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We study entanglement dynamics of a couple of two-level atoms resonantly interacting with a cavity mode
and embedded in a dispersive atomic environment. We show that in the absence of the environment the
entanglement reaches its maximum value when only one excitation is involved. Then, we find that the atomic
environment modifies that entanglement dynamics and induces a typical collapse-revival structure even for an
initial one photon Fock state of the field.
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I. INTRODUCTION

Entanglement generation between two atomic qubits has
attracted considerable attention during the last two decades
due to its importance in various quantum information pro-
cesses �1,2�. Those ideal processes, such as quantum telepor-
tation, quantum cryptography, and quantum computation al-
gorithms, are strongly related to the capability of generating
bipartite entanglement �3–5�. However, in real quantum sys-
tems there are uncontrollable interactions with the surround-
ing environment which usually lead to a decoherence result-
ing in the destruction of the entanglement. Recently, several
effects of different kinds of noisy environments, specifically
bosonic environment �6–11�, and fermionic environment
�12–17� on the entanglement dynamics have been exten-
sively studied. Special effort was applied to find decoherence
free entangled states �14,15�. For instance, Kraus and Cirac
�9� show that two atoms can get entangled by interacting
with a common source of squeezed light and the steady state
is maximally entangled even though the modes are subjected
to cavity losses. Zheng and Guo �18� proposed a scheme to
generate two-atom electron paramagnetic resonance states in
such a way that the cavity is only virtually excited. Schneider
and Milburn �11� show how the steady state of a dissipative
many-body system, driven far from equilibrium, may exhibit
nonzero quantum entanglement. Molmer and Sorensen �19�
have proposed a scheme for the generation of multiparticle
entangled states in ion traps without the control of the ion
motion.

Although the effect of the environment on the atomic en-
tanglement is usually destructive, in some specific situations
two quantum systems can get entangled in the process of
their decaying to a common thermal bath �20,21�. A similar
effect was discussed in �22� where a method of generation of
entangled light from a noisy field has been proposed. It was
also shown �17� that the interaction between two spins and
an itinerant electron environment leads to entanglement of
the initially unentangled spins.

In this article we study how an effective atomic environ-
ment modifies the atomic entanglement generated in the
course of resonant interaction of a single mode of the cavity
field with a couple of two-level atoms �the so-called Dicke or
Tavis–Cummings �23� model�. Evolution of entanglement in

the two-atom Dicke model was previously studied in the case
of an ideal cavity in �24� and in the presence of a dissipative
environment in �25�. Our study is motivated by the following
physical situation: consider a cluster of two-level atoms
�resonant with a mode of a cavity field� placed in a strong
electric field �see, e.g., �26,27��. Physically it could be a clus-
ter of polar molecules. The electric field generates a notice-
able Stark shift so that most of the atoms are detuned far
from the resonance, except a very small portion of them,
whose dipole moments are approximately orthogonal to the
field. Because the atom- �quantum� field interaction times are
much shorter than the typical times of atomic diffusion, we
can consider that the orientation of the dipole moment is
“frozen” and that the physical mechanism of changing the
atomic dipole orientation is a collision with the cavity walls,
since collisions between the atoms in an atomic cluster are
practically improbable. In the process of interaction with the
cavity field the resonant atoms become entangled. We will
study the simplest situation where there are only two reso-
nant atoms. Nevertheless, the effect of nonresonant atoms on
the dynamics of resonant ones is not trivial. The dispersive
interaction of the field mode with nonresonant atoms leads to
a modification of the field’s phase which, in turn, affects the
evolution of resonant atoms. Thus, the nonresonant atoms
play the role of an effective dispersive environment whose
whole effect could be expected to reduce to a phase damping
�28�, and thus to the entanglement decaying. Nevertheless, as
it will be shown, the influence of such effective environment
is not always destructive but also leads to a constructive
interference, which reflects in appearance of a system of col-
lapses and revivals of the atomic concurrence even in the
presence of just a single photon in a cavity. The article is
organized as follows: In Sec II we analytically show, for
some specific initial conditions �nonexcited atoms and the
field in a Fock state�, that the entanglement of formation in a
bipartite system of two-level atoms interacting with a quan-
tized mode reaches its maximum value when only one exci-
tation is involved and it decays as 1/n when n�1, n being
the number of photons in the initial Fock field state. In Sec.
III we derive the effective Hamiltonian of noninteracting
two-level �resonant� atoms and a cluster of A atoms �far from
resonance� interacting simultaneously with a quantized mode
and we find the evolution operator when only one excitation
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is considered. In Sec. IV we study the effect of the dispersive
atomic environment on the entanglement dynamics gener-
ated by one excitation for two different initial conditions. In
Sec. V we summarize our results.

II. ENTANGLEMENT IN THE TWO-ATOMS DICKE
MODEL

By entanglement of two subsystems we mean the quan-
tum mechanics feature whose state cannot be written as a
mixed sum of products of the states of each the the
subsystems. In this case the entangled subsystems are no
longer independent even if they are spatially far separated. A
measure, E�����, of the degree of entanglement for a pure
��� state of a bipartite system can be given by means of the
entropy of von Neumann, of any of the two subsystems.
For a mixed state � the entanglement of formation E��� be-
tween two bidimensional systems is defined as the infimum
of the average entanglement over all possible pure-state
ensemble decompositions of � �29�. Wootters �29� found
an analytic solution to this minimization procedure in terms
of the eigenvalues of the R=����̃�� or R�=��̃
non-Hermitian operators, where the tilde denotes the spin flip
of the quantum state. The solution for the C��� concurrence
associated with the entanglement of formation of a mixed
state of a bipartite of bidimensional subsystems is given by
C���=max�0,�1−�2−�3−�4	, where the �i’s are the square
roots of eigenvalues of the R� operator and the eigenvalues
of the R operator, decreasingly ordered. Throughout this ar-
ticle we consider this C��� as a measure of the entanglement
degree between the two resonance atoms a and b.

Let us consider two identical two-level atoms resonantly
interacting with a single-mode cavity field. The interaction
Hamiltonian has the form

H = g�a�s+a + s+b� + a†�s−a + s−b�	 , �1�

where s+j = �1� j j
0� and s−j = �0� j j
1�, with �1� j and �0� j being
the excited and ground eigenstates of �zj of the jth atom
�j=a ,b�, a and a† are, respectively, the creation and annihi-
lation operators for the cavity mode, g is the atom-cavity
coupling strength. Considering initially a Fock field state and
both atoms in their ground states, the reduced atomic density
operator, at time t, is

�ab =
�nCn�t� + n − 1�2

�2n − 1�2 �0�a�0�ba
0�b
0� +
nSn

2�t�
2n − 1

��+�abab
�+�

+
n�n − 1��1 − Cn�t��2

�2n − 1�2 �1�a�1�ba
1�b
1� , �2�

where we have defined the functions

Cn�t� = cos��2�2n − 1�gt� ,

Sn�t� = sin��2�2n − 1�gt�

and the symmetric state

��+�ab = ��0�a�1�b + �1�a�0�b�/�2.

So, the C��ab� concurrence of the Eq. �2� density operator is
given by

C��ab� =
nSn

2�t�
2n − 1

− 2
�n�n − 1�
�2n − 1�2 �nCn�t� + n − 1��1 − Cn�t�� ,

�3�

when it is positive and is zero otherwise. Both terms on the
right hand side of Eq. �3� are zero for n=0, whereas the
second term is also zero for n=1 and, for other values of n,
the second term always reduces the concurrence. Therefore,
as a function of the number n of excitations, the concurrence
�3� acquires its maximum value for n=1 at any time instant
and it is given by C��ab�=sin2��2gt�. On the other hand, for
n�1 the concurrence �3� behaves as

lim
n�1

C��ab� �
1 − cos��2�2n − 1�gt�

n
. �4�

The behavior of C��ab��n−1 in the limit n�1 was found
numerically by Tessier et al. �24�. Figure 1 shows the con-
currence as a function of the n initial Fock state, and the gt
adimensional time. Black means value 1, maximum en-
tanglement, white means value zero, whereas grays mean
partial values of entanglement. It can be seen that maximun
value 1 is only reached for the initial condition �n=1�. In the
next section we study how the concurrence is affected by the
presence of an effective atomic environment when only one
excitation is involved.

III. EFFECTIVE HAMILTONIAN DESCRIPTION

We consider a collection of A+2 nonidentical two-level
atoms interacting with a single mode of aquantized field in
an ideal cavity. Two atoms, labeled by subindexes a and b,
are resonant with the mode, whereas the other A atoms in-
teract dispersively with the mode. The Hamiltonian which
drives the unitary dynamics of the whole system under the
rotating wave approximation has the form

FIG. 1. Concurrence as a function of the adimensional time gt
and of the n initial field Fock state, when both a and b atoms are
initially unexcited. Black means value 1, maximum entanglement,
white means value zero, and grays stand for partial values of
entanglement.
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H = � fa
†a + 


i=a,b
�iszi + 


j=1

A

� jszj + 

j=a,b,1

A

gj�as+j + a†s−j� ,

�5�

where a† and a are the usual one mode field operators, and
sz,±j are the z components of the Pauli operators correspond-
ing to the jth two-level atom �j=a,b,1, . . . ,A�. Atomic op-
erators obey the standard SU�2� commutation relations,
�s+i ,s−j�=2szi	ij and �szi ,s±j�= ±s±i	ij. Since the total number

of excitations, represented by the operator N̂=a†a
+
 j=a,b,1

A szj, is an integral of motion, the above Hamiltonian
can be rewritten as follows:

H = � fN̂ + Hint, �6�

with

Hint = 

j=1

A


 jszj + 

i=a,b

gi�as+i + a†s−i� + 

j=1

A

gj�as+j + a†s−j� ,

�7�

where 
k=�k−� f, k=1, . . . ,A are the detunings between the
transition of the kth atom and the mode frequency. Now, we
assume that all A atoms are far from the resonance, so that

 j �gj, j=1,2, . . . ,A. The effective Hamiltonian, approxi-
mately describing the interaction process, can be obtained
from the interaction Hamiltonian �7� by using the method of
Lie rotations �30,31�, namely by applying to the Hamiltonian
�5� the following unitary transformation:

V = eB̂, B̂ = 

j=1

A

� j�as+j − a†s−j� , �8�

where � j =gj /
 j �1. Neglecting terms of order higher than
� j

2, we obtain the following effective Hamiltonian:

Hef f = 

j=1

A

�
 j + gj� j�1 + 2a†a��szj + �̂ 

i=a,b

gi�as+i + a†s−i�

+
1

2 

j,i=1

A

gi� j�s−is+j + s+is−j� , �9�

where we have defined the operator �̂=1+
 j=1
A � j

2szj.
The last term in Eq. �9� represents an effective dipolar

interaction between the nonresonant atoms, and its contribu-
tion to the system dynamics strongly depends on the internal
resonance condition between atomic frequencies. Let us con-
sider randomly distributed frequencies, such that they satisfy
the condition 
 j −
i�g, i , j=1,2, . . .A. Then, the terms i
� j in the last sum of the effective Hamiltonian �9� rapidly
oscillate and can be neglected. Finally, the effective Hamil-
tonian, up to a constant energy shift, becomes

Hef f = 

j=1

A


 jszj + �1 + 2a†a�

j=1

A

gj� jszj + �̂ 

i=a,b

gi�as+i + a†s−i� .

In the given approximation the total number of excitations
“stored” in the nonresonant atoms is a constant of motion,
which reflects a dispersive character of interaction. The first
term in the above equation represents just transition fre-
quency shifts of the nonresonant atoms, and commutes with
the rest of the terms �so, it can be taken out of the Hamil-
tonian�. The second term is the dynamic Stark shift and its
contribution to the resonant dynamics, described by the last
term, strongly depends on the state of the nonresonant atoms,
which can be considered as a kind of atomic environment.

Since the maximum entanglement in the system of two
resonant atoms is reached when the total number of excita-
tion is one, N=1, we consider this situation exclusively. So,
under the constraint that there is only one photon, the corre-
sponding evolution operator can be found and, in the stan-
dard tensor product basis, it is given by

U�t� = �
eiŷt/2Ân+1 − ig�̂aL̂neiŷt/2 − ig�̂aL̂neiŷt/2 0

− ig�̂a†L̂n+1eiŷt/2 Ŷn Ŷn − 1 − ig�̂aL̂ne−iŷt/2

− ig�̂a†L̂n+1eiŷt/2 Ŷn − 1 Ŷn − ig�̂aL̂ne−iŷt/2

0 − ig�̂a†L̂n+1e−iŷt/2 − ig�̂a†L̂n+1e−iŷt/2 e−iŷt/2Ân
*

� , �10�

where we have defined the operators

L̂n =
sin 
̂nt


̂n

,

Ŷn =
1

2
�eiŷt/2Ân

* + e−iŷt/2Ân+1� ,

Ân = cos 
̂nt + i
ŷ

2
L̂n

and the Rabi frequencies 
̂n depend on the field and on the
environment variables as follows:


̂n = �� ŷ

2
�2

+ 2g2�̂2n̂�1/2

,
ŷ

2
= 


j=1

A

gj� jszj .

So, the dynamics depends on the distribution of the different
Rabi frequencies which appear as a contribution of A non-
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resonance distinguishable two-level atoms and it also de-
pends on the initial state of the whole system.

IV. EVOLUTION OF THE ENTANGLEMENT

Now, let us suppose that the environment atoms are pre-
pared in a coherent superposition of excited and ground
states

��0�env = � j = 1A �0� j + �1� j

�2

1

2A/2

s1



s2

¯

�

sA

�s1 + 1/2�1�s2 + 1/2�2 . . . �sA + 1/2�A, �11�

where the last sum is taken over all possible binary vectors
s�= �s1 ,s2 , . . .sA	, sj =szj = ±1/2. We capture the key features
of the concurrence evolution by considering two particular
cases of initial conditions. First, we suppose that the reso-
nance atoms are initially in the ground state and that the field
is in the one photon Fock state

��� = �0�a�0�b�1� f��0�env. �12�

Applying the evolution operator �10� to the �12� state and
tracing up over the field and the off-resonance atomic envi-
ronment, we obtain for the resonant atoms the following re-
duced density operator:

�ab =
1

2A 

m=1

2A

�sin2�
1
�m�t���+�abab
�+� + cos2�
1

�m�t�

��0�a�0�ba
0�b
0�	 , �13�

with


1
�m� =

g̃2

4
���s��m��2 =

g̃2

4
�


j=1

A

� jsj
�m��2

, �14�

�m = 1 + ���2s��m�� = 1 + 

j=1

A

� j
2sj

�m�, �15�

where s��m� is a certain arrangement of the s� vector and
sj

�m�= ±1/2. We have neglected order corrections higher than
or equal to � on the amplitudes. From now on the coupling
constants for field-environment atoms are taken to be equal,
gj = g̃ for all j. The concurrence corresponding to the density
matrix �13� takes the form

C��ab� =
1

2A 

m=1

2A

sin2�
1
�m�t� . �16�

If the resonant atoms are initially prepared in the symmet-
ric one excitation state and the field is in the vacuum Fock
state, then the initial state of the whole system is the follow-
ing tensor product:

��� =
�0�a�1�b + �1�a�0�b

�2
�0� f��0�env. �17�

In a similar way as described in the previous case �12� the
concurrence takes the form

C��ab� =
1

2A 

m=1

2A

cos2�
1
�m�t� . �18�

It is worth noting that the concurrences �16� and �18� are
composed of many Rabi frequencies, which leads to a struc-
ture similar to the collapses and revivals in the Jaynes–
Cummings model �23,32,33�. Nevertheless, in the present
case the set of different frequencies is due to the presence of
the dispersive atomic environment in contrast to the standard
JCM where different Rabi frequencies appear as contribu-
tions of different Fock field states �recall that a well-defined
collapse-revival structure requires a significant number of
excitations �33,34��.

Let us consider randomly distributed numbers 
 j,

j=1, . . . ,A with the mean 
̄ and the standard deviation �
.
Then, the numbers � j, � j

2 have the following mean values and
standard deviations:

�̄ �
g̃


̄
�1 +

�

2


̄2�, �� �
g̃�



̄2
, �19�

�2 �
g̃2


̄2�1 +
3�


2


̄2 �, ��2 �
2g̃2�



̄3
. �20�

First, we will find the distribution of the �14� quantities. We
assume that ����̄ and ��2 ��2. Then, there are A+1 peaks
corresponding to different values of the number of positive
components of s�, k=0, . . .A; for a given value of k there are

Ck
A=A! / �k!�A−k�!� values of ��� /s�� and ��2� /s�� which are nor-

mally distributed in accordance with the central limit theo-
rem. For the kth peak, the mean value and the standard de-
viation are given by


���s���k = �k − A/2��̄, ��,k = ���k�A − k�
A − 1

,


��2� s���k = �k − A/2��2, ��2,k = ��2�k�A − k�
A − 1

.

Note that the first and the last peaks are infinitely narrow.
The Rabi frequency distribution has A+1 peaks �now the

summation in �16� and �18� is from k=0 to A�, and the fre-
quency corresponding to the kth peak can be approximated
as follows:


k � �2g�1 +
g̃2


̄2
�k −

A

2
��1 +

g̃2

4g2�k −
A

2
��� .

Thus, the expressions �16� and �18� for the concurrence can
be approximated as follows:

C��ab� �
1

2�1 ±
1

2A Re

k=0

A

Ck
A exp�2i
kt�� . �21�

The dk separation between the kth and the �k+1�th peaks,
and the 	k width of the kth peak are
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dk = �2g� g̃2


̄2
+

g̃4

4g2
̄2
�2k − A + 1�� ,

	k = �2g�1 + �k −
A

2
� +

g̃2

4g2�k −
A

2
�2���2,k.

Then, considering the approximation of narrow peaks,

	k�dk, i.e., �
�
̄ /�A, the sum in Eq. �21� can be repre-
sented as a sum of Gaussians, that is

C��ab� �
1

2
±


̄2e2�2igt

2g̃2�2A�
Re 


k=−�

�

e−�gt − �k
̄2/�2g̃2�2/2�2

�22�

with the width

�2 =

̄4

2g̃4A
− it

�2
̄2

8g
, �23�

which grows with time. The Eq. �22� sum reveals the
collapse-revival structure of the concurrences �16� and �18�.
The first collapse happens when

gtc �

̄2

�Ag̃2
, �24�

and it is followed by revival at time

gtR � �k

̄2

�2g̃2
, k = 1,2,¼ . �25�

In Fig. 2 we show the exact evolution of the concurrence for
initially unexcited atoms and the field in the one-photon
Fock state in the presence of the environment atoms. One
can observe that the entanglement also reaches its maximum
value. We can estimate from Eqs. �24� and �25� the time
scale required to observe the environment induced collapse-
revival structure. Taking the typical values of the interaction

constant from �27�: g /2�=24 kHz and 
̄ /2��70 kHz, we
obtain tR�100 �s which is of order of the passage time of
the atom through the cavity �cold atoms, v�100 m/s� and
less than the photon lifetime �160 �s. The collapse time is
�A times less than tR.

V. CONCLUSIONS

In summary, we have studied the dynamics of the concur-
rence of two atoms resonantly interacting with a cavity mode
in the presence of many off-resonance atoms. In other words,
influences of passive elements of a quantum memory in the
dynamical properties of the systems that, actively addressed,
have been studied; see also a recent related work in Ref.
�21�. We have shown that, for random distribution of atomic
detunings and initially symmetric excitation of nonresonant
atoms, the coherent influence of the environment can be
separated from the dephasing. The coherence influence of the
environment reflects in the appearance of the collapse-
revival structure of the concurrence, with an average value of
one half. This behavior is induced only by the presence of
the dispersive environment. It is worth noting that the en-
tanglement of formation in revival periods has as extreme
value 1, which means that the state of the a and b bipartite
system becomes pure at those times.
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