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In this paper we build on the ideas presented in previous works for perfectly transferring a quantum state
between opposite ends of a spin chain using a fixed Hamiltonian. While all previous studies have concentrated
on nearest-neighbor couplings, we demonstrate how to incorporate additional terms in the Hamiltonian by
solving an inverse eigenvalue problem. We also explore issues relating to the choice of the eigenvalue spec-
trum of the Hamiltonian, such as the tolerance to errors and the rate of information transfer.
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I. INTRODUCTION

In a quantum computer, it will be necessary to perform
gates between distant qubits, whereas the strength of interac-
tion tends to reduce with distance, such that it is impractical
to interact them directly. A typical response is simply to ap-
ply a series of SWAP gates to bring the qubits together so that
they can interact. This, however, is cumbersome and risks
introducing significant errors. Instead, it has been proposed
that an ancillary device be introduced to act as a quantum
wire. This wire would be a chain of qubits, with a fixed
interaction, capable of transferring a quantum state from one
end of the chain to the other. Following the initial investiga-
tion of wires �1�, and subsequent demonstration that perfect
quantum wires exist �2,3�, a large number of papers have
been published about optimizing the schemes over a variety
of parameters such as the robustness against errors, or a re-
stricted ability to engineer the state �see, for example, �4–7��.
Novel modifications of such chains have also been presented
for the generation of entangled states or the application of
unitary operations during the transfer �8�. The overhead of
local SWAP gates is thus replaced by an engineering require-
ment. Such engineering can, however, be tested before the
chain is used in a practical situation.

None of these previous works have demonstrated perfect
state transfer in a system that has realistic couplings, facili-
tated by dipole-dipole or Coulomb interactions, for example.
Once such a coupling is introduced, the fidelity of these
schemes is reduced below unity �9�. Alternatively �5�, two of
these imperfect chains can be used in parallel to perfectly
transfer the state. However, the tradeoff is that there is no
definite time at which the state has arrived. Instead, there is a
measurement which will reveal whether the state has arrived
or not. In this paper, we show how to adapt to arbitrary
coupling schemes, hence pushing transfer schemes toward
physical realization. This is achieved by an iterative algo-
rithm founded on the concept of inverse eigenvalue problems
�IEPs�. The relation between IEPs and perfect state transfer
has previously been noted in �7,10�. Given this relation-
ship, it is also important to understand why we might choose
a particular set of eigenvalues, and how this affects the
robustness of the chain when it experiences noise or other
imperfections. We explore these issues in the second part of
this paper.

II. INVERSE EIGENVALUE PROBLEM

In order to make the connection to an IEP, we choose to
make two assumptions. First, by assuming the Hamiltonian
is spin preserving, ���z ,H�=0, the problem is reduced to
subspaces, and we can concentrate only on the first excita-
tion subspace �3�. By ensuring a single excitation is correctly
transferred, a quantum state is also transferred because the
state �00¼0� is an eigenstate of the Hamiltonian. In the
single excitation subspace, the basis states are denoted by
�n�, indicating the presence of the excitation on qubit n.

Second, we shall assume the Hamiltonian is centro-
symmetric �otherwise known as mirror symmetric�. This
means that for a chain of N qubits, the coupling between
qubits i and j is the same as that between qubits N+1− i and
N+1− j. Throughout this paper, we discuss chains of spins
because these are the most efficient in terms of the number of
qubits used. Further, following �11�, we are assured that if
the Hamiltonian can be mapped to a fermionic system �for
example, the XY model can be mapped to a fermionic system
by the Jordan-Wigner transformation�, then by using a chain
we get perfect state transfer in all excitation subspaces.

The assumption about symmetry is useful because it en-
sures that the eigenvectors of the Hamiltonian are always
symmetric or antisymmetric �12�. It is well known that a real
tridiagonal matrix that exhibits these features has the addi-
tional property that when ordered with increasing eigen-
value, the eigenvectors are alternately symmetric or antisym-
metric �see, for example, �13��. There are no concrete
statements of this form for the more generalized problem of
non-nearest-neighbor couplings. However, we can invoke the
physical restraint that the coupling strengths should drop off
with distance, for example 1/r3. The symmetry of the Hamil-
tonian is maintained, so the eigenvectors are still symmetric
and antisymmetric. Only the eigenvalues are shifted. How-
ever, because the coupling strengths fall off with distance,
they act as perturbations in comparison to the tridiagonal
case. Provided these perturbations are smaller than the spac-
ing between the original energies, then the Hamiltonian will
still have the alternating structure of symmetry of the eigen-
vectors. This assures us that in this physically reasonable
situation, a solution exists to the IEP, and that we know
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enough about the system to be able to generate perfect state
transfer.

Let us denote the eigenvectors of the Hamiltonian by ��n�,
ordered such that the eigenvalue �n��n−1. The symmetry
condition means that �i ��n�= �−1�n�N+1− i ��n�. We are par-
ticularly interested in the case of i=1, since this relates the
initial state �1� to the output state �N�. Starting with a single
excitation at one end of the chain, we have �an��n�= �1�.
After a time t, the overlap of the evolved state and the target
state �N� is

�
n

ane−i�nt�N��n� = �
n

ane−i�nt�− 1�n�1��n� .

Hence, if we apply the simple constraint on the eigenvalues
that e−i�nt0 = �−1�n for all n, we get perfect state transfer in
time t0. This has previously been observed for tridiagonal
structures �7,10�, but we emphasize again that this applies to
all centrosymmetric chains with coupling strengths that fall
off with distance, or any other centrosymmetric network for
which we have sufficient information about the ordering of
the symmetry of the eigenvectors.

The problem is now reduced to taking a desired eigen-
value spectrum, and a prescribed structure for the Hamil-
tonian, and solving for any free parameters that we might
have �coupling strengths, site spacings, local magnetic fields,
etc.�. Some classes of this problem are well-studied topics in
the subject of IEPs �12�. We now present a generalization of
the technique described in �14�, designed to cope with the
arbitrary nature of H.

Let us assume that we have a Hamiltonian H��� � which is
represented by an N�N matrix in the first excitation sub-
space. This Hamiltonian depends on N parameters 	�i
, en-
suring that there are enough free parameters to be able to find
a solution. Our desired eigenvalues are contained in the
N�N diagonal matrix �.1

We start with a first estimate to �� , �0� . The matrix H��0� � is
diagonalized by U0,

H��0� � = U0��1 + �E0�U0
†,

where E0 is a diagonal matrix that encapsulates the errors in
the energies, and � is a small parameter. For our next guess,

we will choose a vector �1� =�0� +�	��. Again, we can diago-
nalize the Hamiltonian,

H��1� � = U1��1 + �E1�U1
†. �1�

We choose to parametrize U1 in terms of �,

U1 = U0�1 + i�Q��1 − i�Q�−1,

where Q is a Hermitian matrix containing information on the
change in eigenvectors. This parametrization ensures that U1
is unitary, and that U0

†U1→1 as �→0. We can substitute this
into Eq. �1�, and expand in terms of �. The terms for �0

cancel, so we choose to collect the terms for �1:

�
i

	�iU0
†� �H

��i
�

�0�
U0 = �E1 − �E0 + 2i�Q� − �Q� .

The aim of the iteration should be to choose 	�� such that E1
is minimized. Note that the diagonal elements of the final
term Q�−�Q are zero. Hence all the eigenvalue information
is encapsulated by the diagonal elements of the equations,
while changing eigenvectors only affects off-diagonal ele-
ments. Therefore, we select E1 to be the zero matrix, and
rewrite the previous equation for just the diagonal elements,

K · 	�� = e� . �2�

e� is a vector of the diagonal elements of −�E0, and the ith
column of the matrix K is given by the diagonal elements of

U0
†� �H

��i
�

�0�
U0.

The solution to Eq. �2� is the vector 	��, which gives the

correct eigenvalues to O��2�. Provided 	�� is small in com-

parison to �0� , we can continue to iterate, squaring the error at
each step. Hence, to achieve an accuracy of �0, we only need
O(log��0�) iterations. Since there are efficient algorithms for
solving Eq. �2�, and because the matrices that we want to
diagonalize are symmetric �hence there are efficient diago-
nalization procedures, such as Householder reductions �15��,
the cost of each iteration scales polynomially �O�N3�� with
the number of qubits in the chain �15�. This means that we
can solve for the required parameters with an efficient clas-
sical computation.

A. Examples

As an example, we could consider a system of six spins,
arranged along a line, with separations and local magnetic
fields as indicated in Fig. 1. As we have already seen, exact
solution is possible if the couplings do not extend beyond
nearest neighbors. Instead, we shall now consider them to
have a dipole interaction, so the potential �1/r3. Hence the
Hamiltonian in the first excitation subspace is of the form

1Note that when we calculate the eigenvalues of H and compare
them to our desired values, we need to match up the pairs correctly,
such that the differences are minimized. When implementing this, it
is readily achieved because eigenvalue-solving algorithms produce
the eigenvalues in a well-defined order. For example, MATHEMATICA

sorts the eigenvalues in terms of absolute value. Since it is more
convenient to have them sorted in numerical order, we can add a
large �in comparison to the maximum eigenvalue� identity matrix to
the Hamiltonian, ensuring that all the eigenvalues are positive.

FIG. 1. Example of six spins with local magnetic fields and
coupled with a dipole-type coupling.
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Solving for the eigenvalues in this general form and then
equating these with the desired spectrum is certainly not an
easy proposition. As we have seen, however, we can apply
the algorithm described here, aiming for a spectrum of − 5

2 ,
− 3

2 , − 1
2 , 1

2 , 3
2 , 5

2 . The required values we find are given in
Table I, and are compared to those without the additional
couplings.

One implicit assumption that we have made is that the
Hamiltonian H��� � is differentiable. There are some physical
systems in which this might not be true. For example, we
may be constrained to having to place spins on lattice sites of
another material. Choosing which lattice sites to place the
spins on is a discretized form of the problem, and is not
covered in this formalism. The best that we can achieve is to
allow some additional engineering, such as local magnetic
fields, and tune these to give the closest match to a particular
spectrum �6�. We could envisage a variety of such systems in
which we do not have control over a sufficient number of
parameters. Instead of N simultaneous equations for N vari-
ables, we have N equations for m
N variables. We can
solve for these variables in a least-squares sense, minimizing
the quantity �E1. Hence, while perfect state transfer might
not be possible, we can maximize the fidelity of transfer. In
Fig. 2 we have examined the case of N=31, demonstrating
that even without full control of a sufficient number of pa-

rameters, we can get higher fidelity than by simply assuming
nearest-neighbor couplings.

III. CHOICE OF SPECTRUM

We now have an algorithm that takes a desired spectrum
as input, and outputs the values of the parameters that we
have access to in our Hamiltonian. It is therefore relevant to
ask what spectrum we should choose. Unsurprisingly, the
preferred spectrum is a tradeoff between different properties.

A. Coupling variation

One complaint that has been leveled at the construction of
the original quantum wire �2� is that the coupling strengths at
the end of the wire are much smaller than those in the middle
�by a factor of �N�. This issue is relatively easy to correct �7�
by specifying a different spectrum, which closely matches
that for the uniformly coupled spin chain. This selection of
eigenvalues is still applicable to the ideas presented here. For
example, we could take a chain of 31 spins, with uniform
couplings and no magnetic field. We can solve for these ei-
genvalues, and truncate them to some precision �two decimal
places in this example�. We can then “nudge” them slightly
to give a spectrum suitable for perfect state transfer. The
results we get require a variation in position of less than 1%
about the mean, and require local magnetic fields of the order
of 10−2. There are, however, tradeoffs in terms of robustness
against errors in the distances, and in terms of the time at
which the arriving state is removed from the system. These
problems are illustrated in Fig. 2. Here we see that slight
errors in the positions �i.e., the uniformly coupled chain�
give far worse state transfer fidelity. We also see that the
peak is very tightly confined in comparison to the original
state transfer chain.

B. Scaling of the state transfer time

As presented in �2�, the original state transfer chain has a
fixed transfer time t0=� /2. However, there are two physical

TABLE I. Parameters for perfect state transfer for spin chain of
Fig. 1.

Parameter
Exact nearest-

neighbor solution
Dipole-coupled

solution

B1 0 0.491

B2 0 −0.118

B3 0 −0.373

r1 0.765 0.967

r2 0.707 0.902

r3 0.693 0.886
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restrictions that we might consider applying to the chain
which cause us to restate the transfer time. First, we might
choose to bound the maximum energy of the chain. In this
case, we have to rescale the spectrum to fit within this bound,
making the energy differences smaller. Since �max�N, when
we rescale, we find that t0�N. To minimize this scaling, we
therefore want to choose a spectrum whose maximum eigen-
value is O�N�, and not O�N2�, for example. Note that the
uniformly coupled chain has a spectrum �k=2 cos�k� / �N
+1��, which has a minimum spacing �1/N2 for large N �3�.
This minimum spacing corresponds to an upper bound to
1/ t0, i.e., t0�N2.

The second approach is the most physically
reasonable—we bound the maximum coupling strength in
the system. For the original transfer chain, the maximum
coupling strength is at the middle of the chain, �N. Hence,
if we fix this to be constant by rescaling all of the coupling
strengths, t0�N. However, if we consider the chain with
almost uniform couplings, clearly there is no such vari-
ation. This is a very special case, and indicates that there
is no direct correlation between general properties of a spec-
trum �such as E�N2� and the coupling strengths. Since
we can only choose the spectrum, it is very hard to apply this
criterion.

C. Timing errors

A further concern is the tolerance of the chain to a variety
of errors. Perhaps the simplest case to consider is a timing
error. If the perfect state transfer time is t0, what is the fidel-
ity of transfer, f = ��N�e−iHt�1��2, at a time t0+	t? Clearly, it is
preferable to have a broad peak, thereby maximizing the tol-
erance to such errors. The fidelity of transfer at such a time is
calculated from

�N�e−iH�t0+	t��1� = �
n

�an�2�− 1�ne−i�n�t0+	t�

� 1 − i	t�
n

�an�2��n − �1�

−
	t2

2 �
n

�an�2��n − �1�2

�up to an irrelevant global phase� by taking the mod square,

f = 1 −
	t2

2 �
n

�an�2��n − �1��
m

n−1

�am�2��n − �m� + O�	t4� .

Given that we have ordered our eigenvalues such that
�n
�n+1, we can provide a simple lower bound for this
quantity,

FIG. 2. Attempted perfect state transfer under various coupling scenarios. An overlap of 1 indicates perfect state transfer. �a� Uniform
coupled chain. �b� Near-uniform couplings �within 1% of mean� with all spins coupled with a 1/r3 interaction, without the ability to engineer
local magnetic fields. High-fidelity state transfer is possible. �c� Near-uniform couplings with ability to engineer positions of spins and local
magnetic fields, enabling perfect state transfer. �d� The original perfect state transfer chain, which has a much wider peak and no periodic
revivals at times t
 t0.

ALASTAIR KAY PHYSICAL REVIEW A 73, 032306 �2006�

032306-4



f � 1 −
	t2

2 �
n

�an�2��n − �1�2.

This bound is easily optimized by choosing a spectrum with
minimum spread, and it is also clear that this will do a good
job �although not perfect� of optimizing the fidelity. The
spectrum that satisfies this condition is just that which is
used in the original chain �2�, with eigenvalues 0 , ±2 , ±4
etc. We refer to this spectrum as the spectrum of minimal
spread �SMS�.

D. Manufacturing errors

One other class of errors that we need to consider are
static errors, introduced at the manufacturing stage. If it is
only possible to manufacture coupling strengths to within a
certain tolerance, can we select a spectrum that minimizes
the negative impact on the fidelity of transfer? We will con-
sider, independently, the effects when this error propagates to
errors in the eigenvalues and eigenvectors of the Hamil-
tonian.

Let us first justify that errors in eigenvalues and eigenvec-
tors are equally destructive. If a single eigenvalue is affected
by an amount 	 �which is equivalent to an error in a coupling
strength of order 	, independent of the eigenvalues�, the fi-
delity is only affected by O�	2�—the first order effect only
changes the phase of the incoming state, not the arrival prob-
ability. If an eigenvector is altered by errors on the chain,
then it can still be written as a sum of a symmetric vector and
an antisymmetric vector, by using a discrete form of 2g�x�
= �g�x�+g�−x��+ �g�x�−g�−x��. Of course, we cannot change
only one eigenvector, since we need to maintain an orthogo-
nal set of vectors. We can test what happens when

��1� → �1 − 	2��1� + 	��2� ,

��2� → 	��1� − �1 − 	2��2� , �3�

which serves to indicate the general properties of the errors.
In particular, we can calculate that the fidelity of transfer is
still only affected to O�	2�. Hence, errors in the eigenvectors
are no more destructive than errors in the eigenvalues.

Recall that the condition we imposed upon the eigenval-
ues was e−i�nt0 = �−1�n, which means that if there is an error in
�n, we are concerned with how close �nt0 /� is to an integer.
Hence if �n is of the form �n

ideal+	� / t0, then 	, the inaccu-
racy, must be small in comparison to 1, not �n

ideal. When we
quote the accuracy to which an eigenvalue must be engi-
neered, we consider it as a fraction of �max. Hence, this frac-
tion is largest for the spectrum with smallest maximum ei-
genvalue, i.e., the SMS.

To consider the effect of errors on the eigenvectors, and
how to counter them is a more difficult problem because we
do not have any direct control—our eigenvectors are deter-
mined by the choice of spectrum and the Hamiltonian. How-
ever, we can make some progress. Let us introduce the
N�N symmetry operator S, defined by

Si,j = 	i,N+1−j .

This operator commutes with the centrosymmetric Hamil-
tonian �this is how we prove the symmetry of the eigenvec-
tors of H�, and hence should be effective at detecting any
symmetry that is broken by the effects of noise, by calculat-
ing �H ,S�. Let us, again, consider the effect described in
Eq. �3�:

�H,S� = 2	�1 − 	2��1 − �2����1���2� − ��2���1�� .

This tells us that a fault in the coupling strength Jn�=Jn+	
will translate into an error in the eigenvectors of approxi-
mately 	 / ��1−�2�. Minimizing this error is achieved by
maximizing the energy difference �1−�2. This would appear
to counter the effect that we just observed for the eigenval-
ues. However, we note that in the general case, where we
have to consider all of the eigenvectors being affected, the
most significant error is related to the smallest energy differ-
ence which, in turn, is determined by the state transfer time,
which we are holding fixed. Hence, the choice of spectrum
has limited effect on how the eigenvectors contribute to a
reduction in the fidelity. It is more important to optimize for
errors in the eigenvalues.

E. Rate of information transfer

So far, we have considered only one simple protocol for
transferring states with our chain; we place states on the
chain at some time t=0, and either remove them from the
chain, or interact them with another qubit �leaving them on
the chain� at t= t0. However, the rate of transfer suffers at this
stage because if we bound the energy of the chain, the state
transfer time increases with N �in the case of the SMS�. If we
restrict ourselves to only being able to access a fixed number
of qubits at each end of the chain, then the transfer rate
�1/N. Is there something better that we can do, perhaps
allowing some fixed reduction in fidelity? We restrict our-
selves, without loss of generality, to being able to access only
a single qubit at each end of the chain.

Consider placing an excitation �1� onto a chain with a
state transfer Hamiltonian H at a time t=0. At some time
td
 t0, we shall discard the information on qubit 1, and re-
place it with a new quantum state. We need to evaluate the
fidelity of arrival of the initial state when the replacement we
make is to place the first qubit in the �0� or �1� state. The first
period of evolution gives us

�1� → �
n−1

N

�n�td��n� ,

where �n�td� is the amplitude of the state at time td on qubit
n. If the first qubit then gets indiscriminately reset to the �0�
state, the resulting density matrix is

�td� = ��1�td��2�0��0�

+ �e−iHtd�1� − �1�td��1����1�eiHtd − �1
*�td��1�� .

After the further evolution for a time t0− td, we expect to
be able to remove the state from qubit N. The state at this
time is
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�t0� = ��1�td��2�0��0�

+ ��N� − �1�td�e−iH�t0−td��1����N� − �1
*�td��1�eiH�t0−td�� .

Given that the chain is centrosymmetric, �N�t0− td�=�1
*�td�.

Hence, we find that the fidelity of transfer is

f0 = �1 − ��1�td��2�2.

Similar arguments lead to a calculation of the fidelity of
transfer when we reset to the �1� state. This is complicated
compared to the previous argument because we now enter
the second excitation subspace. The structure of higher exci-
tation subspaces can be described by the eigenvectors
through the Slater determinant �see, for example, �11��. An
alternative approach is to make use of the wedge product,
whose application to these systems was described in �16�.
With a probability �1− ��1�td��2�, we introduce a second
excitation into the system, and the state is described by

�1� Ù �e−iHtd�1� − �1�td��1�� .

The properties of the wedge product automatically mean that
it is impossible to get two excitations on a single spin
��1�Ù �1�=0�, and the evolution of the state is described by
applying the single excitation evolution to each component,

→�e−iH�t0−td��1�� Ù �N� = �
n=1

N−1

�n�t0 − td��n,N� . �4�

We conclude that if the reset was made, the state definitely
arrives. The other possibility, of having a �1�, occurred with
probability ��1�td��2, and after a time t0− td gives an �N� with
probability ��1�td��2. Hence

f1 = 1 − ��1�td��2 + ��1�td��4 = f0 + ��1�td��2.

With this formalism, we can clearly calculate similar transfer
fidelities in all excitation subspaces, and we find that the
minimum fidelity is f0, provided �1�t� is a decreasing func-
tion for t
 t0. By symmetry, the fidelity of arrival the newly
added state at a time td+ t0 on qubit N is the same, if the first
state is removed at time t0. These fidelities only depend on
��1�td��2, which is the fidelity with which the initial state is

still on the first qubit at time td. Therefore, to maximize the
rate of information transfer, we select the chain with the
thinnest peak, the opposite of Sec. III C, but this already
assumes that we have control of the timings to within
the width of the peak. Figure 2 also serves to illustrate an-
other point that we have to be careful of. For the original
state transfer chain, �1�td� is a decreasing function for times
td
 t0, and hence the effect if we also add an extra state at
2td, as well as at td, is small, to the point that it becomes
insignificant. However, other spectra can give periodic reviv-
als on the first spin during the transfer. We have to ensure
that we avoid all of these, which potentially reduces the rate
of information transfer.

For the SMS, this protocol enhances the transfer rate to
�1/�N, for some fixed reduction in fidelity �. This is an
enhancement over �17�, where it was demonstrated how a
uniformly coupled ring, in combination with Gaussian wave
packets �to minimize dispersion�, could be used to give a
transfer rate, which was lower bounded by 1/N. One point to
note is that the process of removing the state at t= t0 �Eq. �4��
means that only a single excitation is left on the chain.
Hence, there are only ever O��N� excitations on a chain, and
we never saturate the number of excitations on the chain.

IV. CONCLUSIONS

In conclusion, we have demonstrated that perfect state
transfer is possible in the presence of next-nearest-neighbor
couplings by presenting an algorithm that correctly calcu-
lates the couplings for any specified system. If sufficient free
parameters are not available, the formalism presented here is
easily adapted to find the optimal solution in a least-squares
sense. This technique may generally be useful when, as a
first approximation, people have considered the restriction to
nearest-neighbor couplings �8�, and would subsequently like
to extend their networks to include more realistic Hamilto-
nians, such as those met in physical implementations. We
have also discussed some of the issues relating to what spec-
trum should be chosen for the state transfer, demonstrating
that the spectrum originally proposed in �2� is close to opti-
mal in terms of robustness against a range of errors.
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