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We present a method to find the decompositions of tripartite entangled pure states with one qubit which are
smaller than two successive Schmidt decompositions. We use this method to get a classification of the en-
tangled states according to their decompositions. Furthermore, we also use this method to classify the en-
tangled states that can be interconverted through stochastic local operations and classical communication. More
general tripartite systems are briefly discussed.
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I. INTRODUCTION

Increasing interest in quantum information theory �QIT�
has motivated the study of general types of quantum en-
tanglement. Although entanglement is well understood only
for systems either of small dimensionality or involving few
parties �1�, there is no doubt of the fact that it has a central
importance in QIT. This is mainly due to simple applications,
albeit without any classical analogy, of bipartite entangle-
ment to quantum communication like teletransportation
�2,3�, superdense code �3,4�, and Einstein-Podolsky-Rosen
�EPR� protocol to quantum secret key distribution �3,5�. Fur-
thermore, strong drive for the development of quantum com-
puters is provided by their apparent intrinsic advantages, as
indicated, e.g., by the Shor factoring and Grover search
quantum algorithms �3�. In these algorithms, the coherence
of an entangled state of many qubits is crucial. In this way, a
better understanding of general entanglement is desirable.

To this effect, we notice that the achieved understanding
of bipartite entanglement is mainly based on simple decom-
positions such as the Schmidt decomposition �3,6� and also
the relative states decomposition �7–9�. Moreover, these de-
compositions are at the heart of fundamentals papers on the
meaning of entanglement in quantum mechanics since the
well-known von Neumann theory of measurement �10� and
the Einstein-Podolsky-Rosen incompleteness argument �11�.
Nowadays, these decompositions have also been central in
the description of the dynamics of the quantum correlations
�12� and in studies dealing with the emergence of a “classi-
cal” world through the phenomenon of decoherence �13�.
Another feature of these decompositions is that they are
simple, in the sense that entangled states are written as a
superposition of the smallest possible number of product
states �23�. This smallest number is usually referred to as the
Schmidt rank of the entangled state.

For tripartite systems, these decompositions may be ap-
plied recursively. In particular, for three-qubit entangled
states they give many ways of representing the entangled
state as a superposition of four factorable states. The use of
recursive Schmidt decompositions is discussed by Partovi
�14�. However, it is already known from the works of Dür,

Vidal, and Cirac �15� and of Acín et al. �16� that a simpler
decomposition with two or three product states exists, de-
pending on the particular tripartite entangled state one is
dealing with. States that can be written in terms of two prod-
uct states are usually said to be of the Greenberger-Horne-
Zeilinger �GHZ� type, or of generalized-GHZ type, and
states which require at least three product components are
said to be of the W type.

Furthermore, many applications of entangled states in
QIT are related to the nonlocal aspect of the quantum en-
tanglement. For these applications, in which the qubits are
spatially separated, it is important to know in which states
���� an entangled state ��� can be transformed through local
operations. There are many types of local operations which
were extensively discussed by Bennett et al. �17�. Here we
consider only the class of stochastical local operations with
classical communication �SLOCC�. In this case, if spatially
separated observers share an entangled state ���, and are al-
lowed to perform local operations �including measurements
and interacting ancillary systems� on their respective sub-
system and to communicate with each other classically, then
they can convert, with nonvanishing probability of success,
the state ��� to another state ����. If one restricts oneself to
reversible SLOCC, one gets a partition of the set of all states
in classes of different types of entangled states �15�. In this
way, Dür, Vidal, and Cirac �15� have shown that states of
type GHZ and type W correspond to distinct SLOCC classes.
The SLOCC classification was extended to the four-qubit
case by Verstraete et al. �18� and to the case of two qubits
and one n-level system by Miyake and Verstraete �19�. More
general aspects of SLOCC classification were also discussed
by Miyake �20�.

In this work, we start from the observation of Dür, Vidal,
and Cirac �15� that the number of product states in the small-
est decomposition of a state is in general invariant through
SLOCC. We then show how to find these decompositions for
tripartite systems with one qubit. In general, we show that
there are many decompositions which are smaller than that
resulting from two successive Schmidt decompositions,
which we call “sub-Schmidt decompositions” for short. Par-
ticularly, for tripartite systems involving one qubit and local
supports with dimensions n, n, and 2 �we call local support
the subspaces in which the reduced density matrices of each
of the subsystems are nonvanishing�, we get a classification
of all decompositions which we use to characterize all pos-
sible SLOCC classes.*Electronic address: marcio@fma.if.usp.br
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The paper is organized as follows. In Sec. II we show how
to find sub-Schmidt decompositions for entangled states with
local supports n, n, and 2 and give some examples. In Sec.
III we show how the method for finding such decompositions
can be used to define SLOCC classes. As our demonstrations
are all constructive, our treatment also provides for a way to
find SLOCC protocols to transform entangled states. We
close the paper with a discussion on the difficulties of ex-
tending the results to more general tripartite entanglement in
Sec. IV.

II. ENTANGLED TRIPARTITE STATES WITH ONE QUBIT

In order to get a better understanding of the physical and
geometrical meaning of the algebra which follows, we start
with some remarks on known results obtained by Dür, Vidal,
and Cirac �15� for the entangled three-qubit system and on
the results obtained by Sanpera et al. �21� concerning planes
in C2 � C2 spaces. Sanpera et al. �21� have shown that a
plane generated by two entangled states of a two-qubit sys-
tem contains either one or two pure states. This result is
important because, when we trace out one of the qubits of
the three-qubit system, the local support of the Hilbert space
of the two other qubits is at most bi-dimensional, i.e., a
plane. This implies that one does not need a basis for the
complete C2 � C2 space in order to represent an entangled
three-qubit state, since a basis for its local support in
C2 � C2 is sufficient. Thus we can always find a basis for its
local support with either one or two pure states, and these
alternatives correspond, respectively, to the states of class W
and of class GHZ �15�. In this way, mathematicaly, we will
follow this line of reasoning showing how to find the states
which are less entangled in planes belonging to Cn � Cn.
Physically, the existence of such states will be related to the
existence of some particular states of the subsystem that,
when measured, project the whole tripartite state onto a pure
separable state.

Consider then a pure state ��� in a space Ca
n

� Cb
n

� Cc
2,

where we have labeled the subsystems as sa, sb �two
n-dimensional subsystems�, and sc �the qubit�. Suppose also
that our state ��� has local supports with dimensions n, n,
and 2 on the subsystem spaces Ca

n, Cb
n, and Cc

2, respectively.
Note that we need to specify the dimension of the local sup-
ports of the three subsystems, in contrast with bipartite en-
tanglement, where the local supports always have the same
dimension. Of course, the dimension of any local support
cannot be greater than the product of the other two. We will
express this situation by saying that ��� is an entangled state
of dimensionality n by n by 2 or that the entanglement of ���
has dimensionality n by n by 2 if their local supports on the
subsystems have dimensions n, n, and 2, respectively. We
will also denote the dimensionality of ��� by �n ,n ,2� as a
shorthand. Then, if the tripartite system as a whole is in an
entangled state of dimensionality �n ,n ,2�, the local support
in sab=sa+sb is a bidimensional plane P�Ca

n
� Cb

n. This
plane can be easily found from any relative states decompo-
sition �7–9� of ���. Explicitly, let ��k��k=0,1 be an orthonormal
basis in Cc

2. We can write

��� = 	
k=0,1

ck�rk��k� , �1�

where �rk��P�Ca
n

� Cb
n is the relative state of �k��Cc

2 and
�ck�2 is the probability of finding sc in state �k� or sab in state
�rk�. In this way the two states �rk� span the plane P.

Let us now look for the entangled states in P having
Schmidt rank smaller than n and use them to span P and
write ���. Any state ��� in P can be written as a linear com-
bination of the two states �rk�,

��� = �0�r0� + �1�r1� , �2�

where �0 and �1 are complex coefficients. In order not to
carry unimportant normalization factors, we ignore the nor-
malization constraint on the coefficients �0 and �1. Of course
the state can easily be normalized at the end. Each bipartite
entangled state ��� can be seen as a linear mapping of Ca

n* on
Cb

n �where Ca
n* is the dual of Ca

n� defined by the partial scalar
product of any 
ua��Ca

n* with ���, 
ua ����Cb
n. The rank of

this linear mapping is the Schmidt rank of the state ���. We
are then looking for �0 and �1 such that ��� has Schmidt
rank less than n, i.e., we are looking for �0 and �1 such that
the equation


ua���0�r0� + �1�r1�� = 0 �3�

has at least one nontrivial solution 
ua��Ca
n*.

We must emphasize, at least for the moment, that the
nature of the state �ua� is in fact irrelevant, the relevant ques-
tion being: which are the �0 and �1 such that some non-null
�ua� satisfying Eq. �3� exists? The state �ua� has an interesting
physical meaning, however. Suppose there is some nonvan-
ishing �ua� for some also nonvanishing values of �0 and �1
�since we have not yet proved that they exist�, and suppose
further that we make a measurement on subsystem sa and
find it in state �ua�. Then, although the state of sab is mixed
�in particular it can be seen as a mixture involving �r0� and
�r1��, we get also a pure state for sb and, consequently, also
for sc so that the whole system is reduced to a product state.
This happens because the validity of Eq. �3� implies that
�0
ua �r0�=−�1
ua �r1�, i.e., the vectors 
ua �r0� and 
ua �r1� in
Cb

n are linearly dependent. In physical terms, the relative
state for �ua� is the same whether the state of sab is �r0�, �r1�
or in fact any state in P �other than �0�r0�+�1�r1��. If we
could find two linearly independent �ua�’s for the same �0
and �1, we would have a subspace of �ua�’s with the same
relative state for all states in P. This subspace would actually
be the null space of the linear mapping of Ca

n* on Cb
n defined

by those particular superpositions of �r0� and �r1� such that
�0
ua �r0�=−�1
ua �r1�. In this way, these particular superpo-
sitions would have Schmidt rank n less the dimension of this
subspace of �ua�’s. The existence of states �ua� with this prop-
erty has already been observed for three qubits entanglement
of dimensionality �2,2,2� by Acín et al. �16�.

In order to find a solution of Eq. �3� we choose a basis
��i�� in Ca

n and a basis ��j�� in Cb
n, so that we can rewrite it in

matrix form as
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��0R0 + �1R1�ua
* = 0, �4�

where the matrix Rk has components �Rk�ij = 
ji �rk� and the
vector ua

* has components uai

* = 
ua � i�. The Schmidt rank of
the state ���=�0�r0�+�1�r1� is the rank of the matrix ��0R0

+�1R1�. Now we assume, without loss of generality, that the
state �r1� has Schmidt rank n. Otherwise we would either
have a problem of dimensionality lower than �n ,n ,2� or �r1�
would already be a solution of our problem. We will show,
however, that the set of solutions of Eq. �4� is of null mea-
sure in P. We can rewrite Eq. �4� so that it looks like an
eigenvalue equation

�R1
−1R0 − ��ua

* = 0, �5�

where �=−�1 /�0. However, we must keep in mind that we
are not solving an eigenvalue problem since � in Eq. �5�
depends on the ratio of coefficients �1 and �0, which in turn
depends on the basis we have chosen in Eq. �1� for P. But
the number of distinct states with Schmidt rank smaller than
n in P obviously cannot depend on the basis chosen for P,
neither can their respective Schmidt rank.

In this way, we can ask what would change in Eq. �5� if
we would have chosen another basis for P in Eq. �2�. Let us
call this basis ���k��, with ��0�=a�r0�+b�r1� and ��1�=c�r0�
+d�r1� where a, b, c, and d are complex and �ad−bc�=1.
Thus, analogously with Eq. �2�, any state ��� in P can be
written as

��� = �0��0� + �1��1� .

With every state ��k�, we can associate the matrix ��k�ij

= 
ji ��k�. We can also suppose without loss of generality that
�1 is invertible. Instead of Eq. �5�, we would thus get

��1
−1�0 − ��ua

* = 0,

where �=−�1 /�0. What aspects are common to matrices
R1

−1R0 and �1
−1�0 and how are their respective eigenvalues �l

and �l related? To answer this question we define the con-
cept of the Jordan family. We will say that two matrices, A
and B, are at the same Jordan family if for each eigenvalue �l
of A there is an eigenvalue �l of B such that the rank of the
matrices �A−�l�k and �B−�l�k are equal for every positive
integer k. This is equivalent to saying that the Jordan blocks
of the matrices A and B in their Jordan canonical form have
the same structure ��22� Sec. 3.2�, although they can differ in
the numerical values of the eigenvalues. The following theo-
rem asserts that the matrices R1

−1R0 and �1
−1�0 are in the

same Jordan family.
Theorem 1. Let R0 and R1 be two n by n matrices, R1

invertible, and �0=aR0+bR1, �1=cR0+dR1 two linear com-
binations of R0 and R1 such that �1 is also invertible and
�ad−bc�=1. Then the matrices R1

−1R0 and �1
−1�0 belong to

the same Jordan family. Moreover, the relation between the
eigenvalues �l of R1

−1R0 and �l of �1
−1�0, such that, for all

positive integer k, rank�R1
−1R0−�l�k=rank��1

−1�0−�l�k is
given by

�l =
a�l + b

c�l + d
. �6�

Proof. Let us consider first the case c=0, so that a�0,
d�0, and straightforward evaluation gives

��1
−1�0 − �l�k = ��dR1�−1�aR0 + bR1� −

a�l + b

d
�k

=
ak

dk �R1
−1R0 − �l�k,

from which the desired result follows. In case c�0, we must
have c�l+d�0, since c�l+d is an eigenvalue of �1

−1 which
is invertible. In this case we first notice that

�1
−1�0 = �cR0 + dR1�−1�aR0 + bR1�

= �R1�cR1
−1R0 + d��−1R1�aR1

−1R0 + b�

= �cR1
−1R0 + d�−1�aR1

−1R0 + b� .

Dividing the polynomial az+b by cz+d we get complex �
and 	 such that

az + b = ��cz + d� + 	 ,

for any complex z. Thus it is clear that aR1
−1R0+b

=��cR1
−1R0+d�+	. Thus we have

�1
−1�0 = �cR1

−1R0 + d�−1���cR1
−1R0 + d� + 	�

= � + 	�cR1
−1R0 + d�−1

and

��1
−1�0 − �l�k = � + 	�cR1

−1R0 + d�−1 − � −
	

c�l + d
�k

= 	kck�c�l + d�−k�cR1
−1R0 + d�−k��l − R1

−1R0�k.

As �0 and �1 are linearly independent, 	�0. Moreover, as
�1 is invertible, c�l+d�0, since its an eigenvalue of �1,
and cR1

−1R0+d is also invertible. Then we have that
rank��1

−1�0−�l�k=rank��l−R1
−1R0�k as desired. �

Therefore for each eigenvalue �l found using a basis
��r0� , �r1��, the use of a different basis ���0� , ��1��, would also
give a corresponding eigenvalue �l. Moreover, the rank of
the matrix �R1

−1R0−�l�k is equal to the rank of ��1
−1�0

−�l�k. This rank for k=1 �first rank for short� is simply the
Schmidt rank of the state ��l�=�0l�r0�+�1l�rl�=�0l��0�
+�1l��1�, where �0l and �1l are such that �l=−�1l /�0l and
�0l and �1l are such that �l=−�1l /�0l. Thus the first rank can
be understood as a property of the state ��l� alone, since it
will not change if the same state ��l� is also found in another
plane. The same is not true for the higher ranks �k
2�,
which can be different for the same ��l� in different planes.
In this way, we must understand these higher ranks as invari-
ant properties of the state ��l� inside the plane P and also as
invariant properties of the whole tripartite entanglement state
��� from which P is obtained. The distinction of these higher
ranks is important for n
4. We write these states explicitly
for entangled states of dimensionality �4, 4, 2� in example 3.

If subsystems sa and sb are interchanged the result is
equivalent. In this case the states �r0� and �r1� in Eq. �3� must
be understood as linear mappings from Cb

n* in Ca
n and, instead

of the matrix R0 and R1 in Eq. �4�, we will get their respec-
tive transposes R0

T and R1
T. Thus in place of the matrix R1

−1R0
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in Eq. �5�, we will get the matrix �R0R1
−1�T which is similar

to it.
We can now use the solutions of Eq. �5� to find states in P

with Schmidt rank smaller than n and then rewrite the state
��� in terms of a smaller number of product states. More
explicitly, suppose, we have found two solutions and then
write its respective normalized bipartite states ��1� and ��2�
in P with Schmidt rank smaller than n. Using the basis
���1� , ��2�� to span P, we have

��� = ��1��c1� + ��2��c2� , �7�

where �c1� and �c2� are appropriate non-normalized states in
Cc

2, given by

�c1� = 	
k

ck�k��g11
�1�rk� + g12
�2�rk�� ,

�c2� = 	
k

ck�k��g21
�1�rk� + g22
�2�rk�� .

The metric coefficients gij appear from the fact that ��1� and
��2� are in general nonorthogonal states. We must observe
that �c1� and �c2� are in general also nonorthogonal. From Eq.
�7�, it is easy to see that ��� may be written in terms of a
number of products given by the sum of the Schmidt ranks of
��1� and ��2�. Equation �5� may have from one to n distinct
eigenvalues. In the case of a single eigenvalue, we have just
one state with Schmidt rank smaller than n and will have to
choose another state in P with Schmidt rank n. When we find
m
2 solutions of Eq. �5�, we have

m

2
�

distinct combinations of ��1� and ��2� to write ��� in Eq. �7�.
Of course, it is always possible to choose a state with
Schmidt rank smaller than n and another with Schmidt rank
n and each ��k� has also infinitely many bipartite decompo-
sitions. Then there will be always infinitely many sub-
Schmidt decompositions of ��� in Eq. �7�.

Therefore for each Jordan family to which the matrix
R1

−1R0 may belong we can associate a family of entangled
states ���. These entangled states will be all of dimensional-
ity �n ,n ,2�, except for the family of matrices proportional to
the identity matrix which implies that matrices R0 and R1 are
proportional and therefore that the qubit is not entangled
with the other two n-dimensional subsystems, i.e., in this
case, we have an ordinary bipartite entanglement with
Schmidt rank n of the two n-dimensional subsystems.

We will see in the following section that states which
belong to distinct families in fact belong to distinct SLOCC
classes. Before discussing the relation between the Jordan
families and SLOCC classification, it is convenient to dis-
cuss some examples of Jordan families and their respective
sub-Schmidt decomposition of their corresponding entangled
states.

A. Example 1: Three qubits

The properties of three qubit entangled states are well
known �1,15,16�. Here we reproduce known results for this

case in terms of the procedure described above as an ex-
ample of its use. A state ��� with entanglement of dimension-
ality �2, 2, 2� can be identified with one of the following two
Jordan families:

�a�:�1 1

0 �1
�, �b�:�1 0

0 �2
� ,

where �1��2. In case �a�, there is only one state,

���1
� = ��10�r0� + ��11�r1� ,

where �1=−��11 /��10, with Schmidt rank 1 in P, i.e., ���1
�

is the only unentangled state in P. Then, if we want to span
P, we have to choose another state ��2��P with Schmidt
rank 2 in P. From Eq. �7�, it follows that ��� can be written
as a superposition of three product states. This means that ���
is in class W �15�, since it can be converted through some
SLOCC to the state

�W� =
1
�3

��001� + �010� + �100�� .

In case �b�, on the other hand, we have two unentangled
states in P, one for each �l, given by

���l
� = ��l0

�r0� + ��l1
�r1� ,

where �l=−��l1
/��l0

. Then we can write ��� as a superposi-
tion of two product states, meaning that ��� belongs to class
GHZ, since it can be converted through some SLOCC to the
state �15�

�GHZ� =
1
�2

��000� + �111�� .

We observe that our method provides a way to decide
whether a given state is in class W or in class GHZ which is
alternate to that proposed in Ref. �15�. The dimensionality of
entanglement can easily be obtained from the determinant of
the reduced density matrices of subsystems. Once we have
verified that a state ��� involves an entanglement of dimen-
sionality �2, 2, 2�, we just have to verify whether Eq. �5� has
one or two solutions. With little further calculation we can
also get the sub-Schmidt decompositions. We will also see in
Sec. III that we can constructively determine the SLOCC
which transforms the considered state into the state �W� or
�GHZ�. All other states with entanglement dimensionality
smaller than �2, 2, 2� �smaller meaning that at least one of
local supports has smaller dimensionality and none has
higher� show ordinary bipartite entanglement or are com-
pletely unentangled states.

B. Example 2: One qubit and two three-level systems

In this example, we show new families of entangled states
which are simple to write down and which provide insight
for more general systems with higher entanglement dimen-
sionality. Let ��� be an entangled state of dimensionality �3,
3, 2�. Then ��� must be in one of the following five Jordan
families:
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�a�:��1 1 0

0 �1 1

0 0 �1
�, �b�:��1 0 0

0 �1 1

0 0 �1
� ,

�c�:��1 0 0

0 �2 1

0 0 �2
�, �d�:��1 0 0

0 �2 0

0 0 �2
� ,

�e�:��1 0 0

0 �2 0

0 0 �3
� ,

where �l��l� for l� l�. For each one of this families:
�a�: There is only one ���1

� with Schmidt rank 2 in P.
Then, to span P, we need to choose another ��2��P with
Schmidt rank 3. From Eq. �7�, we get that ��� can be written
as a superposition of five product states. We choose as the
characteristic example of this family the state

��a� =
1
�5

���10� + �21���0� + ��00� + �11� + �22���1�� .

�b�: There is only one state ���1
� with Schmidt rank 1 in

P. Then we need to choose another ��2��P with Schmidt
rank 3 to write ��� as a superposition of four product states.
We choose as the characteristic example of this family the
state

��b� =
1

2
��21��0� + ��00� + �11� + �22���1�� .

�c�: There are two states, ���1
� and ���2

� with Schmidt

rank 2 in P. Then we can use them to span P and, using Eq.
�7�, write ��� as a superposition of four product states. We
choose as the characteristic example of this family the state

��c� =
1

2
���00� + �21���0� + ��11� + �22���1�� .

�d�: There is one state ���1
� with Schmidt rank 1 and also

one state ���1
� with Schmidt rank 2 in P. Then we can use

them to write ��� as a superposition of three product states.
We choose as the characteristic example of this family the
state

��d� =
1
�3

��00��0� + ��11� + �22���1�� .

�e�: There are three states ���l
� with Schmidt rank 2 in P.

As we need only two to span P, we have three ways in Eq.
�7� to write ��� as a superposition of four product states. We
choose as the characteristic example of this family the state

��e� =
1

2
���00� + �11���0� + ��11� + �22���1�� .

Therefore an entangled state ��� of dimensionality �3, 3,
2� can be classified in five distinct Jordan families which
correspond to five distinct ways of sub-Schmidt decompos-
ing it in terms of 3, 4, or 5 product states. Moreover, we see

that there are three families with a sub-Schmidt decomposi-
tion of four product states. We see therefore that is not just
the number of product states that distinguishes entangled
states, but also the nature of the decomposition and the num-
ber of distinct decompositions �compare, e.g., cases �b�, �c�,
and �d�, which involve four product states�. As will be shown
in Sec. III, each one of these families corresponds to a dis-
tinct SLOCC class.

C. Example 3: One qubit and two four level subsystems

We will not list explicitly all families for the entangled
states of dimensionality �4, 4, 2�. There are in all 13 families,
and we will limit ourselves to discuss those which emphasize
some aspects that did not arise in connection with example 2.

We start with the following situation. Suppose that Alice,
Bob, and Carol share three qubits in a state �GHZ� or �W� and
that Alice and Bob also share two qubits in the Bell state
��+�= �1/�2���00�+ �11��. Then we can consider Alice’s and
Bob’s two qubits as our four-level subsystems and the state
of all the five qubits is an entangled state of dimensionality
�4, 4, 2�. The sub-Schmidt decompositions of these two
states are most easily obtained directly from the evaluation
of the tensor products �GHZ� � ��+� and �W� � ��+�, i.e.,

�GHZ� � ��+� =
1

2
���00,00� + �01,01���0�

+ ��10,10� + �11,11���1��

and

�W� � ��+� =
1
�6

���00,00� + �01,01���1� + ��00,10� + �01,11�

+ �10,00� + �11,01���0�� .

Our procedure further reveals that these sub-Schmidt decom-
positions are the smallest ones and that these states belong
respectively to the following Jordan families:

�a�:A =�
�1 0 0 0

0 �1 0 0

0 0 �2 0

0 0 0 �2

� and �b�:B =�
�1 1 0 0

0 �1 0 0

0 0 �1 1

0 0 0 �1

� .

Note that the Jordan family corresponding to B differs from
that corresponding to

�c�:C =�
�1 0 0 0

0 �1 1 0

0 0 �1 1

0 0 0 �1

�
only in that the ranks of �B−�1�k and �C−�1�k differ for k
=2. In this way, the local support planes in Cb

4
� Cc

4, Pb and
Pc, of any state belonging to one of the families �b� or �c�
will have only one state ���1

� with Schmidt rank 2 and all
other states in Pb and Pc will have Schmidt rank 4. Thus any
state in families �b� or �c� will have a smallest decomposi-
tion with six products states. An example of a state in this
family �c� is
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��c� =
1
�6

���10,01� + �11,10���1� + ��00,00� + �01,01�

+ �10,10� + �11,11���0�� .

Other Jordan families that differ in the higher-k ranks are

�d�:D =�
�1 0 0 0

0 �2 1 0

0 0 �2 1

0 0 0 �2

� and

�e�:E =�
�1 1 0 0

0 �1 0 0

0 0 �2 1

0 0 0 �2

� .

The ranks of �D−�1�k and of �E−�1�k differ for k
2, while
the ranks of �D−�2�k and of �E−�2�k differ for k
3. Their
respective sub-Schmidt decompositions will also involve six
product states. Examples of states of these classes are

��d� =
1
�6

���11� + �22� + �33���0� + ��00� + �21� + �32���1��

and

��e� =
1
�6

���10� + �22� + �33���0� + ��00� + �11� + �32���1��

belonging to Jordan families �d� and �e�, respectively.
Two other families which are distinguished in higher-k

ranks, k
2, for either of the two eigenvalues are

�f�:�
�1 0 0 0

0 �2 0 0

0 0 �2 1

0 0 0 �2

� and �g�:�
�1 1 0 0

0 �1 0 0

0 0 �2 0

0 0 0 �2

� .

Examples of states in these families are

�� f� =
1
�5

���11� + �22� + �33���0� + ��00� + �23���1��

and

��g� =
1
�5

���22� + �33� + �10���0� + ��00� + �11���1�� .

Another interesting family is

�h��
�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

� ,

which is the only one at this entanglement dimensionality
that needs to be subdivided into an infinity of SLOCC
classes as will be seen in Sec. III. The existence of infinitely
many SLOCC classes for entanglements of higher dimen-

sionality was already noted by Dür et al. �15� using a count-
ing parameter argument. We can write as an example of a
state in this family the state

��h� =
1

�4 + 2�a�2
���11� + a�22� + �33���0�

+ ��00� + a�11� + �22���1�� ,

where a�0, so that the associated component does not van-
ish, and a�1, which reflects the fact that all components
cannot be made simultaneously equal. This state has also five
more sub-Schmidt decompositions.

III. SUB-SCHMIDT DECOMPOSITIONS AND SLOCC

In this section we discuss the relation between the results
of Sec. II and transformation of entangled states through
SLOCC protocols. We start by establishing Lemma 1 relating
the Jordan canonical forms of the matrices R1

−1R0 in Eq. �5�
resulting from two states that are interconvertible through
some SLOCC. After this, with further analysis of the relation
between the eigenvalues given by Eq. �6�, we establish our
criterion to verify whether two given entangled states of di-
mensionality �n ,n ,2� are related by SLOCC. The result is
stated as Theorem 2.

In order to determine whether a pure state ��� can be
transformed into a state ���� through SLOCC we can use the
following theorem given in Ref. �15�: a pure state ��� can be
transformed into a pure state ���� through a SLOCC if a local
linear operator A � B � C exists such that

���� = A � B � C��� , �8�

where A, B, and C are linear operators in Ca
n, Cb

n, and Cc
2,

respectively �24�. If we consider only invertible local linear
operators in Eq. �8� we get an equivalence relation between
��� and ���� which corresponds to the same equivalence re-
lation defined by invertible SLOCC.

Let us consider what happens when using this result on
the decompositions developed in the preceding section. Sup-
pose that relation �8� is satisfied for some entangled states
��� and ���� of dimensionality �n ,n ,2� and some invertible
linear operators A, B, and C. Then, writing ��� as in Eq. �1�
and inserting in Eq. �8�, we have

���� = 	
k=0,1

A � B�rk�C�ck�k�� = 	
k=0,1

��k���ck�� , �9�

where �ck��=C�ck�k�� and ��k��=A � B�rk�. Note that the states
�ck�� are in general nonorthogonal, and that therefore the
states ��k�� are not in general the corresponding relative states
of �ck�� for ����. Since we did not normalize the operators A,
B, and C, the states �ck��, ��k��, and consequently ���� are not
normalized. We observe that the invertible linear operator C
can transform the states ck�k� into any two distinct states �ck��.
The operator A � B is obviously not so general in Ca

n
� Cb

n. A
well-known fact is that it preserves the Schmidt rank of any
state �15�. In order to understand this, we will study the
relation between the local supports P and P� of ��� and ����,
respectively, in Ca

n
� Cb

n. It is clear that, for any ����P, there
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is a unique �����P� such that ����=A � B���. Particularly,
for each one of the states �rk�, we have

��k�� = A � B�rk� .

Writing the operators A and B in the local bases of their
respective subsystems, i.e., ��i�� for A in Ca

n and ��j�� for B in
Cb

n, and the matrices �Rk�ij = 
ji �rk� and ��k��ij = 
ji ��k�� as we
did in Eq. �4�, we get

�k� = BRkA
T,

where the matrices Rk and �k� have the components �Rk�ij

= 
ji �rk� and ��k��ij = 
ji ��k��, respectively, as in Sec. II. Thus
if we use the basis ���k��� to evaluate Eq. �5� for the state
����, we will get

�1�
−1�0� = AT−1

R1
−1R0AT. �10�

Then, we see that the matrices R1
−1R0 and �1�

−1�0� are similar,
i.e., they have the same Jordan canonical form. Note that �1�
is invertible if R1 is invertible.

The fact that the operator B no longer appears in Eq. �10�
does not imply that it is unimportant, since the plane P�
generated by the basis �A � B�r0� ,A � B�r1�� is obviously dis-
tinct from the plane P� generated by the basis �A � Ib�r0� ,A
� Ib�r1��, where Ib is the identity operator in Cb

n, although
they result in the same matrix AT−1

R1
−1R0AT. Moreover, if we

interchange the roles of subsystem sa and sb, we find that A is
the operator which that no longer appears between matrices

R1
T−1

and R0
T, that is,

��0��1�
−1�T = BT−1

�R0R1
−1�TBT. �11�

We notice also that matrices �R0R1
−1�T and ��0��1�

−1�T are
similar if the matrices R1

−1R0 and �1�
−1�0� are also similar.

Thus the existence of a matrix B such that the matrices
�R0R1

−1�T and ��0��1�
−1�T are similar is equivalent to the ex-

istence of a matrix A such that the matrices R1
−1R0 and

�1�
−1�0� are similar. The existence of either of the matrices A

or B in Eqs. �10� and �11� is thus equivalent to the initial
supposition that the states ��� and ���� are in the same
SLOCC class. We have therefore proved the following
lemma:

Lemma 1. Two entangled states of dimensionality
�n ,n ,2�, ��� and ����, are interconvertible through SLOCC
if, and only if, for any basis ��rk�� for the local support of ���
in Ca

n
� Cb

n, a basis ���k��� for the local support of ���� in
Ca

n
� Cb

n exists such that the respective matrices R1
−1R0 and

�1�
−1�0� are similar.
From this Lemma 1 and Theorem 1, it is clear that two

given states, ��� and ����, are interconvertible through some
SLOCC only if they are in the same Jordan family. However,
if ��� and ���� belong to the same Jordan family the situation
is not to simple and we need further work on Eq. �6� to
verify whether ��� and ���� are in the same SLOCC class.
This can be stated as follows. Let ��� and ���� be two en-
tangled states of dimensionality �n ,n ,2� and suppose we get
the bases ��rk�� and ��rk��� for the local support planes P and
P� in Ca

n
� Cb

n from the states ��� and ���� as in Eq. �2�.
Using the method of Sec. II, we find that the matrices R1

−1R0

and R1�
−1R0� are in the same Jordan family and have the

eigenvalues ��l,r� and ��l,r��, respectively, where the index
l=1,2 , . . .L �L being the number of distinct eigenvalues� is
such that rank �R1

−1R0−�l,r�k=rank �R1�
−1R0�−�l,r��

k, that is,
the Jordan blocks corresponding to the eigenvalues �l,r and
�l,r� have the same structure. Thus we need to verify whether
we can find a basis ���k��� for P� such that the eigenvalues of
the respective matrix �1�

−1�0�, ��l,���, are all equal to �l,r for
each l. Using Eq. �6� to get �l,�� as a function of �l,r�, we
must require that the equation

�l,r = �l,�� =
a�l,r� + b

c�l,r� + d

or

�l,r�l,r�c + �l,rd − �l,r�a − b = 0 �12�

have at least one solution for all l’s with the additional con-
dition that �ad−bc�=1, that is, we have a linear system with
L equations with an additional constraint for the variables a,
b, c, and d which correspond to the coefficients of the linear
transformation �0�=aR0�+bR1� and �1�=cR0�+dR1�. Notice that
c�l,r�+d�0, since it is an eigenvalue of �1�

−1, which is in-
vertible. We observe that any nontrivial solution of the linear
system �12� intersects the surface defined by the additional
constraint �ad−bc�=1 at two opposite points �25�, that is, if
the linear system �12� has a nontrivial solution, then there are
always at least two solutions satisfying also the additional
constraint �ad−bc�=1 and differing by a sign. In this way,
we have reduced the problem of deciding if ��� and ���� are
in the same SLOCC class to the existence of a nontrivial
solution of the homogeneous linear system �12� with L equa-
tions.

In case the determinant of the linear system �12� has some
nonvanishing minor of dimension larger than 3, its unique
solution is the trivial one which is incompatible with the
condition �ad−bc�=1. Thus the states ��� and ���� will not
be in the same SLOCC class. Hence a Jordan family of states
with more than three distinct eigenvalues can be subdivided
into an infinity of SLOCC classes defined by the constraints
that all minors of Eq. �12� of dimension greater than 3 must
vanish. In case that the greatest nonvanishing minor of Eq.
�12� has dimension 3, then there are always two solutions
which differ only by a sign. Thus, in this case, we can find a,
b, c, and d such that the transformation from the basis
��r0�� , �r1��� to ���0�� , ��1��� will result in a matrix �1�

−1�0� simi-
lar to R1

−1R0 and we can find also invertible local operators A,
B, and C such that the expression �8� holds, and so the states
��� and ���� are interconvertible through SLOCC. The opera-
tor A can be obtained from Eq. �10�. Similarly, the operator B
can be obtained from Eq. �11�. The operator C can now be
obtained from Eq. �9�. Hence if we have L�3 it is always
possible to find a nontrivial solution of Eq. �12�, and every
Jordan family with less than three eigenvalues is equivalent
to a SLOCC class. We have therefore proved the following
theorem:

Theorem 2. Let ��� and ���� two entangled states of di-
mensionality �n ,n ,2� and let ��rk�� and ��rk��� being basis for
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the local support of ��� and ���� in Ca
n

� Cb
n, respectively.

Then the states ��� and ���� are interconvertible through
SLOCC if, and only if, the respective matrices R1

−1R0 and
R1�

−1R0� are in the same Jordan family and a nontrivial solu-
tion of the linear system �12� exist. Particularly, if R1

−1R0 and
R1�

−1R0� belong to a same Jordan family with three or less
distinct eigenvalues, then ��� and ���� are interconvertible
through SLOCC.

When the greatest nonvanishing minor of Eq. �12� has
dimension smaller than 3, there will be one or two free pa-
rameters in Eq. �12�. These free parameters in principle may
allow for the existence of an infinity of SLOCC protocols
depending on SLOCC class. This may easily be seen to be
actually the case in specific examples, e.g., two states in class
W. However, examples also can be found in which the matrix
�1�

−1�0� turns out to be independent of the remaining free
parameter, e.g., two states in class GHZ.

When more than one distinct eigenvalue is associated
with the same Jordan block structure there will be more than
one way to label the two set of eigenvalues, ��l,r� and ��l,r��.
The considered states, ��� and ����, will be in the same
SLOCC class provided at least one labeling can be found for
which we can get a solution to Eq. �12�. In many cases, it
will be possible to find a solution to Eq. �12� for many la-
belings. Particularly, for two states in class GHZ, there will
be always a solution for each one of the two possible label-
ings.

IV. DISCUSSION: MORE GENERAL TRIPARTITE
ENTANGLED STATES

It is easy to obtain an equation similar to Eq. �4� for
general tripartite systems. However, it appears to be very
difficult to classify the possible solutions. In the case involv-
ing one qubit we have the bonus that we could transform Eq.
�4� into an eigenvalue problem. In the general case it appears
to be very difficult to avoid being led to a system of polyno-
mial equations in many variables.

As an example, suppose we have an entangled state ��� of
dimensionality �n ,n ,n�. Using the reasoning of Sec. II, we
get that the sum in Eq. �1� now has n terms and the local
support for the subsystem sab is some n-dimensional hyper-
plane P�Ca

n
� Cb

n. We could easily get a basis for this hy-
perplane using some bipartite decomposition as done in Eq.
�1� in Sec. II, i.e., we can write any state ����P as

��� = 	
k

�k�rk� ,

where �k are complex coefficients and �rk��Ca
n

� Cb
n is the

relative state of �k��Cc
n, ��k�� being an orthonormal basis in

Cc
n. Using a basis ��i�� in Ca

n, a basis ��j�� in Cb
n, and a state

�ua��Ca
n, we get an equation similar to Eq. �4�, but with n

matrices

	
k

�kRk�ua
* = 0, �13�

where, like in Eq. �4�, Rk has the components �Rk�ij = 
ji �rk�
and the vector ua

* has the components uai

* = 
ua � i�. Keeping in

mind that we are looking for the superpositions of matrices
with rank less than n, we can easily get from

det	
k

�kRk� = 0 �14�

that there is at least one �n−1�-dimensional surface S�P in
which the states have Schmidt rank �n−1� or less. As the
constraint defined by Eq. �14� is obviously nonlinear, there
are n states in S that span P. This means that there are infi-
nitely many sub-Schmidt decompositions of ��� with
n�n−1� products. In order to identify the smaller sub-
Schmidt decompositions, we need to verify the existence of
some set of �k’s which makes null all �n−1� minors of the
matrix �	k�kRk�. For the simplest case with n=3, this gives
us a system of nine polynomials in two variables. Therefore,
for general systems, we cannot avoid very impractical con-
ditions. However, we know that states with sub-Schmidt de-
compositions exist, since we can explicitly write entangled
states of dimensionality �n ,n ,n� with less than n�n−1� prod-
ucts. As an example, we take some kind of general GHZ
state in n dimensions,

��GHZ� = 	
k

dk�ak��bk��ck� , �15�

where the dk are some complex coefficient and ��ak��, ��bk��,
and ��ck�� are linearly independent states in Ca

n, Cb
n, and Cc

n,
respectively. Particularly, it is easy to see that the family of
all states that can be written in the form �15� are in a single
SLOCC class, since there are always invertible local opera-
tors A in n dimensions taking an arbitrary set of n linearly
independent vectors dk�ak� into any other n linearly indepen-
dent vectors dk��ak��. It is similar for B taking �bk� into �bk�� and
C taking �ck� into �ck��. Thus there are always invertible local
operators A, B, and C to satisfy Eq. �8�.

We must also observe that we cannot claim to have ob-
tained a full classification of entangled states in a space Ca

n

� Cb
n

� Cc
2. In the space Ca

3
� Cb

3
� Cc

2 of example 2, for ex-
ample, we can have factorable states, bipartite states of the
three types and the two classes of example 1, which were all
previously known, and furthermore, the five additional
classes of example 2. However, in this space, we also have
entangled states of dimensionality �3, 2, 2�. In this case,
when we use the method of Sec. II we will get a local sup-
port in Ca

3
� Cb

3 with no state with Schmidt rank 3 and almost
all with Schmidt rank 2. Thus all the matrices in Eq. �4� are
noninvertible and we cannot reduce the problem to an eigen-
value form like Eq. �5�. This case was in fact solved by
Miyake and Verstraete �20�, however, there are many other
cases in which the local supports of Alice and Bob are dis-
tinct and we do not know a solution, e.g., an entangled state
of dimensionality �4, 3, 2�.

V. CONCLUSION

We have described a constructive method to find decom-
positions of tripartite entangled pure states with one qubit
which involve a number of terms smaller than one obtains
using two successive Schmidt decompositions. These de-
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compositions have been called sub-Schmidt decompositions
for short. Particularly for entangled states of dimensionality
�n ,n ,2�, we found a one-to-one correspondence between the
concept of Jordan families and the sub-Schmidt decomposi-
tions and use this correspondence to classify all sub-Schmidt
decompositions of entangled states in this dimensionality.
Moreover, from this classification of sub-Schmidt decompo-
sitions, we got a classification of these states according with
their interconvertibility under SLOCC. We also briefly dis-
cussed the difficulties in generalizing our methods to more

general systems. We expect that these results will contribute
to the understanding of higher dimensional and multipartite
entanglement.
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