. 1. Schematic circuit of an n-qubit controlled-U gate. A
unitary transformation U is performed on the target qubit �qubit n�
when the n-1 controls on the filled circles �qubits 1 ,2 , . . . , and n
−1� are all in the state �1�.
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in a single-qubit computational subspace formed by the two
logical states �0�= �1,0�T and �1�= �0,1�T of the target qubit.

As shown below, this scheme has the following advan-
tages: �i� no auxiliary SQUIDs or measurement is needed
during the entire operation, thus the hardware resources are
reduced and the operation is simplified; �ii� as tunneling be-
tween the qubit levels �0� and �1� is not required during the
operation, decay from the level �1� can be made negligibly
small during the operation �via prior adjustment of the po-
tential barrier between the qubit levels �0� and �1� �33�� and
therefore the storage time of each qubit can be made much
longer; �iii� the coupling constants of SQUIDs with the cav-
ity mode could be different, hence neither identical SQUIDs
nor exact placement of SQUIDs is needed; and �iv� more
importantly, the gate operations are significantly simplified
as the number of qubits increases, when compared with the
conventional gate-decomposition protocols. In addition, it is
interesting to note that the method can readily be extended to
obtain an n-qubit controlled-U with atomic qubits in cavity
QED.

This paper is outlined as follows. In Sec. II, we review the
basic theory of a SQUID coupled to a single-mode cavity or
driven by a classical microwave pulse. In Sec. III, we show a
way to realize a two-qubit controlled-U gate with two
SQUIDs coupled to a cavity. In Sec. IV, we discuss how to
extend the method to achieve an n-qubit controlled-U gate
with n SQUIDs in cavity QED. In Sec. V, we compare the
present method with conventional gate-construction proto-
cols. In Sec. VI, we give a brief discussion on experimental
issues for the realization of an n-qubit controlled-rotation
gate. In Sec. VII, we further show how to apply our method
to implementing an n-qubit controlled-U gate with n atoms
using one cavity only. A concluding summary is given in
Sec. VIII.

II. BASIC THEORY

The SQUIDs throughout this paper are rf SQUIDs each
consisting of a Josephson tunnel junction in a superconduct-
ing loop �the typical size of an rf SQUID is on the order of
10–100 �m�. The Hamiltonian of an rf SQUID �with junc-
tion capacitance C and loop inductance L� has the usual form
�5�

Hs =
Q2

2C
+

�� − �x�2

2L
− EJ cos	2�

�

�0

 , �4�

where � is the magnetic flux threading the ring, Q is the
total charge on the capacitor, �x is the external magnetic flux
applied to the ring, and EJ� Ic�0 /2� is the maximum Jo-
sephson coupling energy �Ic is the critical current of the junc-
tion and �0=h /2e is the flux quantum�.

A. SQUID-cavity resonant interaction

Consider a SQUID coupled to a single-mode microwave
cavity field. The SQUID is biased properly to have a 	-type
configuration formed by three lowest levels, denoted by �0�,
�1�, and �2� with energy eigenvalues E0, E1, and E2, respec-
tively �Fig. 2�. The transition frequency between the two
levels �i� and �j� is 
ij ��ij / �2��= �Ei−Ej � /� �i , j
� �0,1 ,2 , i� j�. Suppose that the coupling of �0� , �1�, and
�2� with other levels of the SQUID via the cavity is negli-
gible, which can readily be achieved by adjusting the level
spacings of the SQUID �33�. We can show that when the
cavity mode is resonant with the �0�↔ �2� transition while
decoupled �highly detuned� from the �1�↔ �2� transition and
the �0�↔ �1� transition of the SQUID, the interaction Hamil-
tonian in the interaction picture, after the rotating-wave ap-
proximation, is described by �12�

HI = � �ga+�0��2� + H . c . � , �5�

where a+ and a are the creation and annihilation operators of
the cavity mode, and g is the coupling constant between the
cavity mode and the �0�↔ �2� transition of the SQUID. For a
superconducting one-dimensional transmission line standing-
wave cavity, g is given by

�g�x� =
Msc

L
�h
c

L0l
�0���2�sin	2�


x
 , �6�

where Msc is the SQUID-cavity mutual inductance, L0 is the
inductance per unit length of the cavity, l is the length of the
cavity, 
c��c / �2�� is the frequency of the cavity mode with
wavelength , and x is position of the center of the SQUID
in the cavity.

In the case when the cavity is initially in the photon num-
ber state �n�, the time evolution of the states of the system,
under the Hamiltonian �5�, is as follows:

�0��n� → cos �ngt�0��n� − i sin �ngt�2��n − 1� ,

�2��n� → − i sin �n + 1gt�0��n + 1� + cos �n + 1gt�2��n� .

�7�

SQUIDs may have nonuniform device parameters and/or not
be exactly placed in the cavity. Therefore, the coupling

FIG. 2. Level diagram of a SQUID with the 	-type three lowest
levels �0�, �1�, and �2�.
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strength g may not be identical for different SQUIDs. In the
following, we will replace g by g1 ,g2 , . . ., and gn for
SQUIDs 1,2 , . . ., and n, respectively.

As shown below, the resonant interaction between the
cavity mode and the �1�↔ �2� transition of the SQUID is
needed. In this case, the time evolution for the states of the
system is similar to Eq. �7�. One just needs to replace �0� in
Eq. �7� by �1�. The coupling constant of the cavity mode with
the �1�↔ �2� transition of the SQUID can be set to be the
same as that with the �0�↔ �2� transition of the same SQUID
by simply changing the external flux bias from �0.5−���0 to
�0.5+���0 �see Fig. 3�.

B. SQUID-cavity off-resonant interaction

Consider a system composed of a SQUID and a single-
mode cavity. Suppose that the cavity mode is off resonant
with the �0�↔ �2� transition �i.e., �=�20−�c� ĝ� while de-
coupled from the �1�↔ �2� transition and the �0�↔ �1� transi-
tion of the SQUID �Fig. 4�a��. Here, � is the detuning be-

tween the cavity-mode frequency and the �0�↔ �2� transition
frequency of the SQUID, and ĝ is the coupling constant of
the cavity mode with the �0�↔ �2� transition of the SQUID.
Under this condition, the SQUID has a negligible probability
of making a transition between the ground level �0� and the
excited level �2�. Therefore, the effective interaction Hamil-
tonian in the interaction picture can be written as �34�

He = �
ĝ2

�
��2��2�− �0��0��a+a . �8�

From the Hamiltonian �8�, it is straightforward to see that
if the cavity mode is initially in the photon number state �n�,
the time evolution of the states of the system is then given by

�0��n� → ei�ĝ2/��nt�0��n� ,

�2��n� → e−i�ĝ2/��nt�2��n� . �9�

In the following, we will need to use off-resonant interac-
tion between the cavity mode and the �1�↔ �2� transition of
the SQUID �Fig. 4�b��. In this case, the time evolution for
the states of the system is similar to Eq. �9�. One just needs
to replace �0� in Eq. �9� by �1�. The detuning is given by �
=�21−�c. ĝ is the coupling constant between the cavity
mode and the �1�↔ �2� transition of the SQUID. As described
above, i.e., by changing the external flux bias from �0.5
−���0 to �0.5+���0, both � and ĝ can be set to be the same
as those for the case of the cavity mode being off-resonant
with the �0�↔ �2� transition of the same SQUID �Fig. 4�.

C. SQUID-microwave resonant interaction

In this section, we consider a SQUID driven by a classical
microwave pulse with the magnetic component B�w�r , t�
=B�w�r�cos���wt+��. Here, B�w�r�, ��w, and � are the
magnetic field amplitude, carrier frequency, and phase of the
microwave pulse. Assume that the microwave pulse is reso-
nant with the �1�↔ �2� transition but decoupled from the
�0�↔ �2� transition and the �0�↔ �1� transition of the SQUID.
The interaction Hamiltonian in the interaction picture is then
given by

HI =
�

2
��ei��1��2� + H.c.� , �10�

where � is the Rabi frequency of the pulse, which has the
following form �12�:

��t� =
1

L�
�1���2��

S

B�w�r� · dS . �11�

From the Hamiltonian �10�, it is easy to find the following
state rotation:

�1� → cos
�

2
t�1� − ie−i� sin

�

2
t�2� ,

�2� → − iei� sin
�

2
t�1� + cos

�

2
t�2� . �12�

FIG. 3. �a� Resonant interaction of the cavity mode with the
�0�↔ �2� transition of a SQUID. �b� Resonant interaction of the
cavity mode with the �1�↔ �2� transition of the same SQUID. In �a�
and �b�, the coupling constant g is the same. �b�, where the ground
level is �1� and the first excited level is �0�, is obtained by flipping
�a�. The potential and the level structure shown in �a� and �b� can be
obtained with external flux bias of �0.5−���0 and �0.5+���0,
respectively.

FIG. 4. �a� Off-resonant interaction between the cavity mode
and the �0�↔ �2� transition of a SQUID. �b� Off-resonant interaction
between the cavity mode and the �1�↔ �2� transition of the same
SQUID. The coupling constant ĝ and the detuning � in �b� are the
same as those in �a�, which can be achieved with external flux bias
of �0.5−���0 and �0.5+���0 for �a� and �b�, respectively. In �a�
�=�20−�c, while in �b� �=�21−�c.
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III. TWO-QUBIT CONTROLLED-U GATES

For two qubits, there are four computational basis states
denoted by �00�, �01�, �10�, and �11�, respectively. A two-
qubit controlled-U gate is described by

�00� → �00� ,

�01� → �01� ,

�10� → �1�U�0� ,

�11� → �1�U�1� , �13�

which implies that if and only if the control qubit �the first
qubit� is in the state �1�, a unitary transformation U is per-
formed on the target qubit �the second qubit� and nothing
happens otherwise.

Now let us discuss how to obtain the two-qubit
controlled-U gate �13� with two SQUIDs 1 and 2 coupled to
a microwave cavity. The SQUIDs considered here have the
	-type three-level configuration as depicted in Fig. 2. The
transition between any two levels for each SQUID is initially
decoupled from the cavity mode �e.g., via prior adjustment
of the level spacings�. And the cavity mode is initially in the
vacuum state �0�c. To realize the gate �13�, it is required to
perform the following transformation:

�0�1�0�2 � �0�c → �0�1�0�2 � �0�c,

�0�1�1�2 � �0�c → �0�1�1�2 � �0�c,

�1�1�0�2 � �0�c → �1�1�ei�Rz���Ry���Rz����0�2� � �0�c,

�1�1�1�2 � �0�c → �1�1�ei�Rz���Ry���Rz����1�2� � �0�c,

�14�

where subscripts 1 and 2 represent SQUID 1 �the control
qubit� and SQUID 2 �the target qubit�, respectively.

We note that the unitary transformations, involved in the
last two lines of Eq. �14�, can be realized through the follow-
ing operation sequence:

first, creating a single photon through SQUID 1 as fol-
lows:

�1�1�0�c → �0�1�1�c. �15�

Second, performing rotations Rz���, Ry���, and then Rz���
on the states of SQUID 2 with the assistance of the photon,
i.e.,

Rz���:
�0�2�1�c → e−i��0�2�1�c,

�1�2�1�c → ei��1�2�1�c,
�16�

Ry���:
�0�2�1�c → 	cos

�

2
�0�2 + sin

�

2
�1�2
�1�c,

�1�2�1�c → 	− sin
�

2
�0�2 + cos

�

2
�1�2
�1�c,

�17�

Rz���:
�0�2�1�c → e−i��0�2�1�c,

�1�2�1�c → ei��1�2�1�c.
�18�

Third, performing a phase shift ei� on the states of
SQUID 2 with the aid of the photon, i.e.,

�0�2�1�c → ei��0�2�1�c,

�1�2�1�c → ei��1�2�1�c. �19�

Last, returning SQUID 1 and the cavity mode to their
original states, i.e.,

�0�1�1�c → �1�1�0�c. �20�

In the following, we will list operations required for the
realization of the above transformations �15�–�20�.

Step �i�. Apply a � microwave pulse ����w=�, where
��w is the pulse duration� with �=−� /2 to SQUID 1 �Fig.
5�a��. The pulse is resonant with the �1�↔ �2� transition of
SQUID 1. After the pulse, the transformation �1�→ �2� of
SQUID 1 is obtained.

Step �ii�. Bring the �0�↔ �2� transition of SQUID 1 to
resonance with the cavity mode for an interaction time �1
=� / �2g1� �Fig. 5�b��, resulting in �2�1 �0�c→−i �0�1 �1�c.

After the operations of step �i� and step �ii�, the transfor-
mation �15� is obtained as follows:

�1�1�0�c→
�i�

�2�1�0�c→
�ii�

− i�0�1�1�c �21�

up to a phase factor −i, which is inevitable according to Eq.
�7� but can be removed by introducing a phase factor i to the
transformation �20� �see below�.

Step �iii�. Adjust the level structure of SQUID 2 and apply
a � microwave pulse with �=−� /2 to SQUID 2 �Fig. 5�c��.
The pulse is resonant with the �1�↔ �2� transition of SQUID
1, leading to the transformation �1�→ �2� of SQUID 2.

Step �iv�. Adjust the level structure of SQUID 2 to obtain
an off-resonant interaction between the cavity mode and the
�0�↔ �2� transition of SQUID 2 �Fig. 5�d��. After an interac-

tion time �2=��̃ / g̃2, the state �0�2 �1�c goes to e−i� �0�2 �1�c
while the state �2�2 �1�c changes to ei� �2�2 �1�c.

Step �v�. Repeat the operation of step �iii� but set �
=� /2, leading to the transformation �2�→ �1� of SQUID 2.

It is easy to see that after the operations of steps �iii�–�v�,
the transformation �16� is implemented as follows:

�0�2�1�c→
�iii�

�0�2�1�c→
�iv�

e−i��0�2�1�c→
�v�

e−i��0�2�1�c,

�1�2�1�c→
�iii�

�2�2�1�c→
�iv�

ei��2�2�1�c→
�v�

ei��1�2�1�c. �22�

Step �vi�. Bring the �1�↔ �2� transition of SQUID 2 to
resonance with the cavity mode for an interaction time �3
=� / �2g2� �Fig. 5�e��. As a result, the state �0�2 �1�c remains
unchanged while the state �1�2 �1�c changes to −i �2�2 �0�c.

Step �vii�. Bring the �0�↔ �2� transition of SQUID 2 to
resonance with the cavity mode for an interaction time
�4=� / �2g2� �Fig. 5�f��, resulting in �0�2 �1�c

→cos�� /2� �0�2 �1�c− i sin�� /2� �2�2 �0�c and �2�2 �0�c
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→−i sin�� /2� �0�2 �1�c+cos�� /2� �2�2 �0�c.
Step �viii�. Bring the �1�↔ �2� transition of SQUID 2 to

resonance with the cavity mode for an interaction time �5
=3� / �2g2� �Fig. 5�e��. As a result, the states �0�2 �1�c remain
unchanged while the state �2�2 �0�c becomes i �1�2 �1�c.

One can see that after the operations of steps �vi�–�viii�,
the transformation �17� is obtained as follows:

�0�2�1�c→
�vi�

�0�2�1�c

→
�vii�

cos
�

2
�0�2�1�c − i sin

�

2
�2�2�0�c

→
�viii�	cos

�

2
�0�2 + sin

�

2
�1�2
�1�c,

�1�2�1�c→
�vi�

− i�2�2�0�c

→
�vii�

− sin
�

2
�0�2�1�c − i cos

�

2
�2�2�0�c

→
�viii�	− sin

�

2
�0�2 + cos

�

2
�1�2
�1�c. �23�

Steps �ix�–�xi�. Repeat the operations of steps �iii�–�v� but
set the cavity-SQUID off-resonant interaction time as �6

=��̃ / g̃2, leading to the transformation �18�.
Step �xii�. Adjust the level structure of SQUID 2 to obtain

an off-resonant interaction between the cavity mode and the
�0�↔ �2� transition of SQUID 2 �Fig. 5�g��. After an interac-
tion time �7=�� / ĝ2, the state �0�2 �1�c goes to ei� �0�2 �1�c
while the state �1�2 �1�c remains unchanged.

Step �xiii�. Adjust the level structure of SQUID 2 to
achieve an off-resonant interaction between the cavity mode
and the �1�↔ �2� transition of SQUID 2 �Fig. 5�h��. After an
interaction time �8=�� / ĝ2, the state �1�2 �1�c changes to
ei� �1�2 �1�c while nothing happens to the state �0�2 �1�c.

It can be seen that after the operations of step �xii� and
step �xiii�, the transformation �19� is obtained as follows:

�0�2�1�c→
�xii�

ei��0�2�1�c →
�xiii�

ei��0�2�1�c,

�1�2�1�c→
�xii�

�1�2�1�c →
�xiii�

ei��1�2�1�c. �24�

Step �xiv�. Bring the �0�↔ �2� transition of SQUID 1 to
resonance with the cavity mode for an interaction time �9
=3� / �2g1� �Fig. 5�b��, resulting in �0�1 �1�c→ i �2�1 �0�c.

Step �xv�. Apply a � microwave pulse with �=� /2 to
SQUID 1 �Fig. 5�a��. The pulse is resonant with the �1�↔ �2�
transition of SQUID 1. After the pulse, the transformation
�2�→ �1� of SQUID 1 is obtained.

One can see that the operations of steps �xiv� and �xv�
lead to the following transformation:

�0�1�1�c → i�2�1�0�c → i�1�1�0�c, �25�

which is actually the transformation �20� up to a phase factor
i.

As detailed above, we have explicitly shown how to real-
ize the transformations �15�–�20�, i.e., performing a general
U on SQUID 2 �the target� when SQUID 1 �the control� is
initially in the state �1�. On the other hand, it is noted that the
following states of the system:

�0�1�0�2�0�c, �0�1�1�2�0�c �26�

remains unchanged during the entire operation. This is be-
cause �a� during the operation of step �i�, the state �0� of

FIG. 5. Change of the level structure �reduced� of SQUIDs
�1,2� during a two-qubit controlled-U gate performance. In �a�, �b�,
�c�, �d�, �e�, �f�, �g�, and �h�, figures from left to right represent the
level structures for SQUIDs 1 and 2, respectively; the nonidentical
level spacings of the SQUIDs could be caused by nonuniform de-
vice parameters. In �a� and �c�, the level spacings for the two
SQUIDs are set to be much different, such that the irrelevant
SQUID is decoupled from the applied pulse. The transition between
any two levels linked by a dashed line is decoupled from the cavity
mode. g̃ and ĝ are the off-resonant coupling constants between the
cavity mode and the corresponding two-level transition of SQUID
2. g1 and g2 are the SQUID-cavity resonant coupling constants for
SQUID 1 and SQUID 2, respectively. The detuning �=�20−�c for

�g� while �21−�c for �h�. In addition, �̃=�c−�20.

REALIZATION OF AN n-QUBIT CONTROLLED-U GATE ¼ PHYSICAL REVIEW A 73, 032317 �2006�

032317-5



SQUID 1 was not affected by the applied microwave pulse,
since the �0�↔ �2� transition and the �0�↔ �1� transition of
SQUID 1 are decoupled from the pulse; and �b� no photon
was emitted to the cavity during the operation of step �ii�,
when SQUID 1 is initially in the state �0�. Hence, it can be
concluded that the transformation �14�, i.e., the two-qubit
controlled-U gate �13� was implemented with two SQUIDs
after the above manipulation.

Before closing this section, several issues need to be ad-
dressed. The irrelevant SQUIDs in each step of the operation
need to be decoupled from the cavity �pulse� during the
cavity-SQUID �pulse-SQUID� interaction. The cavity mode
needs to be not excited during the pulse-SQUID resonant
interaction. In addition, for each SQUID, the coupling of the
levels �0�, �1�, and �2� with the other levels should be negli-
gible. Note that for a SQUID, the level spacings can readily
be changed by varying the external flux �x or the critical
current Ic �e.g., for variable barrier rf SQUIDs� �33�. There-
fore, these conditions can in principle be satisfied by adjust-
ing the level spacings of the SQUIDs.

Imperfect decoupling between the irrelevant SQUIDs and
the cavity during the operations using off-resonant interac-
tion could, in principle, result in gate errors. Note that the
population of the level �j� of any irrelevant SQUID initially
in the state �i�, induced due to the coupling between the
�i�↔ �j� transition and the cavity mode, is on the order of
pj �gij

2 / �gij
2 +�ij

2 �, where i , j� �0,1 ,2 and i� j, gij is the
coupling constant of the cavity mode with the �i�↔ �j� tran-
sition of the SQUID, and �ij =�ij −�c is the detuning of the
�i�↔ �j� transition from the cavity mode. Therefore, we re-
mark that the coupling between the irrelevant SQUIDs and
the cavity can be made negligible as long as the condition

�ij �gij and �ij /gij
2 �� / ĝ2, �̃ / g̃2 can be satisfied. Here, ĝ

and g̃ are the off-resonant coupling constants described
above, i.e., the coupling constants of the cavity mode with
the transition between the corresponding two levels of the
SQUID which is involved during the operation using off-
resonant interaction. The required decoupling condition can
be obtained by adjusting the level spacings of the irrelevant
SQUIDs before the off-resonant operations, so that the tran-
sition frequency between any two levels of the irrelevant
SQUIDs is highly detuned from the cavity-mode frequency.
It can be achieved with the available experiment technique
because the level spacings of a SQUID can be adjusted rap-
idly in experiment ��1 ns�. Since a more quantitative an-
swer to the question of “how well decoupled the irrelevant
SQUIDs need to be from the cavity” requires a very lengthy
and complex analysis, we will not give a detailed discussion.

IV. n-QUBIT CONTROLLED-U GATES

For n qubits, there are a total number of 2n computational
basis states from �00¯0� to �11¯1�, which form a set of
complete orthogonal bases in a 2n-dimensional Hilbert space
of the n qubits. As discussed in the Introduction, an n-qubit
controlled-U gate performs an arbitrary unitary transforma-
tion U on the target qubit only when the n−1 control qubits
are all in the state �1�, i.e.,

�1���n−1��0� → �1���n−1�U�0� ,

�1���n−1��1� → �1���n−1�U�1� , �27�

while nothing happens to all other 2n-2 computational basis
states. In Eq. �27�, the first n−1 qubits represent control qu-
bits while the last qubit acts as a target. In the following, we
will discuss how this gate can be achieved with n SQUIDs
coupled to a cavity.

The n SQUIDs are labeled by 1,2 , . . . , and n. The first
n−1 SQUIDs �1,2 , . . . ,n−1� represent control qubits while
SQUID n is the target qubit. Suppose that all SQUIDs
�1,2 , . . . ,n� are initially decoupled from the cavity �which is
in the vacuum state�. We find that the n-qubit controlled-U
gate described above can be obtained through the following
sequence of operations �from right to left�:

U1
+

� 	 �
l=n−1

1

Ulc
+
 � Unc � 	�

l=1

n−1

Ulc
 � U1, �28�

where �l=1
n−1Ulc�U�n−1�c¯U2cU1c; U1 denotes the operation

on SQUID 1 represented by matrix

U1 = 	 0 1

− 1 0

 �29�

in the basis states �1�1= �0,1�T and �2�1= �1,0�T; Ulc is a joint
operator on the SQUID l and the cavity mode �l
=1,2 , . . . ,n−1�, represented by the matrix

Ulc = 	 0 − i

− i 0

 �30�

in the basis states �0�l �1�c= �0,1�T and �2�l �0�c= �1,0�T; and
Unc is a joint operator on SQUID n and the cavity mode,
given by

Unc = U � I = ei�Rz���Ry���Rz��� � I , �31�

which performs an arbitrary unitary transformation U on the
SQUID n while nothing to the cavity state.

From the description in the previous section, the follow-
ing can be seen:

�i� U1 �U1
+� can be realized by a � microwave pulse

����w=�, where ��w is the pulse duration� with �=−� /2
�� /2� and ��w=�21 to SQUID 1.

�ii� Ulc corresponds to the operation of bringing the
�0�↔ �2� transition of SQUID l �l=1,2 , . . . ,n−1� to reso-
nance with the cavity mode for an interaction time �l
=� / �2gl�.

�iii� Unc can be realized via the operations of steps �iii�–
�xiii� described in the previous section. For the present case,
the qubit involved in the operations is SQUID n instead of
SQUID 2.

�iv� Ulc
+ corresponds to the operation of bringing the

�0�↔ �2� transition of SQUID l �l=1,2 , . . . ,n−1� to reso-
nance with the cavity mode for an interaction time �l
=3� / �2gl�.

To further understand Eq. �28�, let us give some explana-
tion on system evolutions after the operations described
above. First, the state �1� of SQUID 1 is changed to the
ground state �0� and a single photon is emitted to the cavity
mode after the joint operation U1cU1. Second, after the joint
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operation �l=2
n−1Ulc, the photon is left in the cavity mode when

SQUIDs �2,3 , . . . ,n−1� are initially in the computational ba-
sis state �11¯1�; however, it is absorbed by SQUIDs
�2,3 , . . . ,n−1� initially in all other computational basis
states. Third, after the operation Unc, an arbitrary unitary
transformation U is performed on SQUID n with the assis-
tance of the cavity photon; in contrast, nothing happens to
the SQUID n if no photon, after the previous operation
�l=2

n−1Ulc, is left in the cavity mode. Fourth, after the joint
operation �l=2

n−1Ulc
+ , the photon, originally absorbed by

SQUIDs �2,3 , . . . ,n−1�, is emitted back to the cavity mode.
Lastly, after the joint operation U1

+U1c
+ , the cavity mode re-

turns to its original vacuum state �0�c and the state �0� of
SQUID 1 is changed back to the initial state �1�. It should be

mentioned that when SQUID 1 is initially in the state �0�,
nothing happens to the whole system during the entire op-
eration, due to the reason discussed in the previous section.

To see it more clearly, let us consider the case of three
qubits, i.e., realizing a three-qubit controlled-U gate with
three SQUIDs �1,2,3� in cavity QED. For three qubits, there
are a total number of eight �23� computational basis states,
denoted by �000� , �001� , . . . , �111�, respectively. The first four
basis states �000� , �001� , �010�, and �011� of the three
SQUIDs remain unchanged during the operations described
above. However, if the three SQUIDs are initially in the
other four basis states, the states of the whole system after
each unitary transformation of Eq. �28� �n=3� are as follows:

�100��0�c

�101��0�c

�110��0�c

�111��0�c

→
U1

�200��0�c

�201��0�c

�210��0�c

�211��0�c

→
U1c

− i�000��1�c

− i�001��1�c

− i�010��1�c

− i�011��1�c

→
U2c

− �020��0�c

− �021��0�c

− i�010��1�c

− i�011��1�c

→
U3c

− �020��0�c

− �021��0�c

− i�01��U�0���1�c

− i�01��U�1���1�c

→
U2c

+
− i�000��1�c

− i�001��1�c

− i�01��U�0���1�c

− i�01��U�1���1�c

→
U1c

+
�200��0�c

�201��0�c

�21��U�0���0�c

�21��U�1���0�c

→
U1

+
�100��0�c

�101��0�c

�11��U�0���0�c

�11��U�1���0�c,

�32�

where �ijk� is abbreviation of the state �i�1 � j�2 �k�3 of
SQUIDs �1,2 ,3� with i , j ,k� �0,1 ,2. From Eq. �32�, it can
be seen that a three-qubit controlled-U gate is achieved with
three SQUIDs, where the third SQUID is the target qubit,
after the transformations described in Eq. �28�.

On a final note, we point out that a single-mode cavity is
not necessary since for a multimode cavity one can in prin-
ciple choose one mode to interact with the SQUIDs while
have all other modes well decoupled from the three lowest
levels of the SQUIDs. In addition, the method presented here
is applicable to a one-, two-, or three-dimensional micro-
wave resonator/cavity as long as the conditions described
above are satisfied.

V. COMPARISON WITH CONVENTIONAL GATE
CONSTRUCTION

The universality of quantum computation implies that it is
possible to generate arbitrary n-qubit gates by using se-
quences of one-qubit and two-qubit gates only �35–37�.
Barenco et al. developed methods to design networks for
n-qubit controlled gates �20�. They have shown that it re-
quires 2n−1−1 two-qubit controlled-V and controlled-V+

gates and 2n−1−2 two-qubit controlled-NOT gates to accom-
plish an n-qubit controlled-U gate described above �n�3�.
Here, V satisfies V2n−2

=U. Namely, at least 2n−3 steps of
operations are required, assuming that realizing any two-
qubit controlled gate requires one-step operation only.

Since the work of Barenco et al., much attention has been
paid to optimal implementation of quantum gates. Recently,
Möttönen et al. have considered a generic elementary gate

sequence for realizing a general multiqubit gate �21�. More
recently, Bergholm et al. have presented quantum circuits
with uniformly controlled one-qubit gates �22�. According to
their results, 2n−1−1 two-qubit controlled-NOT gates, 2n−1

one-qubit gates, and a single diagonal n-qubit gate are
needed to construct the above n-qubit controlled-U gate.
Hence, at least 2n steps of operation are required, provided
that any two-qubit gate, one-qubit gate, or an n-qubit diago-
nal gate can be implemented using one-step operation only.

It is interesting to note that when compared with the use
of the conventional gate-decomposition protocols �20,22�,
our method significantly reduces the number of operations
needed to implement the above n-qubit controlled-U gate. As
shown above, our method only needs 2n+11 steps of opera-
tions. The advantage of this method starts at n=5 and be-
comes more dramatic as n increases. It should be mentioned
that the comparison presented here is a conservative case
because it was assumed above that a two-qubit controlled-V/
V+/NOT or an n-qubit diagonal gate can be realized with one-
step operation only.

VI. DISCUSSION

In this section, we give a brief discussion on relevant
experimental issues for the implementation of n-qubit
controlled-U gates. Without loss of generality, let us consider
n identical SQUIDs �1,2 , . . . ,n� at locations where the Bc

fields are the same �e.g., antinodes of the cavity field�. Thus,
we have gl=g �l=1,2 , . . . ,n�. The total operation time is
given by
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� = �2n + �/�2����c
�1� + 2��c

�2� + �� + ���c
�3� + �2n + 9��a

+ 4��w, �33�

where �c
�1�=� /g ,�c

�2�=� / ĝ2, �c
�3�= �̃ / g̃2, and �a is the typical

time required for adjusting the level spacings of a single
SQUID. For the method to work, � should be much shorter
than the energy relaxation time �2

−1 of the level �2�, and the
lifetime of the cavity mode �−1=Q /2�
c, where Q is the
�loaded� quality factor of the cavity. In addition, direct cou-
pling between SQUIDs needs to be negligible since this in-
teraction is not intended.

These requirements can in principle be realized, since one
can �i� reduce �c

�1� by increasing the coupling constant g, �ii�
shorten �a by rapid adjustment of the level spacings of the
SQUIDs, �iii� increase �−1 by employing a high-Q cavity so
that the cavity dissipation is negligible during the operation,
and �iv� design SQUIDs and control �readout� circuitry so
that the energy relaxation time �2

−1 of the level �2� is suffi-
ciently long. In addition, it is noted that direct interaction
between SQUIDs can be made negligible as long as the fol-
lowing condition is satisfied:

Mss � Msc, �34�

where Mss is the mutual inductance between two adjacent
SQUIDs and Msc is the mutual inductance between each
SQUID and the cavity.

For the sake of definitiveness, let us consider the experi-
mental feasibility of realizing a five-qubit controlled-U gate
using SQUIDs with the parameters listed in Table I. A five-
qubit controlled-U gate performs the following transforma-
tion:

�1111��0� → �1111�U��,�,�,���0� ,

�1111��1� → �1111�U��,�,�,���1� , �35�

when the four control qubits are in the state �1111� while
nothing otherwise. Here, � /2� �0,2��, and � ,� /2 ,� /2
� �−� ,��. �The positive or negative value for � , �, and �
can be achieved by setting blue or red detuning.� Note that
SQUIDs with the parameters in Table I are readily available
at the present time �2,3,38� and have the desired three-level

structure as depicted in Fig. 2. For a superconducting one-
dimensional standing-wave CPW �coplanar waveguide� cav-
ity with the parameters listed in Table I and SQUIDs placed
along the cavity axis �Fig. 6�, one has Msc�102 pH. When
each SQUID is located at one of the antinodes of the cavity
mode �Fig. 6�, a simple calculation gives g�5.8�109 s−1,
resulting in �c

�1��0.5 ns. On the other hand, as a rough esti-

mate, we assume ĝ� g̃�0.5g, ��10ĝ, and �̃�10g̃, which
can be readily achieved by adjusting the level spacings. As a
result, we have �c

�2���c
�3��3.4 ns. With the choice of ��w

��a��c
�1�, one has ��81.1 ns for � /2=2� and

� ,� /2 ,� /2 ,� /2= ±� �a case requiring the longest operation
time�, which is much shorter than �2

−1�3.2 �s and �−1

�0.8 �s for a cavity with Q�6�104. Note that supercon-
ducting CPW resonators with a quality factor of Q�106,
patterned into a thin superconducting film deposited on the
surface of a silicon chip, has been experimentally demon-
strated �39� �also see Refs. �23,26,27� regarding its applica-
tion for loaded superconducting qubits or semiconductor qu-
bits�.

For a cavity with 
c=11.4 GHz, the wavelength of the
cavity mode is �10.5 mm. For each SQUID being placed
at an antinode of the Bc field �Fig. 6�, one has D
�5.25 mm, where D is the distance between the two nearest
SQUIDs. A simple numerical calculation gives Mss
�0.1 aH, which is much smaller than Msc. Hence, the con-
dition of negligible direct coupling between SQUIDs is very
well satisfied.

TABLE I. Parameters for a SQUID-cavity. �L is the SQUIDs potential shape parameter, R is the SQUIDs
effective damping resistance, and S is the surface bounded by the loop of the SQUID with width a and length
b. �2

−1 ��1
−1� is the energy relaxation time of the level �2� ��1��. 
20 �
21� is the �0�↔ �2� ��1�↔ �2�� transition

frequency. �ij ��i �� � j� /�0 is the magnetic dipole coupling matrix element between levels �i� and �j� �i
=1,2 ; j=0,1�. l is the length of the quasi-one-dimensional CPW cavity,  is the wavelength of the cavity
mode with frequency 
c, d is the gap between the center conductor and the adjacent ground plane, w is the
width of the center conductor, t is the width of each ground plane, L0 is the inductance per unit length of the
waveguide, and �e is the effective relative dielectric constant.

SQUID C=135 fF
L=240 pH

�L=1.13 �x=0.4991�0 R=20M� S=200�100 �m2


20�11.4 GHz

21�5.8 GHz

�10=6.0�10−3 �20=3.2�10−2 �21=2.6�10−2 �2
−1�3.2 �s

�1
−1�0.16 ms

Cavity 
c=11.4 GHz �10.5 mm l=2.5 d�45 �m w�20 �m

t�d �e�6.3 L0�0.65 pH/�m Q�6�104 �−1�0.8 �s

FIG. 6. Sketch of the setup for five SQUIDs �1,2 ,3 ,4 ,5� and a
standing-wave quasi-one-dimensional CPW cavity �not drawn to
scale�. Each SQUID is placed in the plane of the resonator between
the two lateral ground planes �i.e., the x-y plane� and at an antinode
of the Bc field. The two curved lines represent the standing-wave Bc

field, which is in the z direction.
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Our above analysis demonstrates that the realization of a
five-qubit controlled-U gate is possible using SQUIDs and a
cavity within the present technology. In addition, we point
out that a quantum controlled Hadamard gate with a larger
number of control qubits can in principle be obtained by
increasing the length of the cavity though the conditions of
���2

−1, �−1 becomes increasingly difficult to satisfy.

VII. n-QUBIT CONTROLLED-U GATES WITH ATOMS

In this section, we discuss how to extend the above
method to realize an n-qubit controlled-U gate with three-
level atoms, by the use of one cavity.

Consider n identical atoms �1,2 , . . . ,n� each having a
	-type level configuration formed by two ground states and
an excited state �Fig. 7�. In accordance with the previous
section, we use �0� and �1� to represent the two ground states
and �2� to indicate the excited state. The dipole transition
between �0� and �1� is forbidden due to the definite parity of
the wave function. In the following, the two logical states of
a qubit are represented by the two ground states �0� and �1�
of each atom. And, atoms �1,2 , . . . ,n−1� act as control qu-
bits while atom n is the target qubit.

We note that an n-qubit quantum controlled-U gate de-
scribed by Eq. �27� can be realized with three-level atoms
using the prescription of Eq. �28�, by performing the follow-
ing operations:

�a� Apply a � /2 classical pulse with �=−� /2 to atom 1,
resonant with the �1�↔ �2� transition of atom 1. This pulse
leads to the transformation �1�→ �2� of atom 1, which ac-
complishes the transformation U1 of Eq. �28�.

�b� Send atom 1 through the cavity. The cavity mode is
initially in the vacuum state �0�c and resonant with the �0�
→ �2� transition of atom 1 �Fig. 7�a��. Choose the atomic
velocity appropriately so that the passage time of atom 1
through the cavity equals to � / �2g1�. Thus, after atom 1
exits the cavity, the state �0�1 �0�c remains unchanged, while
the state �2�1 �0�c changes to −i �0�1 �1�c. This operation
implements the transformation U1c in Eq. �28�.

�c� Send atoms �2,3 , . . . ,n−1� through the cavity one af-
ter another in a way that no more than one atom stays in the
cavity simultaneously. The cavity mode is resonant with the
�0�→ �2� transition of each atom �Fig. 7�a��. Choose the
atomic velocity appropriately so that the duration of atom l
in the cavity equals to � / �2gl� �l=2,3 , . . . ,n−1�. As a result,
there is no change for the state �0�l �0�c, �1�l �0�c, and �1�l �1�c;
while the state �0�l �1�c becomes −i �2�l �0�c. This process
completes the transformation �l=2

n−1Ulc of Eq. �28�.
�d� The transformation Unc in Eq. �30� is performed on

atom n and the cavity mode, which is realized as follows:
�d.1� First, apply a � /2 classical pulse with �=−� /2 to

atom n, resonant with the �1�↔ �2� transition of atom n and
resulting in the transformation �1�→ �2�. Second, adjust the
cavity frequency �40� to obtain an off-resonant interaction
between the cavity mode and the �0�↔ �2� transition of atom
n �Fig. 7�b�� and then send atom n through the cavity. After

an interaction time ��̃ / g̃n
2, the state �0�n �1�c goes to

e−i� �0�n �1�c while the state �2�n �1�c changes to ei� �2�n �1�c.
Last, apply a � /2 pulse �with �=� /2� to atom n, resonant
with the �1�↔ �2� transition of atom 1 and resulting in the
transformation �2�→ �1�. After these operations, a rotation
Rz��� on the two states �0� and �1� of atom n is obtained
while the cavity mode remains in one-photon state.

�d.2� First, adjust the cavity frequency so that the cavity
mode is resonant with the �1�↔ �2� transition of atom n �Fig.
7�c��. Then send atom n through the cavity for an interaction
time � / �2gn�� so that the state �0�n �1�c does not change while
the state �1�n �1�c goes to −i �2�n �0�c. Second, adjust the cav-
ity frequency so that the cavity mode is resonant with
�0�↔ �2� transition of atom n �Fig. 7�a��. Then send atom n
back through the cavity for an interaction time � / �2gn�, lead-
ing to the rotation �0�n �1�c→cos �� /2� �0�n �1�c

− i sin �� /2� �2�n �0�c and �2�n �0�c→−i sin �� /2� �0�n �1�c

+cos �� /2� �2�n �0�c. Last, have the cavity mode resonant
with the �1�↔ �2� transition of atom n via the adjustment of
the cavity frequency �Fig. 7�c��; and then send atom n
through the cavity for an interaction time 3� / �2gn�. As a
result, the state �0�n �1�c remains unchanged while the state
�2�n �0�c becomes i �1�n �1�c. It can be seen that after these
operations, a rotation gate Ry��� on the two states �0� and �1�
of atom n is realized in the same manner as shown in Eq.
�23�.

�d.3� To achieve a rotation Rz��� on the two states �0� and
�1� of atom n, one just needs to perform the same operations
as described in �d.1� by simply setting the time of atom n

crossing the cavity as ��̃ / g̃n
2.

�d.4� A common phase ei� for the two states �0� and �1� of
atom n can be obtained as follows. First, adjust the cavity
frequency to obtain an off-resonant interaction between the
cavity mode and the �0�↔ �2� transition of atom n �Fig. 7�d��

FIG. 7. Sketch of the setup for the realization of a controlled-U
gate with three-level atoms and a cavity. �a� Resonant interaction of
the cavity mode with the �0�↔ �2� transition of atom 1, atom l �l
=2,3 , . . . ,n−1�, or atom n. �c� Resonant interaction of the cavity
mode with the �1�↔ �2� transition of atom n. �b�, �d� Off-resonant
interaction of the cavity mode with the �0�↔ �2� transition of atom
n for different detuning setting. �e� Off-resonant interaction of the
cavity mode with the �1�↔ �2� transition of atom n. g1, gl, and gn

are the resonant coupling constants between the cavity mode and
the �0�↔ �2� transition of atom 1, atom l �l=2,3 , . . . ,n−1�, and
atom n, respectively. gn� is the resonant coupling constant between
the cavity mode and the �1�↔ �2� transition of atom n. g̃n , ĝn, and ĝn�
are the off-resonant coupling constants between the cavity mode
and the corresponding two-level transition of atom n. �=�20−�c,

��=�21−�c, and �̃=�c−�20.
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and then send atom n through the cavity for an interaction
time �� / ĝn

2, resulting in �0�n �1�c→ ei� �0�n �1�c while no
change for the state �1�n �1�c. Second, adjust the cavity fre-
quency to obtain an off-resonant interaction between the cav-
ity mode and the �1�↔ �2� transition of atom n �Fig. 7�e��.
Then, send atom n back through the cavity for an interaction
time ��� / ĝn�

2, which leads to �1�n �1�c→ei� �1�n �1�c.
The operations described above have accomplished a gen-

eral transformation U on the target qubit �atom n� with the
assistance of the cavity photon. However, it is noted that the
original states of the cavity mode and atoms �1,2 , . . . ,n
−1� have also changed after the above operations. There-
fore, it is necessary to return the cavity mode and atoms
�1,2 , . . . ,n−1� �control qubits� to their original states, which
can be done through the following operations:

�e� Send atoms �2,3 , . . . ,n−1� through the cavity one af-
ter another, without more than one atom staying in the cavity
simultaneously. The cavity frequency is adjusted to have the
cavity mode resonant with the �0�↔ �2� transition of each
atom �Fig. 7�a��. Choose the atomic velocity appropriately so
that the duration of atom l in the cavity equals to 3� / �2gl�
�l=2,3 , . . . ,n−1�. As a result, nothing happens to the states
�0�l �0�c and �1�l �0�c while the state �2�l �0�c becomes i �0�l �1�c
�l=2,3 , . . . ,n−1�. After this operation, atoms �2,3 , . . . ,n
−1� return to their original states and the photon, originally
absorbed by atoms �2,3 , . . . ,n−1�, is emitted back to the
cavity. This process realizes the transformation �l=n−1

2 Ulc
+ of

Eq. �28�.
�f� Send atom 1 back through the cavity. The cavity mode

is resonant with the �0�↔ �2� transition of atom 1 �Fig. 7�a��.
Choose the atomic velocity appropriately so that the passage
time of atom 1 through the cavity equals to 3� / �2g1�. Thus,
after atom 1 exits the cavity, the state �0�1 �0�c remains un-
changed but the state �0�1 �1�c changes to i �2�1 �0�c. After this
operation, the cavity mode returns to the original vacuum
state �0�c and the transformation U1c

+ of Eq. �28� is obtained.
�g� Finally, apply a � /2 classical pulse �with �=� /2� to

atom 1. The pulse is resonant with the �1�↔ �2� transition of
atom 1. This pulse leads to �2�→ �1�, completing the trans-
formation U1

+ of Eq. �28�.
The present scheme has the following advantages: �i� No

adjustment of the level spacings for each atom is required
during the operations; �ii� only one cavity is required; �iii� no
identical atom-cavity coupling constants are needed; and �iv�
the total number of basic operations is 2n+11, which is
much less than that required by the conventional gate-
decomposition protocols �20,22� when n is a larger number
�n�5�.

VIII. CONCLUSION

We have presented a method to realize a multiqubit quan-
tum controlled-U gate with SQUIDs coupled to a microwave
cavity. The method operates essentially by creating a single
photon through one of the control SQUIDs and then ex-
changing the photon between the control SQUIDs and the
cavity mode before and after a unitary transformation U is
performed on the target SQUID. The method has these ad-
vantages �i� since no tunneling between the qubit levels �0�
and �1� is required, decay from the level �1� can be made
negligibly small during the operation, via prior adjustment of
the barrier of the double-well potential �33�; �ii� as neither
the measurement on SQUIDs/photons nor auxiliary SQUID
is needed, the operation is simplified and hardware resources
saved; �iii� because coupling constants of SQUIDs with the
cavity are not required to be identical, inevitable nonunifor-
mity in device parameters is tolerable and nonexact place-
ment of SQUIDs is allowed; �iv� the method can in principle
be applied to obtain an n-qubit controlled-U gate with a large
number n, and �v� more interestingly, the gate operations are
significantly simplified as the number of qubits increases,
when compared with the use of the conventional gate-
decomposition protocols. As shown above, the present
method can be extended to implement a multiqubit
controlled-U gate with atoms in cavity QED. Finally, it is
noted that the method is also applicable to the realization of
a multiqubit controlled-U gate with quantum dots in cavity
QED �41�.

Before we conclude, it should be mentioned that the idea
of realizing multiqubit controlled phase gates with supercon-
ducting flux qubits or charge qubits has been proposed pre-
viously �42,43�. Our present work, however, deals with the
realization of a multiqubit controlled-U gate �a multiqubit
controlled “arbitrary transformation”�. Therefore, it is much
more general than the previous works �42,43�. To the best of
our knowledge, no one has yet demonstrated how to realize
an n-qubit controlled-U gate within cavity QED. We believe
that this work is of great importance since it provides a
simple protocol to realize a multiqubit controlled-U gate
with SQUID qubits or atomic qubits within cavity QED.
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